Computational Geometry

Winter term 2016/17

Point Localization

or

Where am I?

Lecture #6

Joachim Spoerhase

Chair for Computer Science I
What’s the Problem?

Task: Given a planar subdivision S with n segments, preprocess S to allow for fast point location queries!

Solution: Pre-proc: Partition S into slabs induced by vertices.

Query: $\begin{align*}
&\text{– find right slab} \\
&\text{– search slab}
\end{align*}$ $\{\text{2 bin. searches!} \quad O(\log n)\}$ time!

But: Space? $\Theta(n^2)$ Pre-proc? $O(n^2 \log n)$
Decreasing the Complexity

Observation: The slab partition of S is a refinement S' of S that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

Solution: Trapezoidal map $\mathcal{T}(S)$
Decreasing the Complexity

Observation: The slab partition of S is a *refinement* S' of S that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

Solution: *Trapezoidal map $T(S)$*

Assumption: S is in *general position*, that is, no two vertices have the same x-coordinates.
Notation

Definition: A *side* of a face of $\mathcal{T}(S)$ is a segment of maximum length contained in the boundary of the face.
Notation

Definition: A side of a face of $\mathcal{T}(\mathcal{S})$ is a segment of maximum length contained in the boundary of the face.

Observation: \mathcal{S} in gen. pos. \Rightarrow each face Δ of $\mathcal{T}(\mathcal{S})$ has:
- one or two vertical sides
- exactly 2 non-vertical sides

Left side: $\text{leftp}(\Delta)$
Complexity of $\mathcal{T}(S)$

Observe: A face Δ of $\mathcal{T}(S)$ is uniquely defined by $\text{top}(\Delta), \text{bot}(\Delta), \text{leftp}(\Delta)$, and $\text{rightp}(\Delta)$.

Lemma. S planar subdivision in gen. pos., with n segments $\Rightarrow \mathcal{T}(S)$ has $\leq 6n + 4$ vtc and $\leq 3n + 1$ trapezoids.

Proof. The vertices of $\mathcal{T}(S)$ are

- endpts of segments in S $\leq 2n$
- endpts of vertical extensions $\leq 2 \cdot 2n$
- vertices of R ≤ 4

Bound $\#\text{trapezoids}$ via Euler or directly (segments/leftp).

Approach: Construct tapezoidal map $\mathcal{T}(S)$ and point-location data structure $\mathcal{D}(S)$ for $\mathcal{T}(S)$ *incrementally*!

algorithm-design paradigm!
The 1d-Problem

Given a set S of n real numbers...

$S_{i-1} := \{s_1, \ldots, s_{i-1}\}$, $l_{i-1} := \text{set of conn. comp. of } \mathbb{R} \setminus S_{i-1}$

- pick an arbitrary point s_i from $S \setminus S_{i-1}$
- locate s_i in the search structure D_{i-1} of S_{i-1}
- split interval (ℓ, r) of l_{i-1} containing s_i
- build D_i:

Problem: looong search paths!
The 1d-Problem

Given a set S of n real numbers...

$S_{i-1} := \{s_1, \ldots, s_{i-1}\}$, $I_{i-1} := \text{set of conn. comp. of } \mathbb{R} \setminus S_{i-1}$

Solution: *random!*

- pick an arbitrary point s_i from $S \setminus S_{i-1}$
- locate s_i in the search structure D_{i-1} of S_{i-1}
- split interval (ℓ, r) of I_{i-1} containing s_i
- build D_i:

Problem: *loooong search paths!*
1d Result

Given a set S of n real numbers...

$S_{i-1} := \{s_1, \ldots, s_{i-1}\}$, \hspace{1cm} $l_{i-1} := \text{set of conn. comp. of } \mathbb{R} \setminus S_{i-1}$

Thm. The randomized-incremental algorithm preprocesses a set S of n reals in $O(n \log n)$ expected time such that a query takes $O(\log n)$ expected time.

Proof. Let $q \in \mathbb{R}$ (wlog. $q \not\in S$) and $l_i(q) = \arg\{l \in l_i : q \in l\}$.

Define random variable $X_i = \begin{cases} 1 & \text{if } l_i(q) \neq l_{i-1}(q), \\ 0 & \text{else}. \end{cases}$

$$E[\text{query time in } \mathcal{D}_n] = E[\text{length search path in } \mathcal{D}_n] =$$

$$= E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i] = ?$$
Expected Query Time of \mathcal{D}_n

Define random variable $X_i = \begin{cases} 1 & \text{if } l_i(q) \neq l_{i-1}(q), \text{ i.e., } s_i \in l_{i-1}(q), \\ 0 & \text{else.} \end{cases}$

$E[X_i] = P[X_i = 1] = \frac{2}{i}$

$= \text{probability that } l_i(q) \neq l_{i-1}(q), \text{ i.e., } s_i \in l_{i-1}(q)$.

Backwards analysis: Consider S_i fixed. If we remove a randomly chosen pt from S_i, what’s the probability that the interval containing q changes?
– we have i choices, identically distributed
– at most two of these change the interval

Define random variable $X_i = \begin{cases} 1 & \text{if } l_i(q) \neq l_{i-1}(q), \\ 0 & \text{else.} \end{cases}$

$E[\text{query time in } \mathcal{D}_n] = E[\text{length search path in } \mathcal{D}_n] = E[\sum_{i=1}^n X_i] = \sum_{i=1}^n E[X_i] = \mathcal{O}(\log n)$
The 1d-Result

Thm. The randomized-incremental algorithm preprocesses a set S of n reals in $O(n \log n)$ expected time such that a query takes $O(\log n)$ expected time.
The 2d-Problem

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}
- use \mathcal{D} to locate left endpoint of next segment s
- "walk" along s through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting s
- construct new trapezoids of \mathcal{T} (adjacent to s)
- update \mathcal{D}
Walking through \mathcal{T} and Updating \mathcal{D}

\[
\text{TrapezoidalMap(set } S \text{ of } n \text{ non-crossing segments)}
\]

\[
R = \text{BBox}(S); \quad \mathcal{T}.\text{init}(); \quad \mathcal{D}.\text{init}()
\]

\[
(s_1, s_2, \ldots, s_n) = \text{RandomPermutation}(S)
\]

\[\text{for } i = 1 \text{ to } n \text{ do}\]

\[(\Delta_0, \ldots, \Delta_k) = \text{FollowSegment}(\mathcal{T}, \mathcal{D}, s_i) \]

\[\mathcal{T}.\text{remove}(\Delta_0, \ldots, \Delta_k) \]

\[\mathcal{T}.\text{add(new trapezoids incident to } s_i) \]

\[\mathcal{D}.\text{remove}_\text{leaves}(\Delta_0, \ldots, \Delta_k) \]

\[\mathcal{D}.\text{add}_\text{leaves(new trapezoids incident to } s_i) \]

\[\mathcal{D}.\text{add}_\text{new}_\text{inner}_\text{nodes}() \]
The 2d-Result

Theorem. TrapezoidalMap(S) computes $\mathcal{T}(S)$ for a set of n line segments in general position and a search structure \mathcal{D} for $\mathcal{T}(S)$ in $O(n \log n)$ expected time. The expected size of \mathcal{D} is $O(n)$ and the expected query time is $O(\log n)$.

Invariant: Before step i, \mathcal{T} is a trapezoidal map for S_{i-1} and \mathcal{D} is a valid search structure for \mathcal{T}.

Proof.
- Correctness by loop invariant.
- Query time similar to 1d analysis.
 \Rightarrow construction time
Query Time

Let \(T(q) \) be the query time for a fixed query pt \(q \).
\[\Rightarrow T(q) = O(\text{length of the path from } D.\text{root to } q). \]

height(\(D \)) increases by at most 3 in each step. \(\Rightarrow T(q) \leq 3n. \)

We are interested in the expected behaviour of \(D \):
\[\Rightarrow \text{average of } T(q) \text{ over all } n! \text{ insertion orders (permut. of } S) \]

\(X_i := \# \text{ nodes that are added to the query path in iteration } i. \)
\(S \) and \(q \) are fixed.
\[\Rightarrow X_i \text{ random variable that depends only on insertion order of } S. \]
\[\Rightarrow \text{expected path length from } D.\text{root to } q \text{ is} \]
\[E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i] = ? \]
Query Time (cont’d)

\(p_i \) = prob. that the search path \(\Pi_q \) of \(q \) in \(\mathcal{D} \) contains a node that was created in iteration \(i \).

\[\Rightarrow E[X_i] = \sum_{j=0}^{3} j \cdot P[X_i = j] \leq \sum_{j=0}^{3} 3 \cdot P[X_i \geq 1] = 3p_i \]

\(\Delta_q(S_i) := \) trapezoid in \(\mathcal{T}(S_i) \) that contains \(q \).

Key idea: Iteration \(i \) contributes a node to \(\Pi_q \) iff

\[\Delta_q(S_{i-1}) \neq \Delta_q(S_i). \]

In this case \(\Delta_q(S_i) \) must have been created in iteration \(i \).

\[\Rightarrow \Delta := \Delta_q(S_i) \text{ is adjacent to the new segment } s_i. \]

\[\Rightarrow \text{top}(\Delta) = s_i, \text{ bot}(\Delta) = s_i, \text{ leftp}(\Delta) \in s_i, \text{ or rightp}(\Delta) \in s_i. \]

Trick: \(\mathcal{T}(S_i) \) (and thus \(\Delta \)) is uniquely determined by \(S_i \).

Consider \(S_i \subseteq S \) fixed.

\[\Rightarrow \Delta \text{ does not depend on insertion order.} \]
Query Time (cont’d)

\(p_i = \text{prob. that the search path } \Pi_q \text{ of } q \text{ in } D \text{ contains a node that was created in iteration } i. \)

i.e., prob that \(\Delta \) changes when inserting \(s_i \).

Aim: bound \(p_i \).

Tool: *Backwards analysis!*

\(p_i = \text{prob that } \Delta \text{ changes when } s_i \text{ is removed} \)

Four cases:

\[
P(\text{top}(\Delta) = s_i) = \frac{1}{i} \quad \text{(since exactly one of } i \text{ segments is top}(\Delta)).
\]

\[\Rightarrow p_i \leq \frac{4}{i}\]

\[\Rightarrow E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i] \leq \sum_{i=1}^{n} 3 \cdot p_i
\]

\[= 12 \sum_{i=1}^{n} \frac{1}{i} \leq O(\log n)\]