Computational Geometry

Winter semester 2016/17

Height Interpolation

Lecture #8

(Chapter 9 in the textbook)
Height Interpolation
Height Interpolation

\[p = (x_p, y_p, z_p) \]
Height Interpolation

\[p = (x_p, y_p, z_p) \]

\[\pi(p) = (x_p, y_p, 0) \]
Height Interpolation

\[p = (x_p, y_p, z_p) \]

\[\pi(p) = (x_p, y_p, 0) \]
Height Interpolation

\[p = (x_p, y_p, z_p) \]

\[\pi(p) = (x_p, y_p, 0) \]
Triangulation of Planar Point Sets

Definition: Given \(P \subset \mathbb{R}^2 \), a *triangulation* of \(P \) is a maximal planar subdivision with vtx set \(P \), that is, no edge can be added without crossing.

\[
\begin{array}{c}
\text{\bullet} \\
\end{array}
\]
Triangulation of Planar Point Sets

Definition: Given $P \subset \mathbb{R}^2$, a *triangulation* of P is a maximal planar subdivision with vtx set P, that is, no edge can be added without crossing.

Observe:
Triangulation of Planar Point Sets

Definition: Given $P \subseteq \mathbb{R}^2$, a *triangulation* of P is a maximal planar subdivision with vtx set P, that is, no edge can be added without crossing.

Observe: all inner faces are triangles
Definition: Given $P \subset \mathbb{R}^2$, a triangulation of P is a maximal planar subdivision with vtx set P, that is, no edge can be added without crossing.

Observe: all inner faces are triangles
Triangulation of Planar Point Sets

Definition: Given $P \subset \mathbb{R}^2$, a triangulation of P is a maximal planar subdivision with vtx set P, that is, no edge can be added without crossing.

Observe:
- All inner faces are triangles.
- Outer face is complement of a convex polygon.
Triangulation of Planar Point Sets

Definition: Given $P \subset \mathbb{R}^2$, a triangulation of P is a maximal planar subdivision with vtx set P, that is, no edge can be added without crossing.

Observe:
- all inner faces are triangles
- outer face is complement of a convex polygon
Triangulation of Planar Point Sets

Definition: Given $P \subset \mathbb{R}^2$, a *triangulation* of P is a maximal planar subdivision with vtx set P, that is, no edge can be added without crossing.

Observe:
- all inner faces are triangles
- outer face is complement of a convex polygon

Theorem: Let $P \subset \mathbb{R}^2$ be a set of n sites, not all collinear, and let h be the number of sites on $\partial \text{CH}(P)$.

![Diagram of triangulation]
Triangulation of Planar Point Sets

Definition: Given $P \subset \mathbb{R}^2$, a *triangulation* of P is a maximal planar subdivision with vtx set P, that is, no edge can be added without crossing.

Observe:
- all inner faces are triangles
- outer face is complement of a convex polygon

Theorem: Let $P \subset \mathbb{R}^2$ be a set of n sites, not all collinear, and let h be the number of sites on $\partial \text{CH}(P)$. Then *any* triangulation of P has $t(n, h)$ triangles and $e(n, h)$ edges.
Triangulation of Planar Point Sets

Definition: Given \(P \subset \mathbb{R}^2 \), a *triangulation* of \(P \) is a maximal planar subdivision with vtx set \(P \), that is, no edge can be added without crossing.

Observe:
- all inner faces are triangles
- outer face is complement of a convex polygon

Theorem: Let \(P \subset \mathbb{R}^2 \) be a set of \(n \) sites, not all collinear, and let \(h \) be the number of sites on \(\partial \text{CH}(P) \).

 Then *any* triangulation of \(P \) has \(t(n, h) \) triangles and \(e(n, h) \) edges.

Task: Compute \(t \) and \(e \)!
Back to Height Interpolation

height = 985

height = 23
Back to Height Interpolation

Intuition: Avoid “skinny” triangles!
Back to Height Interpolation

Intuition: Avoid “skinny” triangles!

In other words: avoid small angles!
Angle-Optimal Triangulations

Definition: Given a set $P \subset \mathbb{R}^2$
Angle-Optimal Triangulations

Definition: Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P,
Angle-Optimal Triangulations

Definition: Given a set \(P \subset \mathbb{R}^2 \) and a triangulation \(\mathcal{T} \) of \(P \), let \(m \) be the number of triangles in \(\mathcal{T} \).
Angle-Optimal Triangulations

Definition: Given a set $P \subseteq \mathbb{R}^2$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m})$ be the angle vector of \mathcal{T}.
Angle-Optimal Triangulations

Definition: Given a set $P \subseteq \mathbb{R}^2$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m})$ be the angle vector of \mathcal{T}, where $\alpha_1 \leq \cdots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T}.
Angle-Optimal Triangulations

Definition: Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m})$ be the angle vector of \mathcal{T}, where $\alpha_1 \leq \cdots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T}.

![Diagram](attachment://triangle.png)
Angle-Optimal Triangulations

Definition: Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m})$ be the *angle vector* of \mathcal{T}, where $\alpha_1 \leq \cdots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T}.

We say $A(\mathcal{T}) > A(\mathcal{T}')$
Angle-Optimal Triangulations

Definition: Given a set \(P \subset \mathbb{R}^2 \) and a triangulation \(\mathcal{T} \) of \(P \), let \(m \) be the number of triangles in \(\mathcal{T} \) and let \(A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m}) \) be the angle vector of \(\mathcal{T} \), where \(\alpha_1 \leq \cdots \leq \alpha_{3m} \) are the angles in the triangles of \(\mathcal{T} \).

We say \(A(\mathcal{T}) > A(\mathcal{T}') \)
Angle-Optimal Triangulations

Definition: Given a set \(P \subset \mathbb{R}^2 \) and a triangulation \(\mathcal{T} \) of \(P \), let \(m \) be the number of triangles in \(\mathcal{T} \) and let \(A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m}) \) be the angle vector of \(\mathcal{T} \), where \(\alpha_1 \leq \cdots \leq \alpha_{3m} \) are the angles in the triangles of \(\mathcal{T} \).

We say \(A(\mathcal{T}) > A(\mathcal{T}') \)

\[
\begin{align*}
\mathcal{T} & \\
A(\mathcal{T}) &= (60^\circ, 60^\circ, 60^\circ, 60^\circ, 60^\circ, 60^\circ) \\
\mathcal{T}' & \\
A(\mathcal{T}') &= (30^\circ, 30^\circ, 30^\circ, 30^\circ, 120^\circ, 120^\circ)
\end{align*}
\]
Angle-Optimal Triangulations

Definition: Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m})$ be the angle vector of \mathcal{T}, where $\alpha_1 \leq \cdots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T}.

We say $A(\mathcal{T}) > A(\mathcal{T}')$ if $\exists i \in \{1, \ldots, 3m\}$:

$$A(\mathcal{T}) = (60^\circ, 60^\circ, 60^\circ, 60^\circ, 60^\circ, 60^\circ)$$

$$A(\mathcal{T}') = (30^\circ, 30^\circ, 30^\circ, 30^\circ, 120^\circ, 120^\circ)$$
Definition: Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m})$ be the angle vector of \mathcal{T}, where $\alpha_1 \leq \cdots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T}.

We say $A(\mathcal{T}) > A(\mathcal{T}')$ if $\exists i \in \{1, \ldots, 3m\}: \alpha_i > \alpha'_i$.

\[
\mathcal{T} \quad A(\mathcal{T}) = (60^\circ, 60^\circ, 60^\circ, 60^\circ, 60^\circ, 60^\circ) \\
\mathcal{T}' \quad A(\mathcal{T}') = (30^\circ, 30^\circ, 30^\circ, 30^\circ, 120^\circ, 120^\circ)
\]
Angle-Optimal Triangulations

Definition: Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m})$ be the angle vector of \mathcal{T}, where $\alpha_1 \leq \cdots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T}.

We say $A(\mathcal{T}) > A(\mathcal{T}')$ if $\exists i \in \{1, \ldots, 3m\}$: $\alpha_i > \alpha'_i$ and

\mathcal{T}

$A(\mathcal{T}) = (60^\circ, 60^\circ, 60^\circ, 60^\circ, 60^\circ, 60^\circ)$

\mathcal{T}'

$A(\mathcal{T}') = (30^\circ, 30^\circ, 30^\circ, 30^\circ, 120^\circ, 120^\circ)$
Angle-Optimal Triangulations

Definition: Given a set $P \subset \mathbb{R}^2$ and a triangulation T of P, let m be the number of triangles in T and let $A(T) = (\alpha_1, \ldots, \alpha_{3m})$ be the angle vector of T, where $\alpha_1 \leq \cdots \leq \alpha_{3m}$ are the angles in the triangles of T.

We say $A(T) > A(T')$ if $\exists i \in \{1, \ldots, 3m\} : \alpha_i > \alpha'_i$ and $\forall j < i : \alpha_j = \alpha'_j$.

T

$A(T) = (60^\circ, 60^\circ, 60^\circ, 60^\circ, 60^\circ, 60^\circ)$

T'

$A(T') = (30^\circ, 30^\circ, 30^\circ, 30^\circ, 120^\circ, 120^\circ)$
Angle-Optimal Triangulations

Definition: Given a set \(P \subset \mathbb{R}^2 \) and a triangulation \(\mathcal{T} \) of \(P \), let \(m \) be the number of triangles in \(\mathcal{T} \) and let \(A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m}) \) be the *angle vector* of \(\mathcal{T} \), where \(\alpha_1 \leq \cdots \leq \alpha_{3m} \) are the angles in the triangles of \(\mathcal{T} \).

We say \(A(\mathcal{T}) > A(\mathcal{T}') \) if \(\exists i \in \{1, \ldots, 3m\} : \alpha_i > \alpha_i' \) and \(\forall j < i : \alpha_j = \alpha_j' \).

\(\mathcal{T} \) is *angle-optimal* if

\[
A(\mathcal{T}) = (60^\circ, 60^\circ, 60^\circ, 60^\circ, 60^\circ, 60^\circ)
\]

\[
A(\mathcal{T}') = (30^\circ, 30^\circ, 30^\circ, 30^\circ, 120^\circ, 120^\circ)
\]
Angle-Optimal Triangulations

Definition: Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m})$ be the angle vector of \mathcal{T}, where $\alpha_1 \leq \cdots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T}.

We say $A(\mathcal{T}) > A(\mathcal{T}')$ if $\exists i \in \{1, \ldots, 3m\}: \alpha_i > \alpha_i'$ and $\forall j < i: \alpha_j = \alpha_j'$.

\mathcal{T} is angle-optimal if $A(\mathcal{T}) \geq A(\mathcal{T}')$ for all triangulations \mathcal{T}' of P.

$A(\mathcal{T}) = (60^\circ, 60^\circ, 60^\circ, 60^\circ, 60^\circ, 60^\circ)$

$A(\mathcal{T}') = (30^\circ, 30^\circ, 30^\circ, 30^\circ, 120^\circ, 120^\circ)$
Edge Flips

Definition: \mathcal{T} a triangulation. An edge e of \mathcal{T} is \textit{illegal} if the minimum angle in the two triangles adjacent to e increases when flipping.
Edge Flips

Definition: \(\mathcal{T} \) a triangulation. An edge \(e \) of \(\mathcal{T} \) is *illegal* if the minimum angle in the two triangles adjacent to \(e \) increases when flipping.

\[\min_i \alpha_i = 30^\circ \]
Definition: \(\mathcal{T} \) a triangulation. An edge \(e \) of \(\mathcal{T} \) is **illegal** if the minimum angle in the two triangles adjacent to \(e \) increases when flipping.

\[\min_i \alpha_i = 30^\circ \]
Edge Flips

Definition: \mathcal{T} a triangulation. An edge e of \mathcal{T} is *illegal* if the minimum angle in the two triangles adjacent to e increases when flipping.

\[\min_i \alpha_i = 30^\circ \]
Edge Flips

Definition: T a triangulation. An edge e of T is **illegal** if the minimum angle in the two triangles adjacent to e increases when flipping.

$\min_i \alpha_i = 60^\circ$

$\min_i \alpha_i = 30^\circ$
Edge Flips

Definition: \(\mathcal{T} \) a triangulation. An edge \(e \) of \(\mathcal{T} \) is *illegal* if the minimum angle in the two triangles adjacent to \(e \) increases when flipping.

Observe: Let \(e \) be an illegal edge of \(\mathcal{T} \), and \(\mathcal{T}' = \text{flip}(\mathcal{T}, e) \).

\[
\min_i \alpha_i = 60^\circ \quad \text{min}_i \alpha_i = 30^\circ
\]
Edge Flips

Definition: \(T \) a triangulation. An edge \(e \) of \(T \) is **illegal** if the minimum angle in the two triangles adjacent to \(e \) increases when flipping.

Observe: Let \(e \) be an illegal edge of \(T \), and \(T' = \text{flip}(T, e) \).

\[
\min_i \alpha_i = 60^\circ \quad \text{and} \quad \min_i \alpha_i = 30^\circ
\]
Edge Flips

Definition: \(\mathcal{T} \) a triangulation. An edge \(e \) of \(\mathcal{T} \) is **illegal** if the minimum angle in the two triangles adjacent to \(e \) increases when flipping.

Observe: Let \(e \) be an illegal edge of \(\mathcal{T} \), and \(\mathcal{T}' = \text{flip}(\mathcal{T}, e) \). Then \(A(\mathcal{T}') > A(\mathcal{T}) \).

\[
\min_i \alpha_i = 60^\circ
\]

\[
\min_i \alpha_i = 30^\circ
\]
This is all Greek to me...

Theorem:
This is all Greek to me...

Theorem: (Thales)

The diameter of a circle always subtends a right angle to any point on the circle.
This is all Greek to me...

Theorem: (Thales)
The diameter of a circle always subtends a right angle to any point on the circle.
This is all Greek to me...

Theorem: (Thales)
The diameter of a circle always subtends a right angle to any point on the circle.
This is all Greek to me...

Theorem: (Thales) The diameter of a circle always subtends a right angle to any point on the circle.
This is all Greek to me...

Theorem: (Thales)
The diameter of a circle always subtends a right angle to any point on the circle.
This is all Greek to me...

Theorem: (Thales)
The diameter of a circle always subtends a right angle to any point on the circle.
This is all Greek to me...

Theorem: (Thales)
The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales++)
This is all Greek to me...

Theorem: (Thales)

The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales++)
This is all Greek to me...

Theorem: (Thales)

The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales++)
This is all Greek to me...

Theorem: (Thales)
The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales++)

\[
\{a, b\} := \ell \cap \partial \mathbb{D} \quad (a \neq b)
\]
This is all Greek to me...

Theorem: (Thales)
The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales++)
\[
\{a, b\} := \ell \cap \partial D \ (a \neq b)
\]
This is all Greek to me...

Theorem: (Thales)
The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales++)

\[
\{a, b\} := \ell \cap \partial D \quad (a \neq b)
\]

\[
p, q \in \partial D
\]
This is all Greek to me...

Theorem: (Thales)
The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales++)

\[
\{a, b\} := \ell \cap \partial D \ (a \neq b)
\]
\[p, q \in \partial D\]
This is all Greek to me...

Theorem: (Thales)
The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales++)

\[\{a, b\} := \ell \cap \partial D \ (a \neq b) \]
\[\ p, q \in \partial D \]

\[\angle apb = \angle aqb \]
This is all Greek to me...

Theorem: (Thales)
The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales++)

\[
\{a, b\} := \ell \cap \partial D \quad (a \neq b)
\]

\[
p, q \in \partial D
\]

\[
r \in \text{int}(D)
\]

\[\angle apb = \angle aqb\]
This is all Greek to me...

Theorem: (Thales)
The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales++)

\[
\{a, b\} := \ell \cap \partial D \ (a \neq b)
\]
\[p, q \in \partial D\]
\[r \in \text{int}(D)\]

\[\angle apb = \angle aqb < \angle arb\]
This is all Greek to me...

Theorem: (Thales)
The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales++)

\[\{a, b\} := \ell \cap \partial D \quad (a \neq b) \]

\[p, q \in \partial D \]
\[r \in \text{int}(D) \]
\[s \notin D \]

\[\angle apb = \angle aqb < \angle arb \]
This is all Greek to me...

Theorem: (Thales)
The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales++)

\[
\{a, b\} := \ell \cap \partial D \ (a \neq b)
\]

\[
p, q \in \partial D
\]

\[
r \in \text{int}(D)
\]

\[
s \notin D
\]

\[\angle asb < \angle apb = \angle aqb < \angle arb\]
Legal Triangulations

Lemma: Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

\[
\begin{align*}
\partial D \\
p & \quad r \\
\quad s \\
q
\end{align*}
\]
Legal Triangulations

Lemma: Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \not\in \partial D$, then either pq or rs is illegal.
Lemma: Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$, then either pq or rs is illegal.

Proof:
Lemma: Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$, then either pq or rs is illegal.

Proof: Show: $\forall \alpha'$ in $\mathcal{T}' \exists \alpha$ in \mathcal{T} s.t. $\alpha < \alpha'$.
Lemma: Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$, then either pq or rs is illegal.

Proof: Show: $\forall \alpha'$ in $\mathcal{T}' \exists \alpha$ in \mathcal{T} s.t. $\alpha < \alpha'$.

\[p \quad r \quad q \quad s \]
Legal Triangulations

Lemma: Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \not\in \partial D$, then either pq or rs is illegal.

Proof: Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T} \text{ s.t. } \alpha < \alpha'$.\hfill ("$\Rightarrow$")
Legal Triangulations

Lemma: Let \(\Delta prq, \Delta pqs \in \mathcal{T} \) and \(p, q, r \in \partial D \). Then edge \(pq \) is illegal iff \(s \in \text{int}(D) \).

If \(p, q, r, s \) in convex position and \(s \notin \partial D \), then either \(pq \) or \(rs \) is illegal.

Proof:

Show: \(\forall \alpha' \in \mathcal{T}' \exists \alpha \in \mathcal{T} \text{ s.t. } \alpha < \alpha' \).

\(\Rightarrow \)
Legal Triangulations

Lemma: Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$, then either pq or rs is illegal.

Proof: Show: $\forall \alpha' \in T' \exists \alpha \in T$ s.t. $\alpha < \alpha'$.
Legal Triangulations

Lemma: Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$, then either pq or rs is illegal.

Proof: Show: $\forall \alpha' \in \mathcal{T}' \exists \alpha \in \mathcal{T}$ s.t. $\alpha < \alpha'$.
Legal Triangulations

Lemma: Let \(\Delta prq, \Delta pqs \in \mathcal{T} \) and \(p, q, r \in \partial D \). Then edge \(pq \) is illegal iff \(s \in \text{int}(D) \).

If \(p, q, r, s \) in convex position and \(s \notin \partial D \), then either \(pq \) or \(rs \) is illegal.

Proof:

Show: \(\forall \alpha' \in \mathcal{T}' \exists \alpha \in \mathcal{T} \text{ s.t. } \alpha < \alpha' \). ("\(\Rightarrow \)"")

Use Thales++ w.r.t. \(qs' \).
Legal Triangulations

Lemma: Let $\triangle prq, \triangle pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$, then either pq or rs is illegal.

Proof: Show: $\forall \alpha' \in \mathcal{T}' \exists \alpha \in \mathcal{T}$ s.t. $\alpha < \alpha'$.

"\Rightarrow"

Use Thales++ w.r.t. qs'.

\[\partial D \quad \bullet \quad s' \quad \bullet \quad \alpha' \quad \bullet \quad s \quad \alpha' \quad \bullet \quad p \quad q \quad r\]
Legal Triangulations

Lemma: Let $\triangle prq, \triangle pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$, then either pq or rs is illegal.

Proof: Show: $\forall \alpha' \in \mathcal{T}' \exists \alpha \in \mathcal{T}$ s.t. $\alpha < \alpha'$.

("\Rightarrow") Use Thales++ w.r.t. qs'.
Legal Triangulations

Lemma: Let $\Delta prq, \Delta pq s \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$, then either pq or rs is illegal.

Proof:

Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T}$ s.t. $\alpha < \alpha'$.

("\Rightarrow"") Use Thales++ w.r.t. qs'.

Note: Criterion symmetric in r and s
Legal Triangulations

Lemma: Let Δprq, Δpqrs ∈ ℳ and p, q, r ∈ ∂D. Then edge pq is illegal iff s ∈ int(D).

If p, q, r, s in convex position and s ∉ ∂D, then either pq or rs is illegal.

Proof:

Show: ∀α' in ℳ' ∃α in ℳ s.t. α < α'.

("⇒") Use Thales++ w.r.t. qs'.

Note: Criterion symmetric in r and s
⇒ if s ∈ ∂D, both pq and rs legal.
Legal Triangulations

Lemma: Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \not\in \partial D$, then either pq or rs is illegal.

Proof: Show: $\forall \alpha' \in \mathcal{T}' \exists \alpha \in \mathcal{T}$ s.t. $\alpha < \alpha'$.

(“\Rightarrow”) Use Thales++ w.r.t. qs'.

Note: Criterion symmetric in r and s.

\Rightarrow if $s \in \partial D$, both pq and rs legal.

Definition: A triangulation is legal if it has no illegal edge.
Legal Triangulations

Lemma: Let $\Delta prq, \Delta pqs \in T$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$, then either pq or rs is illegal.

Proof:

Show: $\forall \alpha' \in T' \exists \alpha \in T$ s.t. $\alpha < \alpha'$.

("\Rightarrow") Use Thales++ w.r.t. qs'.

Note: Criterion symmetric in r and s

\Rightarrow if $s \in \partial D$, both pq and rs legal.

Definition: A triangulation is *legal* if it has no illegal edge.

Existence?
Legal Triangulations

Lemma: Let $\Delta prq, \Delta pqs \in T$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \not\in \partial D$, then either pq or rs is illegal.

Proof: Show: $\forall \alpha' \text{ in } T' \exists \alpha \text{ in } T \text{ s.t. } \alpha < \alpha'$.

("⇒") Use Thales++ w.r.t. qs'.

Note: Criterion symmetric in r and s.

\Rightarrow if $s \in \partial D$, both pq and rs legal.

Definition: A triangulation is *legal* if it has no illegal edge.

Existence? Algorithm: Let T be any triangulation of P.

While T has an illegal edge e, flip e. Return T.
Legal Triangulations

Lemma: Let $\Delta prq, \Delta pqs \in T$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$, then either pq or rs is illegal.

Proof:

Show: $\forall \alpha' \text{ in } T' \exists \alpha \text{ in } T \text{ s.t. } \alpha < \alpha'$. ("$\Rightarrow$")

Use Thales++ w.r.t. qs'.

Note: Criterion symmetric in r and s

\Rightarrow if $s \in \partial D$, both pq and rs legal.

Definition: A triangulation is *legal* if it has no illegal edge.

Existence? Algorithm: Let T be any triangulation of P.

While T has an illegal edge e, flip e. Return T.
Legal Triangulations

Lemma: Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$, then either pq or rs is illegal.

Proof: Show: $\forall \alpha' \in \mathcal{T}' \exists \alpha \in \mathcal{T}$ s.t. $\alpha < \alpha'$.

("\Rightarrow"") Use Thales++ w.r.t. qs'.

Note: Criterion symmetric in r and s.

\Rightarrow if $s \in \partial D$, both pq and rs legal.

Definition: A triangulation is *legal* if it has no illegal edge.

Existence? Algorithm: Let \mathcal{T} be any triangulation of P.

While \mathcal{T} has an illegal edge e, flip e. Return \mathcal{T}.

$A(\mathcal{T})$ goes up!
Legal Triangulations

Lemma: Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$, then either pq or rs is illegal.

Proof: Show: $\forall \alpha' \in \mathcal{T}' \exists \alpha \in \mathcal{T}$ s.t. $\alpha < \alpha'$.

("\Rightarrow"") Use Thales++ w.r.t. qs'.

Note: Criterion symmetric in r and s.

\Rightarrow if $s \in \partial D$, both pq and rs legal.

Definition: A triangulation is *legal* if it has no illegal edge.

Existence? Algorithm: Let \mathcal{T} be any triangulation of P. While \mathcal{T} has an illegal edge e, flip e. Return \mathcal{T}.

$A(\mathcal{T})$ goes up! &
Legal Triangulations

Lemma: Let $\Delta prq, \Delta pqs \in T$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$, then either pq or rs is illegal.

Proof: Show: $\forall \alpha' \in T' \exists \alpha \in T$ s.t. $\alpha < \alpha'$.

("\Rightarrow") Use Thales++ w.r.t. qs'.

Note: Criterion symmetric in r and s.

\Rightarrow if $s \in \partial D$, both pq and rs legal.

Definition: A triangulation is *legal* if it has no illegal edge.

Existence? Algorithm: Let T be any triangulation of P. While T has an illegal edge e, flip e. Return T.

$A(T)$ goes up! $\&$ # (triangulations of P) $< \infty$
Legal Triangulations

Lemma: Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$, then either pq or rs is illegal.

Proof: Show: $\forall \alpha' \in \mathcal{T}' \exists \alpha \in \mathcal{T}$ s.t. $\alpha < \alpha'$.

("\Rightarrow") Use Thales++ w.r.t. qs'.

Note: Criterion symmetric in r and s implies if $s \in \partial D$, both pq and rs legal.

Definition: A triangulation is legal if it has no illegal edge.

Existence? Algorithm: Let \mathcal{T} be any triangulation of P. While \mathcal{T} has an illegal edge e, flip e. Return \mathcal{T}.

$A(\mathcal{T})$ goes up! & #(triangulations of P) < ∞
Legal Triangulations

Lemma: Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$, then either pq or rs is illegal.

Proof: Show: $\forall \alpha' \in \mathcal{T}' \exists \alpha \in \mathcal{T}$ s.t. $\alpha < \alpha'$.

("\Rightarrow") Use Thales++ w.r.t. qs'.

Note: Criterion symmetric in r and s.

\Rightarrow if $s \in \partial D$, both pq and rs legal.

Definition: A triangulation is legal if it has no illegal edge.

Existence?

Algorithm: Let \mathcal{T} be any triangulation of P.

While \mathcal{T} has an illegal edge e, flip e. Return \mathcal{T}.

algorithm terminates

$A(\mathcal{T})$ goes up! & $\#$(triangulations of $P) < \infty$
Legal Triangulations

Lemma: Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$, then either pq or rs is illegal.

Proof: Show: $\forall \alpha' \in \mathcal{T}' \exists \alpha \in \mathcal{T}$ s.t. $\alpha < \alpha'$.

("\Rightarrow") Use Thales++ w.r.t. qs'.

Note: Criterion symmetric in r and s.

\Rightarrow if $s \in \partial D$, both pq and rs legal.

Definition: A triangulation is *legal* if it has no illegal edge.

Existence? Algorithm: Let \mathcal{T} be any triangulation of P. While \mathcal{T} has an illegal edge e, flip e. Return \mathcal{T}.

$A(\mathcal{T})$ goes up! & $(\text{triangulations of } P) < \infty$
Legal vs. Angle-Optimal

Clearly... Every angle-optimal triangulation is legal.
Legal vs. Angle-Optimal

Clearly... Every angle-optimal triangulation is legal. *But is every legal triangulation angle-optimal??*
Legal vs. Angle-Optimal

Clearly... Every angle-optimal triangulation is legal.

But is every legal triangulation angle-optimal??

Let’s see.
Legal vs. Angle-Optimal

Clearly... Every angle-optimal triangulation is legal.

But is every legal triangulation angle-optimal??

Let’s see.

To clarify things, we’ll introduce yet another type of triangulation...
Voronoi & Delaunay

Remember: Given a set P of n points in the plane...

Vor(P) = subdivision of the plane into

Voronoi cells, edges, and vertices

$\mathcal{V}(p) = \{x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\}\}$

Voronoi cell of $p \in P$
Voronoi & Delaunay

Remember: Given a set P of n points in the plane...

$\text{Vor}(P) =$ subdivision of the plane into Voronoi cells, edges, and vertices

$\mathcal{V}(p) = \{ x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\} \}$

Voronoi cell of $p \in P$

Definition: The graph $\mathcal{G} = (P, E)$ with

$\{p, q\} \in E \Leftrightarrow \mathcal{V}(p) \text{ and } \mathcal{V}(q) \text{ share an edge}$

is the *dual graph* of $\text{Vor}(P)$
Voronoi & Delaunay

Remember: Given a set P of n points in the plane . . .

\[\text{Vor}(P) = \text{subdivision of the plane into Voronoi cells, edges, and vertices} \]

\[\mathcal{V}(p) = \{ x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\} \} \]

Voronoi cell of $p \in P$

Definition: The graph $\mathcal{G} = (P, E)$ with

\[\{p, q\} \in E \iff \mathcal{V}(p) \text{ and } \mathcal{V}(q) \text{ share an edge} \]

is the dual graph of $\text{Vor}(P)$

Definition: The Delaunay graph $\mathcal{DG}(P)$ is the straight-line drawing of \mathcal{G}.
From Voronoi to Delaunay

\[P \subset \mathbb{R}^2 \]
From Voronoi to Delaunay

\[P \subset \mathbb{R}^2 \]
From Voronoi to Delaunay

\[P \subset \mathbb{R}^2 \]
From Voronoi to Delaunay

$P \subset \mathbb{R}^2$

Georgy Feodosevich Voronoy (1868–1908 Zhuravki, now Ukraine)
From Voronoi to Delaunay

Georgy Feodosevich Voronoy
(1868–1908 Zhuravki, now Ukraine)

\(P \subset \mathbb{R}^2 \)

dual graph of \(\text{Vor}(P) \)

\(\text{Vor}(P) \)
From Voronoi to Delaunay

$P \subset \mathbb{R}^2$

Georgy Feodosevich Voronoy (1868–1908 Zhuravki, now Ukraine)
From Voronoi to Delaunay

$P \subset \mathbb{R}^2$

Georgy Feodosevich Voronoy (1868–1908 Zhuravki, now Ukraine)

Boris Nikolaevich Delone (St. Petersburg 1890–1980 Moscow)
Planarity

Theorem. \(P \subset \mathbb{R}^2 \) finite \(\Rightarrow \mathcal{DG}(P) \) plane.
Planarity

Theorem. \(P \subset \mathbb{R}^2 \) finite \(\Rightarrow \mathcal{DG}(P) \) plane.

Proof. Recall property of Voronoi edges:
Planarity

Theorem. \(P \subset \mathbb{R}^2 \) finite \(\Rightarrow \) \(\mathcal{DG}(P) \) plane.

Proof. Recall property of Voronoi edges:
Edge \(pq \) is in \(\mathcal{DG}(P) \) \(\iff \)
Planarity

Theorem. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof. Recall property of Voronoi edges:

Edge pq is in $\mathcal{DG}(P) \iff \exists D_{pq}$ closed disk s.t.
Planarity

Theorem. \(P \subset \mathbb{R}^2 \) finite \(\Rightarrow \) \(\mathcal{DG}(P) \) plane.

Proof. Recall property of Voronoi edges:

Edge \(pq \) is in \(\mathcal{DG}(P) \) \(\iff \) \(\exists D_{pq} \) closed disk s.t.
Planarity

Theorem. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof. Recall property of Voronoi edges:

Edge pq is in $\mathcal{DG}(P) \iff \exists D_{pq}$ closed disk s.t.

$p, q \in \partial D_{pq}$ and
Planarity

Theorem. \(P \subset \mathbb{R}^2 \) finite \(\Rightarrow DG(P) \) plane.

Proof. Recall property of Voronoi edges:

Edge \(pq \) is in \(DG(P) \) \(\iff \exists D_{pq} \) closed disk s.t.

- \(p, q \in \partial D_{pq} \) and
- \(\{p, q\} = D_{pq} \cap P. \)
Planarity

Theorem. \(P \subset \mathbb{R}^2 \) finite \(\Rightarrow \mathcal{DG}(P) \) plane.

Proof. Recall property of Voronoi edges:

Edge \(pq \) is in \(\mathcal{DG}(P) \) \(\iff \exists D_{pq} \) closed disk s.t.

- \(p, q \in \partial D_{pq} \) and
- \(\{p, q\} = D_{pq} \cap P. \)

\(c = \text{center}(D_{pq}) \) lies on edge betw. \(\mathcal{V}(p) \) & \(\mathcal{V}(q) \).
Planarity

Theorem. \(P \subset \mathbb{R}^2 \) finite \(\Rightarrow \) \(DG(P) \) plane.

Proof.

Recall property of Voronoi edges:

Edge \(pq \) is in \(DG(P) \) \(\iff \) \(\exists D_{pq} \) closed disk s.t.

\(p, q \in \partial D_{pq} \) and

\(\{p, q\} = D_{pq} \cap P. \)

\(c = \text{center}(D_{pq}) \) lies on edge betw. \(V(p) \) & \(V(q). \)

Suppose \(\exists \) edge \(uv \neq pq \) in \(DG(P) \) that crosses \(pq. \)
Planarity

Theorem.
$P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.
Recall property of Voronoi edges:
Edge pq is in $\mathcal{DG}(P)$ $\iff \exists D_{pq}$ closed disk s.t.

- $p, q \in \partial D_{pq}$ and
- $\{p, q\} = D_{pq} \cap P$.

$c = \text{center}(D_{pq})$ lies on edge betw. $\mathcal{V}(p)$ & $\mathcal{V}(q)$.

Suppose \exists edge $uv \neq pq$ in $\mathcal{DG}(P)$ that crosses pq.

$u, v \not\in D_{pq}$ \Rightarrow
Planarity

Theorem. \(P \subset \mathbb{R}^2 \) finite \(\Rightarrow \) \(\mathcal{DG}(P) \) plane.

Proof.

Recall property of Voronoi edges:

- Edge \(pq \) is in \(\mathcal{DG}(P) \) \(\iff \) \(\exists D_{pq} \) closed disk s.t.
 - \(p, q \in \partial D_{pq} \) and
 - \(\{p, q\} = D_{pq} \cap P \).

- \(c = \text{center}(D_{pq}) \) lies on edge betw. \(\mathcal{V}(p) \) & \(\mathcal{V}(q) \).

Suppose \(\exists \) edge \(uv \neq pq \) in \(\mathcal{DG}(P) \) that crosses \(pq \).

\[u, v \notin D_{pq} \Rightarrow u, v \notin t_{pq} \Rightarrow \]
Planarity

Theorem. \(P \subset \mathbb{R}^2 \) finite \(\Rightarrow \mathcal{DG}(P) \) plane.

Proof. Recall property of Voronoi edges:
Edge \(pq \) is in \(\mathcal{DG}(P) \) \(\iff \exists D_{pq} \) closed disk s.t.
\[
\begin{align*}
& p, q \in \partial D_{pq} \text{ and } \\
& \{p, q\} = D_{pq} \cap P.
\end{align*}
\]
c = center(\(D_{pq} \)) lies on edge betw. \(\mathcal{V}(p) \) & \(\mathcal{V}(q) \).
Suppose \(\exists \) edge \(uv \neq pq \) in \(\mathcal{DG}(P) \) that crosses \(pq \).
\[
\begin{align*}
u, v \notin D_{pq} \Rightarrow u, v \notin t_{pq} \Rightarrow uv \text{ crosses another edge of } t_{pq}
\end{align*}
\]
Planarity

Theorem. \(P \subset \mathbb{R}^2 \) finite \(\Rightarrow \mathcal{D}\mathcal{G}(P) \) plane.

Proof. Recall property of Voronoi edges:

Edge \(pq \) is in \(\mathcal{D}\mathcal{G}(P) \) \(\iff \) \(\exists D_{pq} \) closed disk s.t.

\[p, q \in \partial D_{pq} \text{ and } \{p, q\} = D_{pq} \cap P. \]

\(c = \text{center}(D_{pq}) \) lies on edge betw. \(\mathcal{V}(p) \) & \(\mathcal{V}(q) \).

Suppose \(\exists \) edge \(uv \neq pq \) in \(\mathcal{D}\mathcal{G}(P) \) that crosses \(pq \).

\(u, v \notin D_{pq} \Rightarrow u, v \notin t_{pq} \Rightarrow \)

\(uv \) crosses another edge of \(t_{pq} \)

\(p, q \notin D_{uv} \Rightarrow \)
Planarity

Theorem. \(P \subset \mathbb{R}^2 \) finite \(\Rightarrow \mathcal{DG}(P) \) plane.

Proof.
Recall property of Voronoi edges:
Edge \(pq \) is in \(\mathcal{DG}(P) \) \(\iff \exists D_{pq} \) closed disk s.t.
- \(p, q \in \partial D_{pq} \) and
- \(\{p, q\} = D_{pq} \cap P \).

\(c = \text{center}(D_{pq}) \) lies on edge betw. \(\mathcal{V}(p) \) & \(\mathcal{V}(q) \).

Suppose \(\exists \) edge \(uv \neq pq \) in \(\mathcal{DG}(P) \) that crosses \(pq \).

\(u, v \notin D_{pq} \Rightarrow u, v \notin t_{pq} \Rightarrow \)
- \(uv \) crosses another edge of \(t_{pq} \)

\(p, q \notin D_{uv} \Rightarrow p, q \notin t_{uv} \Rightarrow \)
Planarity

Theorem. \[P \subset \mathbb{R}^2 \text{ finite } \Rightarrow DG(P) \text{ plane.} \]

Proof.
Recall property of Voronoi edges:

Edge \(pq \) is in \(DG(P) \) \(\iff \) \(\exists D_{pq} \) closed disk s.t.

- \(p, q \in \partial D_{pq} \) and
- \(\{p, q\} = D_{pq} \cap P \).

\(c = \text{center}(D_{pq}) \) lies on edge betw. \(V(p) \) & \(V(q) \).

Suppose \(\exists \) edge \(uv \neq pq \) in \(DG(P) \) that crosses \(pq \).

\[u, v \notin D_{pq} \Rightarrow u, v \notin t_{pq} \Rightarrow uv \text{ crosses another edge of } t_{pq} \]

\[p, q \notin D_{uv} \Rightarrow p, q \notin t_{uv} \Rightarrow pq \text{ crosses another edge of } t_{uv} \]
Planarity

Theorem. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof. Recall property of Voronoi edges:

Edge pq is in $\mathcal{DG}(P)$ \iff $\exists D_{pq}$ closed disk s.t.

- $p, q \in \partial D_{pq}$ and
- $\{p, q\} = D_{pq} \cap P$.

$c = \text{center}(D_{pq})$ lies on edge betw. $V(p)$ & $V(q)$.

Suppose \exists edge $uv \neq pq$ in $\mathcal{DG}(P)$ that crosses pq.

$u, v \not\in D_{pq} \Rightarrow u, v \not\in t_{pq} \Rightarrow$

uv crosses another edge of t_{pq}

$p, q \not\in D_{uv} \Rightarrow p, q \not\in t_{uv} \Rightarrow$

pq crosses another edge of t_{uv}

\Rightarrow one of s_{pq} or s_{qp} crosses one of s_{uv} or s_{vu}
Planarity

Theorem. \(P \subset \mathbb{R}^2 \) finite \(\Rightarrow \mathcal{DG}(P) \) plane.

Proof.

Recall property of Voronoi edges:

Edge \(pq \) is in \(\mathcal{DG}(P) \) \(\iff \exists D_{pq} \) closed disk s.t.

- \(p, q \in \partial D_{pq} \) and
- \(\{p, q\} = D_{pq} \cap P \).

\(c = \text{center}(D_{pq}) \) lies on edge betw. \(\mathcal{V}(p) \) & \(\mathcal{V}(q) \).

Suppose \(\exists \) edge \(uv \neq pq \) in \(\mathcal{DG}(P) \) that crosses \(pq \).

\(u, v \notin D_{pq} \Rightarrow u, v \notin t_{pq} \Rightarrow \)

- \(uv \) crosses another edge of \(t_{pq} \)

\(p, q \notin D_{uv} \Rightarrow p, q \notin t_{uv} \Rightarrow \)

- \(pq \) crosses another edge of \(t_{uv} \)

\(\Rightarrow \) one of \(s_{pq} \) or \(s_{qp} \) crosses one of \(s_{uv} \) or \(s_{vu} \)
Planarity

Theorem. $P \subset \mathbb{R}^2$ finite \Rightarrow $\mathcal{DG}(P)$ plane.

Proof.

Recall property of Voronoi edges:

Edge pq is in $\mathcal{DG}(P) \iff \exists D_{pq}$ closed disk s.t.

- $p, q \in \partial D_{pq}$ and
- $\{p, q\} = D_{pq} \cap P$.

$c = \text{center}(D_{pq})$ lies on edge betw. $\mathcal{V}(p)$ & $\mathcal{V}(q)$.

Suppose \exists edge $uv \neq pq$ in $\mathcal{DG}(P)$ that crosses pq.

\[
egin{align*}
 u, v \notin D_{pq} & \Rightarrow u, v \notin t_{pq} \Rightarrow \\
 & uv \text{ crosses another edge of } t_{pq} \\
 p, q \notin D_{uv} & \Rightarrow p, q \notin t_{uv} \Rightarrow \\
 & pq \text{ crosses another edge of } t_{uv} \\
 & \Rightarrow \text{one of } s_{pq} \text{ or } s_{qp} \text{ crosses one of } s_{uv} \text{ or } s_{vu} \\
 & s_{pq} \subset \mathcal{V}(p), \ s_{qp} \subset \mathcal{V}(q), \ s_{uv} \subset \mathcal{V}(u), \ s_{vu} \subset \mathcal{V}(v).
\end{align*}
\]
Planarity

Theorem. \(P \subset \mathbb{R}^2 \) finite \(\Rightarrow \mathcal{DG}(P) \) plane.

Proof.

Recall property of Voronoi edges:

Edge \(pq \) is in \(\mathcal{DG}(P) \) \(\iff \exists D_{pq} \) closed disk s.t.

\[
\begin{align*}
& p, q \in \partial D_{pq} \text{ and } \\
& \{p, q\} = D_{pq} \cap P.
\end{align*}
\]

\(c = \text{center}(D_{pq}) \) lies on edge betw. \(\mathcal{V}(p) \) & \(\mathcal{V}(q) \).

Suppose \(\exists \) edge \(uv \neq pq \) in \(\mathcal{DG}(P) \) that crosses \(pq \).

\[
\begin{align*}
& u, v \notin D_{pq} \Rightarrow u, v \notin t_{pq} \Rightarrow \\
& \quad uv \text{ crosses another edge of } t_{pq} \\
& p, q \notin D_{uv} \Rightarrow p, q \notin t_{uv} \Rightarrow \\
& \quad pq \text{ crosses another edge of } t_{uv} \\
& \Rightarrow \text{ one of } s_{pq} \text{ or } s_{qp} \text{ crosses one of } s_{uv} \text{ or } s_{vu} \\
& \quad \triangleleft s_{pq} \subset \mathcal{V}(p), s_{qp} \subset \mathcal{V}(q), s_{uv} \subset \mathcal{V}(u), s_{vu} \subset \mathcal{V}(v).
\end{align*}
\]
Characterization

Characterization of Voronoi vertices and Voronoi edges ⇒

Theorem. \(P \subset \mathbb{R}^2 \) finite. Then

(i) Three pts \(p, q, r \in P \) are vertices of the same face of \(\mathcal{DG}(P) \) \(\iff \) \(\text{int}(C(p, q, r)) \cap P = \emptyset \)
Characterization

Characterization of Voronoi vertices and Voronoi edges

Theorem. $P \subset \mathbb{R}^2$ finite. Then

(i) Three pts $p, q, r \in P$ are vertices of the same face of $DG(P) \iff \text{int}(C(p, q, r)) \cap P = \emptyset$

(ii) Two pts $p, q \in P$ form an edge of $DG(P) \iff$

there is a disk D with

- $\partial D \cap P = \{p, q\}$ and
- $\text{int}(D) \cap P = \emptyset$.
Characterization

Characterization of Voronoi vertices and Voronoi edges ⇒

Theorem. \(P \subset \mathbb{R}^2 \) finite. Then

(i) Three pts \(p, q, r \in P \) are vertices of the same face of \(\mathcal{DG}(P) \) \(\iff \) \(\text{int}(C(p, q, r)) \cap P = \emptyset \)

(ii) Two pts \(p, q \in P \) form an edge of \(\mathcal{DG}(P) \) \(\iff \) there is a disk \(D \) with
- \(\partial D \cap P = \{p, q\} \)
- \(\text{int}(D) \cap P = \emptyset \).

Theorem. \(P \subset \mathbb{R}^2 \) finite, \(\mathcal{T} \) triangulation of \(P \). Then \(\mathcal{T} \) Delaunay \(\iff \) for each triangle \(\Delta \) of \(\mathcal{T} \):
\[
\text{int}(C(\Delta)) \cap P = \emptyset.
\]
Characterization

Characterization of Voronoi vertices and Voronoi edges ⇒

Theorem. $P \subset \mathbb{R}^2$ finite. Then

(i) Three pts $p, q, r \in P$ are vertices of the same face of $DG(P)$ ⇔ $\text{int}(C(p, q, r)) \cap P = \emptyset$

(ii) Two pts $p, q \in P$ form an edge of $DG(P)$ ⇔ there is a disk D with

- $\partial D \cap P = \{p, q\}$ and
- $\text{int}(D) \cap P = \emptyset$.

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} Delaunay ⇔ for each triangle Δ of \mathcal{T}:

$\text{int}(C(\Delta)) \cap P = \emptyset$.

(“empty-circumcircle property”)
Main Result

Theorem. \(P \subset \mathbb{R}^2 \) finite, \(\mathcal{T} \) triangulation of \(P \).
Then \(\mathcal{T} \) legal \(\iff \mathcal{T} \)
Main Result

Theorem. \(P \subset \mathbb{R}^2 \) finite, \(\mathcal{T} \) triangulation of \(P \). Then \(\mathcal{T} \) legal \(\iff \) \(\mathcal{T} \) Delaunay.
Main Result

Theorem. \(P \subseteq \mathbb{R}^2 \) finite, \(T \) triangulation of \(P \).

Then \(T \) legal \(\iff \) \(T \) Delaunay.

Proof. “\(\Leftarrow \)”
Main Result

Theorem. \(P \subset \mathbb{R}^2 \) finite, \(\mathcal{T} \) triangulation of \(P \).

Then \(\mathcal{T} \) legal \(\iff \mathcal{T} \) Delaunay.

Proof. “\(\leftarrow \)” implied by empty-circumcircle property & Thales+++.
Main Result

Theorem. \(P \subset \mathbb{R}^2 \) finite, \(\mathcal{T} \) triangulation of \(P \).

Then \(\mathcal{T} \) legal \(\iff \mathcal{T} \) Delaunay.

Proof. “\(\Leftarrow \)” implied by empty-circumcircle property & Thales++

“\(\Rightarrow \)”
Main Result

Theorem. \(P \subset \mathbb{R}^2 \) finite, \(\mathcal{T} \) triangulation of \(P \).
Then \(\mathcal{T} \) legal \(\iff \mathcal{T} \) Delaunay.

Proof. “\(\Leftarrow \)” implied by empty-circumcircle property & Thales++
“\(\Rightarrow \)” by contradiction:
Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\iff \mathcal{T}$ Delaunay.

Proof. “\Leftarrow” implied by empty-circumcircle property & Thales++

“\Rightarrow” by contradiction:

Assume \mathcal{T} is legal triang. of P, but *not* Delaunay.
Main Result

Theorem. \(P \subset \mathbb{R}^2 \) finite, \(\mathcal{T} \) triangulation of \(P \). Then \(\mathcal{T} \) legal \(\iff \mathcal{T} \) Delaunay.

Proof. “\(\Leftarrow \)” implied by empty-circumcircle property & Thales\(++ \)

“\(\Rightarrow \)” by contradiction:

Assume \(\mathcal{T} \) is legal triang. of \(P \), but *not* Delaunay.

\[\Rightarrow \exists \Delta pqr \text{ such that } \text{int}(C(\Delta pqr)) \text{ contains } s \in P. \]
Main Result

Theorem. \(P \subset \mathbb{R}^2 \) finite, \(\mathcal{T} \) triangulation of \(P \).
Then \(\mathcal{T} \) legal \(\iff \mathcal{T} \) Delaunay.

Proof. “\(\Leftarrow \)” implied by empty-circumcircle property & Thales++
“\(\Rightarrow \)” by contradiction:
Assume \(\mathcal{T} \) is legal triang. of \(P \), but *not* Delaunay.
\(\Rightarrow \exists \Delta pqr \) such that \(\text{int}(C(\Delta pqr)) \) contains \(s \in P \).
Wlog. let \(e = pq \) be the edge of \(\Delta pqr \) such that \(s \) “sees” \(pq \) before the other edges of \(\Delta pqr \).
Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal \iff \mathcal{T} Delaunay.

Proof. "\Leftarrow" implied by empty-circumcircle property & Thales+++

"\Rightarrow" by contradiction:
Assume \mathcal{T} is legal triang. of P, but *not* Delaunay.
$\Rightarrow \exists \Delta pqr$ such that int($C(\Delta pqr)$) contains $s \in P$.
Wlog. let $e = pq$ be the edge of Δpqr such that s "sees" pq before the other edges of Δpqr.

Among all such pairs $(\Delta pqr, s)$ in \mathcal{T} choose one that maximizes $\alpha = \angle psq$.
Proof of Main Result (cont’d)

Consider the triangle Δpqt adjacent to e in \mathcal{T}.
Proof of Main Result (cont’d)

Consider the triangle Δpqt adjacent to e in \mathcal{T}.

\mathcal{T} legal \Rightarrow
Proof of Main Result (cont’d)

Consider the triangle Δpqt adjacent to e in \mathcal{T}.

\mathcal{T} legal \Rightarrow e legal \Rightarrow
Proof of Main Result (cont’d)

Consider the triangle Δpqt adjacent to e in \mathcal{T}. \mathcal{T} legal \Rightarrow e legal \Rightarrow $t \notin \text{int}(C(\Delta pqr))$
Proof of Main Result (cont’d)

Consider the triangle Δpqt adjacent to e in \mathcal{T}.
\mathcal{T} legal $\Rightarrow e$ legal $\Rightarrow t \notin \text{int}(C(\Delta pqr))$
$\Rightarrow C(\Delta pqt)$ contains $C(\Delta pqr) \cap e^+$.
Proof of Main Result (cont’d)

Consider the triangle Δpqt adjacent to e in \mathcal{T}.

\mathcal{T} legal \Rightarrow e legal \Rightarrow $t \notin \text{int}(C(\Delta pqr))$

\Rightarrow $C(\Delta pqt)$ contains $C(\Delta pqr) \cap e^+$.

halfplane supported by e that contains s
Consider the triangle Δpqt adjacent to e in T.

T legal \Rightarrow e legal \Rightarrow $t \notin \text{int}(C(\Delta pqr))$

\Rightarrow $C(\Delta pqt)$ contains $C(\Delta pqr) \cap e^+$.

\Rightarrow $s \in C(\Delta pqt)$
Proof of Main Result (cont’d)

Consider the triangle Δpqt adjacent to e in \mathcal{T}.

\mathcal{T} legal \Rightarrow e legal \Rightarrow $t \notin \text{int}(C(\Delta pqr))$

\Rightarrow $C(\Delta pqt)$ contains $C(\Delta pqr) \cap e^+$.

\Rightarrow $s \in C(\Delta pqt)$

Wlog. let $e' = qt$ be the edge of Δpqt that s sees.
Proof of Main Result (cont’d)

Consider the triangle Δpqt adjacent to e in \mathcal{T}.

\mathcal{T} legal \Rightarrow e legal \Rightarrow $t \notin \text{int}(C(\Delta pqr))$

\Rightarrow $C(\Delta pqt)$ contains $C(\Delta pqr) \cap e^+$.

\Rightarrow $s \in C(\Delta pqt)$

Wlog. let $e' = qt$ be the edge of Δpqt that s sees.

\Rightarrow $\beta = \angle tsq > \alpha = \angle psq$
Proof of Main Result (cont’d)

Consider the triangle Δpqt adjacent to e in \mathcal{T}. \mathcal{T} legal \Rightarrow e legal \Rightarrow $t \notin \text{int}(C(\Delta pqr))$ \Rightarrow $C(\Delta pqt)$ contains $C(\Delta pqr) \cap e^+$. \Rightarrow $s \in C(\Delta pqt)$.

Wlog. let $e' = qt$ be the edge of Δpqt that s sees. $\Rightarrow \beta = \angle tsq \ > \ \alpha = \angle psq$.
Consider the triangle Δpqt adjacent to e in \mathcal{T}.

\mathcal{T} legal \Rightarrow e legal \Rightarrow $t \not\in \text{int}(C(\Delta pqr))$

$\Rightarrow C(\Delta pqt)$ contains $C(\Delta pqr) \cap e^+$.

$\Rightarrow s \in C(\Delta pqt)$

Wlog. let $e' = qt$ be the edge of Δpqt that s sees.

$\Rightarrow \beta = \angle tsq > \alpha = \angle psq$

\Rightarrow Contradiction to choice of the pair $(\Delta pqr, s)$.
Main Result

Theorem. \(P \subset \mathbb{R}^2 \) finite, \(\mathcal{T} \) triangulation of \(P \). Then \(\mathcal{T} \) legal \(\iff \) \(\mathcal{T} \) Delaunay.
Main Result

Theorem. \(P \subset \mathbb{R}^2 \) finite, \(\mathcal{T} \) triangulation of \(P \). Then \(\mathcal{T} \) legal \(\iff \mathcal{T} \) Delaunay.

Observation. Suppose \(P \) is in general position. . .
Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal \iff \mathcal{T} Delaunay.

Observation. Suppose P is in general position... no 4 pts on an empty circle!
Main Result

Theorem. \(P \subset \mathbb{R}^2 \) finite, \(\mathcal{T} \) triangulation of \(P \). Then \(\mathcal{T} \) legal \(\iff \mathcal{T} \) Delaunay.

Observation. Suppose \(P \) is in general position. …
\[\implies \] Delaunay triangulation unique

no 4 pts on an empty circle!
Main Result

Theorem. \(P \subset \mathbb{R}^2 \) finite, \(\mathcal{T} \) triangulation of \(P \). Then \(\mathcal{T} \) legal \(\iff \) \(\mathcal{T} \) Delaunay.

Observation. Suppose \(P \) is in general position. . .
\[\Rightarrow \text{Delaunay triangulation unique} \quad [\mathcal{DG}(P)!] \]
Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P.
Then \mathcal{T} legal \iff \mathcal{T} Delaunay.

Observation. Suppose P is in general position. . .
\Rightarrow Delaunay triangulation unique $[\mathcal{DG}(P)!]$
\Rightarrow legal triangulation unique

no 4 pts on an empty circle!
Main Result

Theorem. \(P \subset \mathbb{R}^2 \) finite, \(\mathcal{T} \) triangulation of \(P \). Then \(\mathcal{T} \) legal \(\iff \mathcal{T} \) Delaunay.

Observation. Suppose \(P \) is in general position. . .
\[\Rightarrow \text{Delaunay triangulation unique} \]
\[\Rightarrow \text{legal triangulation unique} \]
\[\Downarrow \]
Main Result

Theorem. \(P \subseteq \mathbb{R}^2 \) finite, \(\mathcal{T} \) triangulation of \(P \). Then \(\mathcal{T} \) legal \(\iff \mathcal{T} \) Delaunay.

Observation. Suppose \(P \) is in general position. . .
\[\Rightarrow \text{Delaunay triangulation unique} \]
\[\Rightarrow \text{legal triangulation unique} \]
\[\Downarrow \text{angle-optimal} \Rightarrow \text{legal} \]
Main Result

Theorem. \(P \subset \mathbb{R}^2 \) finite, \(\mathcal{T} \) triangulation of \(P \). Then \(\mathcal{T} \) legal \(\iff \mathcal{T} \) Delaunay.

Observation. Suppose \(P \) is in general position. . .
\[\Rightarrow \text{Delaunay triangulation unique} \quad [\mathcal{DG}(P)!] \]
\[\Rightarrow \text{legal triangulation unique} \]
\[\Downarrow \quad \text{angle-optimal} \Rightarrow \text{legal} \quad [\text{by def.}] \]
Main Result

Theorem. \(P \subset \mathbb{R}^2 \) finite, \(\mathcal{T} \) triangulation of \(P \). Then \(\mathcal{T} \) legal \(\iff \mathcal{T} \) Delaunay.

Observation. Suppose \(P \) is in general position.

\[\Rightarrow \text{Delaunay triangulation unique} \quad [\mathcal{D}(P)!] \]

\[\Rightarrow \text{legal triangulation unique} \]

\[\Downarrow \text{angle-optimal} \Rightarrow \text{legal} \quad [\text{by def.}] \]

Delaunay triangulation is angle-optimal!
Main Result

Theorem. \(P \subset \mathbb{R}^2 \) finite, \(T \) triangulation of \(P \). Then \(T \) legal \(\iff T \) Delaunay.

Observation. Suppose \(P \) is in general position.

\[DG(P)! \]

\(\Rightarrow \) Delaunay triangulation unique

\(\Rightarrow \) legal triangulation unique

\(\Downarrow \) angle-optimal \(\Rightarrow \) legal [by def.]

Delaunay triangulation is angle-optimal!

Suppose \(P \) is *not* in general position...
Main Result

Theorem. \(P \subset \mathbb{R}^2 \) finite, \(\mathcal{T} \) triangulation of \(P \). Then \(\mathcal{T} \) legal \(\iff \mathcal{T} \) Delaunay.

Observation. Suppose \(P \) is in general position. . .

\[\Rightarrow \text{Delaunay triangulation unique \[DG(P) \!] } \]

\[\Rightarrow \text{legal triangulation unique} \]

\[\Downarrow \text{angle-optimal} \Rightarrow \text{legal [by def.]} \]

Delaunay triangulation is angle-optimal!

Suppose \(P \) is *not* in general position. . .

\[\Rightarrow \text{Delaunay graph has convex “holes” bounded by co-circular pts} \]

no 4 pts on an empty circle!
Main Result

Theorem. \(P \subset \mathbb{R}^2 \) finite, \(\mathcal{T} \) triangulation of \(P \). Then \(\mathcal{T} \) legal \(\iff \mathcal{T} \) Delaunay.

Observation. Suppose \(P \) is in general position. . .
\(\Rightarrow \) Delaunay triangulation unique \([\mathcal{DG}(P)!] \)
\(\Rightarrow \) legal triangulation unique
\(\Downarrow \) angle-optimal \(\Rightarrow \) legal \([\text{by def.}] \)
Delaunay triangulation is angle-optimal!

Suppose \(P \) is not in general position. . .
\(\Rightarrow \) Delaunay graph has convex “holes” bounded by co-circular pts
\(\Downarrow \) Thales++ \(\text{homework exercise!} \)
Main Result

Theorem. \(P \subseteq \mathbb{R}^2 \) finite, \(\mathcal{T} \) triangulation of \(P \).
Then \(\mathcal{T} \) legal \(\iff \mathcal{T} \) Delaunay.

Observation. Suppose \(P \) is in general position.

\[\Rightarrow \text{Delaunay triangulation unique} \quad [\mathcal{DG}(P)!] \]
\[\Rightarrow \text{legal triangulation unique} \]
\[\Downarrow \text{angle-optimal} \Rightarrow \text{legal} \quad [\text{by def.}] \]
Delaunay triangulation is angle-optimal!

Suppose \(P \) is *not* in general position.

\[\Rightarrow \text{Delaunay graph has convex “holes” bounded by co-circular pts} \]
\[\Downarrow \text{Thales++} \quad \text{homework exercise!} \]
All Delaunay triang. have same min. angle.
Computation

Fact. A Delaunay triangulation of an arbitrary set of n pts in the plane can be computed in $O(n \log n)$ time.
Computation

Fact. A Delaunay triangulation of an arbitrary set of n pts in the plane can be computed in $O(n \log n)$ time.

[Compute dual of Vor(P), fill holes.]
Computation

Fact. A Delaunay triangulation of an arbitrary set of n pts in the plane can be computed in $O(n \log n)$ time. [Compute dual of Vor(P), fill holes.]

Corollary. An angle-optimal triangulation of a set of n pts in general position can be computed in $O(n \log n)$ time.
Computation

Fact. A Delaunay triangulation of an arbitrary set of n pts in the plane can be computed in $O(n \log n)$ time. [Compute dual of Vor(P), fill holes.]

Corollary. An angle-optimal triangulation of a set of n pts in general position can be computed in $O(n \log n)$ time. [$DG!$]
Computation

Fact. A Delaunay triangulation of an arbitrary set of n pts in the plane can be computed in $O(n \log n)$ time. [Compute dual of Vor(P), fill holes.]

Corollary. An angle-optimal triangulation of a set of n pts in general position can be computed in $O(n \log n)$ time.

Given an arbitrary set of n pts, a triangulation maximizing the minimum angle can be computed in $O(n \log n)$ time.
Computation

Fact. A Delaunay triangulation of an arbitrary set of n pts in the plane can be computed in $O(n \log n)$ time. [Compute dual of Vor(P), fill holes.]

Corollary. An angle-optimal triangulation of a set of n pts in general position can be computed in $O(n \log n)$ time.

Given an arbitrary set of n pts, a triangulation maximizing the minimum angle can be computed in $O(n \log n)$ time. [Use fact.]
Computation

Fact. A Delaunay triangulation of an arbitrary set of n pts in the plane can be computed in $O(n \log n)$ time.\[Compute \ dual \ of \ Vor(\mathcal{P}), \ fill \ holes.\]

Corollary. An angle-optimal triangulation of a set of n pts in general position can be computed in $O(n \log n)$ time.

Given an arbitrary set of n pts, a triangulation maximizing the minimum angle can be computed in $O(n \log n)$ time.\[\text{DG!}\]

An angle-optimal triangulation of an arbitrary set of n pts can be computed in $O(n^2)$ time.
Computation

Fact. A Delaunay triangulation of an arbitrary set of n pts in the plane can be computed in $O(n \log n)$ time. [Compute dual of Vor(P), fill holes.]

Corollary. An angle-optimal triangulation of a set of n pts in general position can be computed in $O(n \log n)$ time.

Given an arbitrary set of n pts, a triangulation maximizing the minimum angle can be computed in $O(n \log n)$ time. [Use fact.]

An angle-optimal triangulation of an arbitrary set of n pts can be computed in $O(n^2)$ time. [How?]