Computational Geometry

Winter term 2016/17

Point Localization

or

Where am I?

Lecture #6

Joachim Spoerhase
What’s the Problem?
What’s the Problem?

Task: Given a planar subdivision S with n segments, preprocess S to allow for fast point location queries!
What’s the Problem?

Task: Given a planar subdivision S with n segments, preprocess S to allow for fast point location queries!
What’s the Problem?

Task: Given a planar subdivision S with n segments, preprocess S to allow for fast point location queries!
What's the Problem?

Task: Given a planar subdivision S with n segments, preprocess S to allow for fast point location queries!
What’s the Problem?

Task: Given a planar subdivision S with n segments, preprocess S to allow for fast point location queries!
Task: Given a planar subdivision S with n segments, preprocess S to allow for fast point location queries!
What’s the Problem?

Task: Given a planar subdivision S with n segments, preprocess S to allow for fast point location queries!

Solution: Pre-proc: Partition S into slabs induced by vertices.
What’s the Problem?

Task: Given a planar subdivision \mathcal{S} with n segments, preprocess \mathcal{S} to allow for fast point location queries!

Solution: Pre-proc: Partition \mathcal{S} into slabs induced by vertices.
What's the Problem?

Task: Given a planar subdivision S with n segments, preprocess S to allow for fast point location queries!

Solution: Pre-proc: Partition S into slabs induced by vertices.

Query:
What’s the Problem?

Task: Given a planar subdivision S with n segments, preprocess S to allow for fast point location queries!

Solution: Pre-proc: Partition S into slabs induced by vertices.

Query: – find right slab
What’s the Problem?

Task: Given a planar subdivision S with n segments, preprocess S to allow for fast point location queries!

Solution: Pre-proc: Partition S into slabs induced by vertices.

Query: – find right slab
What’s the Problem?

Task: Given a planar subdivision S with n segments, preprocess S to allow for fast point location queries!

Solution: Pre-proc: Partition S into slabs induced by vertices.

Query: – find right slab
– search slab
What’s the Problem?

Task: Given a planar subdivision S with n segments, preprocess S to allow for fast point location queries!

Solution: Pre-proc: Partition S into slabs induced by vertices.

Query: – find right slab
– search slab
What's the Problem?

Task: Given a planar subdivision S with n segments, preprocess S to allow for fast point location queries!

Solution: Pre-proc: Partition S into slabs induced by vertices.

Query: \[
\begin{align*}
&\text{– find right slab} \\
&\text{– search slab}
\end{align*}
\] \{ 2 bin. searches! \}
What’s the Problem?

Task: Given a planar subdivision S with n segments, preprocess S to allow for fast point location queries!

Solution: Pre-proc: Partition S into slabs induced by vertices.

Query: – find right slab
 – search slab \quad \{ \text{2 bin. searches!} \quad O(\log n) \text{ time!} \}
What’s the Problem?

Task: Given a planar subdivision S with n segments, preprocess S to allow for fast point location queries!

Solution: Pre-proc: Partition S into slabs induced by vertices.

Query: $\begin{cases} - \text{find right slab} \\ - \text{search slab} \end{cases}$ \rightarrow 2 bin. searches! $O(\log n)$ time!

But:
What’s the Problem?

Task: Given a planar subdivision S with n segments, preprocess S to allow for fast point location queries!

Solution: Pre-proc: Partition S into slabs induced by vertices.

Query: $\begin{align*}
- \text{find right slab} \\
- \text{search slab}
\end{align*}$ \text{2 bin. searches!} $O(\log n)$ time!

But: Space?
What’s the Problem?

Task: Given a planar subdivision S with n segments, preprocess S to allow for fast point location queries!

Solution: Pre-proc: Partition S into slabs induced by vertices.

Query: \[
\begin{align*}
\text{– find right slab} \\
\text{– search slab}
\end{align*}
\] \quad \{ \text{2 bin. searches!} \}

\quad \text{O}(\log n) \quad \text{time!}

But: Space? $\Theta(n^2)$
What’s the Problem?

Task: Given a planar subdivision S with n segments, preprocess S to allow for fast point location queries!

Solution: Pre-proc: Partition S into slabs induced by vertices.

Query:
- find right slab
- search slab \[\{ \text{2 bin. searches!} \} \]

$O(\log n)$ time!

But: Space? $\Theta(n^2)$
Task: Give lower-bound example!
What’s the Problem?

Task: Given a planar subdivision S with n segments, preprocess S to allow for fast point location queries!

Solution: Pre-proc: Partition S into slabs induced by vertices.

Query:
- find right slab
- search slab

\[\{ \text{2 bin. searches!} \} \quad O(\log n) \text{ time!} \]

But: Space? $\Theta(n^2)$ Pre-proc?
What’s the Problem?

Task: Given a planar subdivision S with n segments, preprocess S to allow for fast point location queries!

Solution: Pre-proc: Partition S into slabs induced by vertices.

Query: \[
\begin{align*}
\text{find right slab} & \quad \text{2 bin. searches!} \\
\text{search slab} & \quad O(\log n) \text{ time!}
\end{align*}
\]

But: Space? $\Theta(n^2)$ Pre-proc? $O(n^2 \log n)$
Decreasing the Complexity

Observation: The slab partition of S is a refinement S' of S that consists of (possibly degenerate) trapezoids.
Decreasing the Complexity

Observation: The slab partition of S is a refinement S' of S that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!
Decreasing the Complexity

Observation: The slab partition of S is a refinement S' of S that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

Solution: Trapezoidal map $T(S)$
Decreasing the Complexity

Observation: The slab partition of S is a refinement S' of S that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

Solution: Trapezoidal map $T(S)$
Decreasing the Complexity

Observation: The slab partition of S is a refinement S' of S that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

Solution: Trapezoidal map $T(S)$
Decreasing the Complexity

Observation: The slab partition of S is a refinement S' of S that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

Solution: Trapezoidal map $T(S)$
Decreasing the Complexity

Observation: The slab partition of S is a refinement S' of S that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

Solution: Trapezoidal map $T(S)$
Decreasing the Complexity

Observation: The slab partition of S is a *refinement* S' of S that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

Solution: *Trapezoidal map $T(S)$*
Decreasing the Complexity

Observation: The slab partition of S is a *refinement* S' of S that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

Solution: *Trapezoidal map* $T(S)$
Decreasing the Complexity

Observation: The slab partition of S is a *refinement* S' of S that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

Solution: *Trapezoidal map* $T(S)$
Decreasing the Complexity

Observation: The slab partition of S is a refinement S' of S that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

Solution: Trapezoidal map $T(S)$
Decreasing the Complexity

Observation: The slab partition of S is a refinement S' of S that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

Solution: Trapezoidal map $T(S)$

![Diagram of trapezoidal map](image)
Decreasing the Complexity

Observation: The slab partition of S is a refinement S' of S that consists of (possibly degenerate) trapezoids.

Task: Find “good” refinement of S of low complexity!

Solution: Trapezoidal map $T(S)$

Assumption: S is in *general position*, that is, no two vertices have the same x-coordinates.
Notation

Definition: A *side* of a face of $\mathcal{T}(S)$ is a segment of maximum length contained in the boundary of the face.
Notation

Definition: A *side* of a face of $\mathcal{T}(S)$ is a segment of maximum length contained in the boundary of the face.
Definition: A side of a face of $T(S)$ is a segment of maximum length contained in the boundary of the face.
Notation

Definition: A side of a face of $\mathcal{T}(S)$ is a segment of maximum length contained in the boundary of the face.
Notation

Definition: A *side* of a face of $\mathcal{T}(S)$ is a segment of maximum length contained in the boundary of the face.

Observation: S in gen. pos. \Rightarrow each face Δ of $\mathcal{T}(S)$ has:
Notation

Definition: A *side* of a face of $\mathcal{T}(S)$ is a segment of maximum length contained in the boundary of the face.

Observation: S in gen. pos. \Rightarrow each face Δ of $\mathcal{T}(S)$ has:
- one or two vertical sides
Notation

Definition: A *side* of a face of $\mathcal{T}(S)$ is a segment of maximum length contained in the boundary of the face.

Observation: S in gen. pos. \Rightarrow each face Δ of $\mathcal{T}(S)$ has:
- one or two vertical sides
- exactly 2 non-vertical sides
Notation

Definition: A *side* of a face of $T(S)$ is a segment of maximum length contained in the boundary of the face.

Observation: S in gen. pos. \Rightarrow each face Δ of $T(S)$ has:
- one or two vertical sides
- exactly 2 non-vertical sides
Notation

Definition: A side of a face of $\mathcal{T}(S)$ is a segment of maximum length contained in the boundary of the face.

Observation: S in gen. pos. \Rightarrow each face Δ of $\mathcal{T}(S)$ has:
- one or two vertical sides
- exactly 2 non-vertical sides

Left side:
Notation

Definition: A *side* of a face of $\mathcal{T}(S)$ is a segment of maximum length contained in the boundary of the face.

Observation: S in gen. pos. \Rightarrow each face Δ of $\mathcal{T}(S)$ has:
- one or two vertical sides
- exactly 2 non-vertical sides

Left side:

[Diagram showing the left side of a face with vertical and non-vertical sides marked.]
Notation

Definition: A *side* of a face of $\mathcal{T}(S)$ is a segment of maximum length contained in the boundary of the face.

Observation: S in gen. pos. \Rightarrow each face Δ of $\mathcal{T}(S)$ has:
- one or two vertical sides
- exactly 2 non-vertical sides

Left side:
Notation

Definition: A *side* of a face of $\mathcal{T}(S)$ is a segment of maximum length contained in the boundary of the face.

Observation: S in gen. pos. \Rightarrow each face Δ of $\mathcal{T}(S)$ has:
- one or two vertical sides
- exactly 2 non-vertical sides
Notation

Definition: A side of a face of $T(S)$ is a segment of maximum length contained in the boundary of the face.

Observation: S in gen. pos. \Rightarrow each face Δ of $T(S)$ has:
- one or two vertical sides
- exactly 2 non-vertical sides

Left side:

$\text{leftp}(\Delta)$
Complexity of $\mathcal{T}(S)$

Observe: A face Δ of $\mathcal{T}(S)$ is uniquely defined by $\text{top}(\Delta)$, $\text{bot}(\Delta)$, $\text{leftp}(\Delta)$, and $\text{rightp}(\Delta)$.
Complexity of $\mathcal{T}(S)$

Observe: A face Δ of $\mathcal{T}(S)$ is uniquely defined by $\text{top}(\Delta)$, $\text{bot}(\Delta)$, $\text{leftp}(\Delta)$, and $\text{rightp}(\Delta)$.
Observe: A face Δ of $\mathcal{T}(S)$ is uniquely defined by $\text{top}(\Delta)$, $\text{bot}(\Delta)$, $\text{leftp}(\Delta)$, and $\text{rightp}(\Delta)$.
Complexity of $\mathcal{T}(S)$

Observe: A face Δ of $\mathcal{T}(S)$ is uniquely defined by $\text{top}(\Delta)$, $\text{bot}(\Delta)$, $\text{leftp}(\Delta)$, and $\text{rightp}(\Delta)$.
Complexity of $\mathcal{T}(S)$

Observe: A face Δ of $\mathcal{T}(S)$ is uniquely defined by $\text{top}(\Delta)$, $\text{bot}(\Delta)$, $\text{leftp}(\Delta)$, and $\text{rightp}(\Delta)$.

Lemma. S planar subdivision in gen. pos., with n segments $\Rightarrow \mathcal{T}(S)$ has $\leq \boxed{6n+4}$ vtc and $\leq \boxed{3n+1}$ trapezoids.
Complexity of $\mathcal{T}(S)$

Observe: A face Δ of $\mathcal{T}(S)$ is uniquely defined by $\text{top}(\Delta)$, $\text{bot}(\Delta)$, $\text{leftp}(\Delta)$, and $\text{rightp}(\Delta)$.

Lemma. S planar subdivision in gen. pos., with n segments $\Rightarrow \mathcal{T}(S)$ has $\leq \mathbf{6}n + 4$ vtc and $\leq \mathbf{3}n + 1$ trapezoids.

Proof. The vertices of $\mathcal{T}(S)$ are

– endpts of segments in S
Complexity of $\mathcal{T}(S)$

Observe: A face Δ of $\mathcal{T}(S)$ is uniquely defined by top(Δ), bot(Δ), leftp(Δ), and rightp(Δ).

Lemma. S planar subdivision in gen. pos., with n segments $\Rightarrow \mathcal{T}(S)$ has $\leq 6n + 4$ vtc and $\leq 3n + 1$ trapezoids.

Proof. The vertices of $\mathcal{T}(S)$ are
- endpts of segments in S $\leq 2n$
Complexity of $\mathcal{T}(S)$

Observe: A face Δ of $\mathcal{T}(S)$ is uniquely defined by $\text{top}(\Delta)$, $\text{bot}(\Delta)$, $\text{leftp}(\Delta)$, and $\text{rightp}(\Delta)$.

Lemma. S planar subdivision in gen. pos., with n segments $\Rightarrow \mathcal{T}(S)$ has $\leq \boxed{6n+4}$ vtc and $\leq \boxed{3n+1}$ trapezoids.

Proof. The vertices of $\mathcal{T}(S)$ are
- endpts of segments in S $\leq 2n$
- endpts of vertical extensions
Complexity of $\mathcal{T}(S)$

Observe: A face Δ of $\mathcal{T}(S)$ is uniquely defined by top(Δ), bot(Δ), leftp(Δ), and rightp(Δ).

Lemma. S planar subdivision in gen. pos., with n segments $\Rightarrow \mathcal{T}(S)$ has \leq vtc and \leq trapezoids.

Proof. The vertices of $\mathcal{T}(S)$ are

- endpts of segments in S $\leq 2n$
- endpts of vertical extensions $\leq 2 \cdot 2n$
Complexity of $\mathcal{T}(S)$

Observe: A face Δ of $\mathcal{T}(S)$ is uniquely defined by top(Δ), bot(Δ), leftp(Δ), and rightp(Δ).

Lemma. S planar subdivision in gen. pos., with n segments $\Rightarrow \mathcal{T}(S)$ has $\leq \text{vtc}$ and $\leq \text{trapezoids}$.

Proof. The vertices of $\mathcal{T}(S)$ are
- endpts of segments in S $\leq 2n$
- endpts of vertical extensions $\leq 2 \cdot 2n$
- vertices of R
Complexity of $\mathcal{T}(S)$

Observe: A face Δ of $\mathcal{T}(S)$ is uniquely defined by $	ext{top}(\Delta)$, $\text{bot}(\Delta)$, $\text{leftp}(\Delta)$, and $\text{rightp}(\Delta)$.

Lemma. S planar subdivision in gen. pos., with n segments $\Rightarrow \mathcal{T}(S)$ has $\leq \color{#FF8C00}6n+4$ vtc and $\leq \color{#FF8C00}3n+1$ trapezoids.

Proof. The vertices of $\mathcal{T}(S)$ are
- endpts of segments in S $\leq 2n$
- endpts of vertical extensions $\leq 2 \cdot 2n$
- vertices of R 4
Complexity of $\mathcal{T}(S)$

Observe: A face Δ of $\mathcal{T}(S)$ is uniquely defined by $\text{top}(\Delta)$, $\text{bot}(\Delta)$, $\text{leftp}(\Delta)$, and $\text{rightp}(\Delta)$.

Lemma. S planar subdivision in gen. pos., with n segments \Rightarrow $\mathcal{T}(S)$ has \leq vtc and \leq trapezoids.

Proof. The vertices of $\mathcal{T}(S)$ are

- endpts of segments in S \leq 2n
- endpts of vertical extensions \leq 2 \cdot 2n
- vertices of R 4
Complexity of $\mathcal{T}(S)$

Observe: A face Δ of $\mathcal{T}(S)$ is uniquely defined by $\text{top}(\Delta)$, $\text{bot}(\Delta)$, $\text{leftp}(\Delta)$, and $\text{rightp}(\Delta)$.

Lemma. S planar subdivision in gen. pos., with n segments $\Rightarrow \mathcal{T}(S)$ has $\leq 6n + 4$ vtc and $\leq 3n + 1$ trapezoids.

Proof. The vertices of $\mathcal{T}(S)$ are
- endpts of segments in S $\leq 2n$
- endpts of vertical extensions $\leq 2 \cdot 2n$
- vertices of R $\leq \frac{6n + 4}{4}$
Complexity of $\mathcal{T}(S)$

Observe: A face Δ of $\mathcal{T}(S)$ is uniquely defined by $\text{top}(\Delta)$, $\text{bot}(\Delta)$, $\text{leftp}(\Delta)$, and $\text{rightp}(\Delta)$.

Lemma. S planar subdivision in gen. pos., with n segments $\Rightarrow \mathcal{T}(S)$ has $\leq 6n + 4$ vtc and $\leq 3n + 1$ trapezoids.

Proof. The vertices of $\mathcal{T}(S)$ are

- endpts of segments in S $\leq 2n$
- endpts of vertical extensions $\leq 2 \cdot 2n$ $\leq 6n + 4$
- vertices of R ≤ 4
Complexity of $\mathcal{T}(S)$

Observe: A face Δ of $\mathcal{T}(S)$ is uniquely defined by $\text{top}(\Delta)$, $\text{bot}(\Delta)$, $\text{leftp}(\Delta)$, and $\text{rightp}(\Delta)$.

Lemma. S planar subdivision in gen. pos., with n segments $\Rightarrow \mathcal{T}(S)$ has $\leq 6n + 4$ vtc and $\leq 3n + 1$ trapezoids.

Proof. The vertices of $\mathcal{T}(S)$ are
- endpts of segments in S $\leq 2n$
- endpts of vertical extensions $\leq 2 \cdot 2n$ \[\leq 6n + 4 \]
- vertices of R ≤ 4

Bound $\#$trapezoids via Euler or directly (segments/leftp).
Complexity of $\mathcal{T}(S)$

Observe: A face Δ of $\mathcal{T}(S)$ is uniquely defined by top(Δ), bot(Δ), lefTp(Δ), and rightp(Δ).

Lemma. S planar subdivision in gen. pos., with n segments $\Rightarrow \mathcal{T}(S)$ has $\leq 6n + 4$ vtc and $\leq 3n + 1$ trapezoids.

Proof. The vertices of $\mathcal{T}(S)$ are
- endpts of segments in S $\leq 2n$
- endpts of vertical extensions $\leq 2 \cdot 2n$
- vertices of R

Bound $\#\text{trapezoids}$ via Euler or directly (segments/lefTp).

Approach:
Complexity of $\mathcal{T}(S)$

Observe: A face Δ of $\mathcal{T}(S)$ is uniquely defined by $\text{top}(\Delta)$, $\text{bot}(\Delta)$, $\text{leftp}(\Delta)$, and $\text{rightp}(\Delta)$.

Lemma. S planar subdivision in gen. pos., with n segments $\Rightarrow \mathcal{T}(S)$ has $\leq 6n + 4$ vtc and $\leq 3n + 1$ trapezoids.

Proof. The vertices of $\mathcal{T}(S)$ are

- endpts of segments in S $\leq 2n$
- endpts of vertical extensions $\leq 2 \cdot 2n$ \[\leq 6n + 4 \]
- vertices of R

Bound $\#\text{trapezoids}$ via Euler or directly (segments/leftp).

Approach: Construct tapezoidal map $\mathcal{T}(S)$ and point-location data structure $\mathcal{D}(S)$ for $\mathcal{T}(S)$ incrementally!
Complexity of $\mathcal{T}(S)$

Observe: A face Δ of $\mathcal{T}(S)$ is uniquely defined by $\text{top}(\Delta)$, $\text{bot}(\Delta)$, $\text{leftp}(\Delta)$, and $\text{rightp}(\Delta)$.

Lemma. S planar subdivision in gen. pos., with n segments $\Rightarrow \mathcal{T}(S)$ has $\leq 6n + 4$ vtc and $\leq 3n + 1$ trapezoids.

Proof. The vertices of $\mathcal{T}(S)$ are
- endpts of segments in S $\leq 2n$
- endpts of vertical extensions $\leq 2 \cdot 2n$
- vertices of R ≤ 4

$\big\{ \leq 6n + 4 \big\}$

Bound $\#\text{trapezoids}$ via Euler or directly (segments/leftp).

Approach: Construct tapezoidal map $\mathcal{T}(S)$ and point-location data structure $\mathcal{D}(S)$ for $\mathcal{T}(S)$ *incrementally*! algorithm-design paradigm!
The 1d-Problem

Given a set \(S \) of \(n \) real numbers...
The 1d-Problem

Given a set S of n real numbers...
The 1d-Problem

Given a set S of n real numbers...

$S_{i-1} := \{s_1, \ldots, s_{i-1}\}$, \hspace{1cm} $I_{i-1} := \text{set of conn. comp. of } \mathbb{R} \setminus S_{i-1}$

$i \in \{1, \ldots, n\}$
The 1d-Problem

Given a set S of n real numbers...

$i \in \{1, \ldots, n\}$

$S_{i-1} := \{s_1, \ldots, s_{i-1}\}$, $I_{i-1} := \text{set of conn. comp. of } \mathbb{R} \setminus S_{i-1}$

– pick an arbitrary point s_i from $S \setminus S_{i-1}$
The 1d-Problem

Given a set S of n real numbers...

$$S_i := \{s_1, \ldots, s_{i-1}\}, \quad l_{i-1} := \text{set of conn. comp. of } \mathbb{R} \setminus S_{i-1}$$

- pick an arbitrary point s_i from $S \setminus S_{i-1}$
The 1d-Problem

Given a set S of n real numbers... $i \in \{1, \ldots, n\}$

$S_{i-1} := \{s_1, \ldots, s_{i-1}\}$, $I_{i-1} := \text{set of conn. comp. of } \mathbb{R} \setminus S_{i-1}$

- pick an arbitrary point s_i from $S \setminus S_{i-1}$
- locate s_i in the search structure D_{i-1} of S_{i-1}
The 1d-Problem

Given a set S of n real numbers...

$S_{i-1} := \{s_1, \ldots, s_{i-1}\}$, \quad $I_{i-1} := \text{set of conn. comp. of } \mathbb{R} \setminus S_{i-1}$

– pick an arbitrary point s_i from $S \setminus S_{i-1}$
– locate s_i in the search structure D_{i-1} of S_{i-1}
The 1d-Problem

Given a set S of n real numbers...

$S_{i-1} := \{s_1, \ldots, s_{i-1}\}$, \quad $I_{i-1} := \text{set of conn. comp. of } \mathbb{R} \setminus S_{i-1}$

- pick an arbitrary point s_i from $S \setminus S_{i-1}$
- locate s_i in the search structure D_{i-1} of S_{i-1}
- split interval (ℓ, r) of I_{i-1} containing s_i
The 1d-Problem

Given a set S of n real numbers...

- pick an arbitrary point s_i from $S \setminus S_{i-1}$
- locate s_i in the search structure D_{i-1} of S_{i-1}
- split interval (ℓ, r) of I_{i-1} containing s_i
- build D_i:

$$
S_{i-1} := \{s_1, \ldots, s_{i-1}\}, \quad I_{i-1} := \text{set of conn. comp. of } \mathbb{R} \setminus S_{i-1}
$$
The 1d-Problem

Given a set S of n real numbers...

- pick an arbitrary point s_i from $S \setminus S_{i-1}$
- locate s_i in the search structure D_{i-1} of S_{i-1}
- split interval (ℓ, r) of I_{i-1} containing s_i
- build D_i:

\[(\ell, r) \]

\[D_{i-1} \]
The 1d-Problem

Given a set S of n real numbers...

$S_{i-1} := \{s_1, \ldots, s_{i-1}\}$, \quad $I_{i-1} := \text{set of conn. comp. of } \mathbb{R} \setminus S_{i-1}$

- pick an arbitrary point s_i from $S \setminus S_{i-1}$
- locate s_i in the search structure D_{i-1} of S_{i-1}
- split interval (ℓ, r) of I_{i-1} containing s_i
- build D_i:
The 1d-Problem

Given a set S of n real numbers...

$S_{i-1} := \{s_1, \ldots, s_{i-1}\}$, $I_{i-1} :=$ set of conn. comp. of $\mathbb{R} \setminus S_{i-1}$

- pick an arbitrary point s_i from $S \setminus S_{i-1}$
- locate s_i in the search structure D_{i-1} of S_{i-1}
- split interval (ℓ, r) of I_{i-1} containing s_i
- build D_i:
The 1d-Problem

Given a set S of n real numbers...

$S_{i-1} := \{s_1, \ldots, s_{i-1}\}$, $l_{i-1} := \text{set of conn. comp. of } \mathbb{R} \setminus S_{i-1}$

- pick an arbitrary point s_i from $S \setminus S_{i-1}$
- locate s_i in the search structure D_{i-1} of S_{i-1}
- split interval (ℓ, r) of l_{i-1} containing s_i
- build D_i:

Problem:
The 1d-Problem

Given a set S of n real numbers...

- pick an arbitrary point s_i from $S \setminus S_{i-1}$
- locate s_i in the search structure D_{i-1} of S_{i-1}
- split interval (ℓ, r) of I_{i-1} containing s_i
- build D_i:

Problem: _loooong_ search paths!
The 1d-Problem

Given a set S of n real numbers...

$S_{i-1} := \{s_1, \ldots, s_{i-1}\}$, \hspace{1cm} I_{i-1} := \text{set of conn. comp. of } \mathbb{R} \setminus S_{i-1}$

Solution:
- pick an arbitrary point s_i from $S \setminus S_{i-1}$
- locate s_i in the search structure D_{i-1} of S_{i-1}
- split interval (ℓ, r) of I_{i-1} containing s_i
- build D_i:

Problem: *looong* search paths!
The 1d-Problem

Given a set S of n real numbers...

$S_{i-1} := \{s_1, \ldots, s_{i-1}\}$, $l_{i-1} := \text{set of conn. comp. of } \mathbb{R} \setminus S_{i-1}$

Solution:
- pick an arbitrary point s_i from $S \setminus S_{i-1}$
- locate s_i in the search structure D_{i-1} of S_{i-1}
- split interval (ℓ, r) of l_{i-1} containing s_i
- build D_i:

Problem: looong search paths!
The 1d-Problem

Given a set S of n real numbers...

Formally:

$S_{i-1} := \{s_1, \ldots, s_{i-1}\}$, \quad $I_{i-1} := \text{set of conn. comp. of } \mathbb{R} \setminus S_{i-1}$

Solution: *random!*

- pick an arbitrary point s_i from $S \setminus S_{i-1}$
- locate s_i in the search structure D_{i-1} of S_{i-1}
- split interval (ℓ, r) of I_{i-1} containing s_i
- build D_i:

Problem: *looong search paths!*
The 1d-Problem

Given a set S of n real numbers...

$S_{i-1} := \{s_1, \ldots, s_{i-1}\}$, \hspace{1cm} $I_{i-1} := \text{set of conn. comp. of } \mathbb{R} \setminus S_{i-1}$

Solution: random!

- pick an arbitrary point s_i from $S \setminus S_{i-1}$
- locate s_i in the search structure D_{i-1} of S_{i-1}
- split interval (ℓ, r) of I_{i-1} containing s_i
- build D_i:

Problem: looong search paths!
Thm. The randomized-incremental algorithm preprocesses a set S of n reals in $O(n \log n)$ expected time such that a query takes $O(\log n)$ expected time.
1d Result

Given a set S of n real numbers...

$S_{i-1} := \{s_1, \ldots, s_{i-1}\}$, \quad $l_{i-1} := \text{set of conn. comp. of } \mathbb{R} \setminus S_{i-1}$

Thm. The randomized-incremental algorithm preprocesses a set S of n reals in $O(n \log n)$ expected time such that a query takes $O(\log n)$ expected time.

Proof. Let $q \in \mathbb{R}$ (wlog. $q \notin S$) and $l_i(q) = \arg\{l \in l_i : q \in l\}$.
1d Result

Given a set S of n real numbers...

$S_{i-1} := \{s_1, \ldots, s_{i-1}\}$, \quad $I_{i-1} := \text{set of conn. comp. of } \mathbb{R} \setminus S_{i-1}$

Thm. The randomized-incremental algorithm preprocesses a set S of n reals in $O(n \log n)$ expected time such that a query takes $O(\log n)$ expected time.

Proof. Let $q \in \mathbb{R}$ (wlog. $q \notin S$) and $l_i(q) = \arg\{l \in I_i : q \in l\}$.

$$E[\text{query time in } D_n] =$$
1d Result

Given a set S of n real numbers...

$$S_{i-1} := \{s_1, \ldots, s_{i-1}\}, \quad I_{i-1} := \text{set of conn. comp. of } \mathbb{R} \setminus S_{i-1}$$

Thm. The randomized-incremental algorithm preprocesses a set S of n reals in $O(n \log n)$ expected time such that a query takes $O(\log n)$ expected time.

Proof. Let $q \in \mathbb{R}$ (wlog. $q \not\in S$) and $l_i(q) = \arg\{l \in I_i : q \in l\}$.

$$E[\text{query time in } D_n] = E[\text{length search path in } D_n] =$$
1d Result

Given a set S of n real numbers...

$S_{i-1} := \{s_1, \ldots, s_{i-1}\}$, \hspace{1cm} $I_{i-1} := \text{set of conn. comp. of } \mathbb{R} \setminus S_{i-1}$

Thm. The randomized-incremental algorithm preprocesses a set S of n reals in $O(n \log n)$ expected time such that a query takes $O(\log n)$ expected time.

Proof. Let $q \in \mathbb{R}$ (wlog. $q \not\in S$) and $l_i(q) = \text{arg}\{l \in I_i : q \in l\}$.

Define random variable $X_i = \begin{cases} 1 & \text{if } l_i(q) \neq l_{i-1}(q), \\ 0 & \text{else.} \end{cases}$

$E[\text{query time in } D_n] = E[\text{length search path in } D_n] =$
1d Result

Given a set \(S \) of \(n \) real numbers...

\[S_{i-1} := \{s_1, \ldots, s_{i-1}\}, \quad I_{i-1} := \text{set of conn. comp. of } \mathbb{R} \setminus S_{i-1} \]

Thm. The randomized-incremental algorithm preprocesses a set \(S \) of \(n \) reals in \(O(n \log n) \) expected time such that a query takes \(O(\log n) \) expected time.

Proof. Let \(q \in \mathbb{R} \) (wlog. \(q \not\in S \)) and \(I_i(q) = \text{arg}\{l \in I_i : q \in l\} \).

Define random variable \(X_i = \begin{cases} 1 & \text{if } I_i(q) \neq I_{i-1}(q), \\ 0 & \text{else}. \end{cases} \)

\[E[\text{query time in } D_n] = E[\text{length search path in } D_n] = E[\sum_{i=1}^n X_i] = \]
1d Result

Given a set S of n real numbers...

Define random variable $X_i = \begin{cases}
1 & \text{if } I_i(q) \neq I_{i-1}(q), \\
0 & \text{else.}
\end{cases}$

Let $q \in \mathbb{R}$ (wlog. $q \not\in S$) and $I_i(q) = \text{arg}\{l \in I_i : q \in l\}$.

The randomized-incremental algorithm preprocesses a set S of n reals in $O(n \log n)$ expected time such that a query takes $O(\log n)$ expected time.

Proof. Let $q \in \mathbb{R}$ (wlog. $q \not\in S$) and $I_i(q) = \text{arg}\{l \in I_i : q \in l\}$.

Define random variable $X_i = \begin{cases}
1 & \text{if } I_i(q) \neq I_{i-1}(q), \\
0 & \text{else.}
\end{cases}$

$E[\text{query time in } D_n] = E[\text{length search path in } D_n] = E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i] = \ ?$
Expected Query Time of \mathcal{D}_n

Define random variable $X_i = \begin{cases}
1 & \text{if } l_i(q) \neq l_{i-1}(q), \\
0 & \text{else.}
\end{cases}$

$E[\text{query time in } \mathcal{D}_n] = E[\text{length search path in } \mathcal{D}_n] =$

$= E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i] = ?$
Expected Query Time of \mathcal{D}_n

$E[X_i] =

Define random variable $X_i = \begin{cases} 1 & \text{if } I_i(q) \neq I_{i-1}(q), \\ 0 & \text{else.} \end{cases}$

$E[\text{query time in } \mathcal{D}_n] = E[\text{length search path in } \mathcal{D}_n] = \sum_{i=1}^{n} E[X_i] = ?$
Expected Query Time of \mathcal{D}_n

$$E[X_i] = P[X_i = 1] = \begin{cases} 1 & \text{if } l_i(q) \neq l_{i-1}(q), \\ 0 & \text{else}. \end{cases}$$

$$E[\text{query time in } \mathcal{D}_n] = E[\text{length search path in } \mathcal{D}_n] = E[\sum_{i=1}^n X_i] = \sum_{i=1}^n E[X_i] = ?$$
Expected Query Time of \mathcal{D}_n

$$E[X_i] = P[X_i = 1] =$$

$$= \text{probability that } l_i(q) \neq l_{i-1}(q)$$

Define random variable $X_i = \begin{cases}
1 & \text{if } l_i(q) \neq l_{i-1}(q), \\
0 & \text{else.}
\end{cases}$

$$E[\text{query time in } \mathcal{D}_n] = E[\text{length search path in } \mathcal{D}_n] =$$

$$= E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i] = ?$$
Expected Query Time of \mathcal{D}_n

$$E[X_i] = P[X_i = 1] =$$

= probability that $l_i(q) \neq l_{i-1}(q)$, i.e., $s_i \in l_{i-1}(q)$.

Define random variable $X_i = \begin{cases}
1 & \text{if } l_i(q) \neq l_{i-1}(q), \\
0 & \text{else.}
\end{cases}$

$$E[\text{query time in } \mathcal{D}_n] = E[\text{length search path in } \mathcal{D}_n] =$$

$$= E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i] = ?$$
Expected Query Time of \mathcal{D}_n

$E[X_i] = P[X_i = 1] =$

$= \text{probability that } I_i(q) \neq I_{i-1}(q), \text{ i.e., } s_i \in I_{i-1}(q).$

Backwards analysis:

Define random variable $X_i = \begin{cases} 1 & \text{if } I_i(q) \neq I_{i-1}(q), \\ 0 & \text{else.} \end{cases}$

$E[\text{query time in } \mathcal{D}_n] = E[\text{length search path in } \mathcal{D}_n] =$

$= E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i] = ?$
Expected Query Time of D_n

$E[X_i] = P[X_i = 1] =$

= probability that $l_i(q) \neq l_{i-1}(q)$, i.e., $s_i \in l_{i-1}(q)$.

Backwards analysis: Consider S_i fixed.

Define random variable $X_i = \begin{cases} 1 & \text{if } l_i(q) \neq l_{i-1}(q), \\ 0 & \text{else.} \end{cases}$

$E[\text{query time in } D_n] = E[\text{length search path in } D_n] =

= E[\sum_{i=1}^n X_i] = \sum_{i=1}^n E[X_i] = ?$
Expected Query Time of \mathcal{D}_n

$E[X_i] = P[X_i = 1] =$

= probability that $I_i(q) \neq I_{i-1}(q)$, i.e., $s_i \in I_{i-1}(q)$.

Backwards analysis: Consider S_i fixed.

If we remove a randomly chosen pt from S_i,

Define random variable $X_i = \begin{cases} 1 & \text{if } I_i(q) \neq I_{i-1}(q), \\ 0 & \text{else}. \end{cases}$

$E[\text{query time in } \mathcal{D}_n] = E[\text{length search path in } \mathcal{D}_n] =$

$= E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i] = ?$
Expected Query Time of \mathcal{D}_n

$$E[X_i] = P[X_i = 1] =$$

= probability that $l_i(q) \neq l_{i-1}(q)$, i.e., $s_i \in l_{i-1}(q)$.

Backwards analysis: Consider S_i fixed.
If we remove a randomly chosen pt from S_i, what's the probability that the interval containing q changes?

Define random variable $X_i = \begin{cases} 1 & \text{if } l_i(q) \neq l_{i-1}(q), \\ 0 & \text{else.} \end{cases}$

$$E[\text{query time in } \mathcal{D}_n] = E[\text{length search path in } \mathcal{D}_n] =$$

$$= E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i] = ?$$
Expected Query Time of D_n

Define random variable $X_i = \begin{cases} 1 & \text{if } l_i(q) \neq l_{i-1}(q), \\ 0 & \text{else.} \end{cases}$

$E[X_i] = P[X_i = 1] = \text{probability that } l_i(q) \neq l_{i-1}(q), \text{ i.e., } s_i \in l_{i-1}(q)$.

Backwards analysis: Consider S_i fixed.

If we remove a randomly chosen pt from S_i, what’s the probability that the interval containing q changes?

– we have i choices, identically distributed

Define random variable $X_i = \begin{cases} 1 & \text{if } l_i(q) \neq l_{i-1}(q), \\ 0 & \text{else}. \end{cases}$

$E[\text{query time in } D_n] = E[\text{length search path in } D_n] = E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i] = ?$
Expected Query Time of \mathcal{D}_n

$$E[X_i] = P[X_i = 1] = \text{probability that } l_i(q) \neq l_{i-1}(q), \text{ i.e., } s_i \in l_{i-1}(q).$$

Backwards analysis: Consider S_i fixed.

If we *remove* a randomly chosen pt from S_i, what’s the probability that the interval containing q changes?

– we have i choices, identically distributed
– at most two of these change the interval

Define random variable $X_i = \begin{cases} 1 & \text{if } l_i(q) \neq l_{i-1}(q), \\ 0 & \text{else.} \end{cases}$

$$E[\text{query time in } \mathcal{D}_n] = E[\text{length search path in } \mathcal{D}_n] = \sum_{i=1}^{n} 1 \cdot E[X_i] = \sum_{i=1}^{n} E[X_i] = ?$$
Expected Query Time of D_n

$$E[X_i] = P[X_i = 1] =$$

= probability that $l_i(q) \neq l_{i-1}(q)$, i.e., $s_i \in l_{i-1}(q)$.

Backwards analysis:

Consider S_i fixed.
If we remove a randomly chosen pt from S_i, what’s the probability that the interval containing q changes?
– we have i choices, identically distributed
– at most two of these change the interval

Define random variable $X_i = \begin{cases}
1 & \text{if } l_i(q) \neq l_{i-1}(q), \\
0 & \text{else.}
\end{cases}$

$$E[\text{query time in } D_n] = E[\text{length search path in } D_n] =$$

$$= E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i] = ?$$
Expected Query Time of \mathcal{D}_n

Define random variable $X_i = \begin{cases} 1 & \text{if } l_i(q) \neq l_{i-1}(q), \\ 0 & \text{else.} \end{cases}$

$$E[X_i] = P[X_i = 1] = \frac{2}{i}$$

$= \text{probability that } l_i(q) \neq l_{i-1}(q), \text{i.e., } s_i \in l_{i-1}(q).$

Backwards analysis: Consider S_i fixed.

If we *remove* a randomly chosen pt from S_i, what’s the probability that the interval containing q changes?

– we have i choices, identically distributed
– at most two of these change the interval

Define random variable $X_i = \begin{cases} 1 & \text{if } l_i(q) \neq l_{i-1}(q), \\ 0 & \text{else.} \end{cases}$

$$E[\text{query time in } \mathcal{D}_n] = E[\text{length search path in } \mathcal{D}_n] = \sum_{i=1}^{n} E[X_i] = \sum_{i=1}^{n} E[X_i] = ?$$
Expected Query Time of D_n

$$E[X_i] = P[X_i = 1] = \frac{2}{i}$$

= probability that $l_i(q) \neq l_{i-1}(q)$, i.e., $s_i \in l_{i-1}(q)$.

Backwards analysis: Consider S_i fixed.

If we *remove* a randomly chosen pt from S_i, what’s the probability that the interval containing q changes?

– we have i choices, identically distributed

– at most two of these change the interval

Define random variable $X_i = \begin{cases} 1 & \text{if } l_i(q) \neq l_{i-1}(q), \\ 0 & \text{else}. \end{cases}$

$$E[\text{query time in } D_n] = E[\text{length search path in } D_n] = E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i] = ?$$
Expected Query Time of D_n

Define random variable $X_i = \begin{cases} 1 & \text{if } l_i(q) \neq l_{i-1}(q), \\ 0 & \text{else.} \end{cases}$

$E[X_i] = P[X_i = 1] = \frac{2}{i}$

= probability that $l_i(q) \neq l_{i-1}(q)$, i.e., $s_i \in l_{i-1}(q)$.

Backwards analysis: Consider S_i fixed.

If we remove a randomly chosen pt from S_i, what’s the probability that the interval containing q changes?
– we have i choices, identically distributed
– at most two of these change the interval

Define random variable $X_i = \begin{cases} 1 & \text{if } l_i(q) \neq l_{i-1}(q), \\ 0 & \text{else.} \end{cases}$

$E[\text{query time in } D_n] = E[\text{length search path in } D_n] = E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i] = \frac{2}{i}$

$O(\log n)$
Thm. The randomized-incremental algorithm preprocesses a set S of n reals in $O(n \log n)$ expected time such that a query takes $O(\log n)$ expected time.
The 2d-Problem

Approach: randomized-incremental construction of T and D
The 2d-Problem

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}
The 2d-Problem

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

![Trapezoidal map diagram]
The 2d-Problem

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

point-location data structure (DAG)
trapezoidal map
The 2d-Problem

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

point-location data structure (DAG)
trapezoidal map
The 2d-Problem

Approach: randomized-incremental construction of T and D

point-location data structure (DAG)
trapezoidal map
The 2d-Problem

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

- use \mathcal{D} to locate left endpoint of next segment s
The 2d-Problem

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}
- use \mathcal{D} to locate left endpoint of next segment s
- “walk” along s through \mathcal{T}
The 2d-Problem

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

- use \mathcal{D} to locate left endpoint of next segment s
- “walk” along s through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting s
The 2d-Problem

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

- use \mathcal{D} to locate left endpoint of next segment s
- “walk” along s through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting s
- construct new trapezoids of \mathcal{T} (adjacent to s)

point-location data structure (DAG)
trapezoidal map
The 2d-Problem

Approach: randomized-incremental construction of \mathcal{T} and \mathcal{D}

- use \mathcal{D} to locate left endpoint of next segment s
- “walk” along s through \mathcal{T}
- destroy all trapezoids of \mathcal{T} intersecting s
- construct new trapezoids of \mathcal{T} (adjacent to s)
- update \mathcal{D}

point-location data structure (DAG)
trapezoidal map
Walking through \mathcal{T} and Updating \mathcal{D}

TrapezoidalMap(set S of n non-crossing segments)

$R = \text{BBox}(S); \mathcal{T}.\text{init}(); \mathcal{D}.\text{init}()$

$(s_1, s_2, \ldots, s_n) = \text{RandomPermutation}(S)$

for $i = 1$ to n do

)
Walking through \mathcal{T} and Updating \mathcal{D}

TrapezoidalMap(set S of n non-crossing segments)

$R = \text{BBox}(S); \, \mathcal{T}.\text{init}(); \, \mathcal{D}.\text{init}()$

$(s_1, s_2, \ldots, s_n) = \text{RandomPermutation}(S)$

\textbf{for} $i = 1$ \textbf{to} n \textbf{do}

$(\Delta_0, \ldots, \Delta_k) = \text{FollowSegment}(\mathcal{T}, \mathcal{D}, s_i)$

\textbf{end for}
Walking through \mathcal{T} and Updating \mathcal{D}

\[
\begin{align*}
\text{TrapezoidalMap(set } S \text{ of } n \text{ non-crossing segments)} \\
R &= \text{BBox}(S); \ \mathcal{T}.\text{init}(); \ \mathcal{D}.\text{init}() \\
(s_1, s_2, \ldots, s_n) &= \text{RandomPermutation}(S) \\
\text{for } i = 1 \text{ to } n \text{ do} \\
\quad (\Delta_0, \ldots, \Delta_k) &= \text{FollowSegment}(\mathcal{T}, \mathcal{D}, s_i) \\
\end{align*}
\]
Walking through \mathcal{T} and Updating \mathcal{D}

\begin{align*}
\text{TrapezoidalMap(set } S \text{ of } n \text{ non-crossing segments)} \\
R &= \text{BBox}(S); \mathcal{T}.\text{init}(); \mathcal{D}.\text{init}() \\
(s_1, s_2, \ldots, s_n) &= \text{RandomPermutation}(S) \\
\text{for } i = 1 \text{ to } n \text{ do} \\
&\quad (\Delta_0, \ldots, \Delta_k) = \text{FollowSegment}(\mathcal{T}, \mathcal{D}, s_i) \\
&\quad \mathcal{T}.\text{remove}(\Delta_0, \ldots, \Delta_k) \\
&\quad \mathcal{D}.\text{remove leaves}(\Delta_0, \ldots, \Delta_k) \\
&\quad \mathcal{D}.\text{add leaves}(\text{new trapezoids incident to } s_i) \\
&\quad \mathcal{D}.\text{add new inner nodes})
\end{align*}
Walking through \mathcal{T} and Updating \mathcal{D}

TrapezoidalMap(set S of n non-crossing segments)

$R = \text{BBox}(S)$; $\mathcal{T}.\text{init}()$; $\mathcal{D}.\text{init}()$

$(s_1, s_2, \ldots, s_n) = \text{RandomPermutation}(S)$

for $i = 1$ to n do

$(\Delta_0, \ldots, \Delta_k) = \text{FollowSegment}(\mathcal{T}, \mathcal{D}, s_i)$

$\mathcal{T}.\text{remove}(\Delta_0, \ldots, \Delta_k)$

$\mathcal{D}.\text{remove} \text{leaves}(\Delta_0, \ldots, \Delta_k)$

$\mathcal{D}.\text{add} \text{leaves}(\text{new trapezoids incident to } s_i)$

$\mathcal{D}.\text{add} \text{new inner nodes}()$
Walking through \mathcal{T} and Updating \mathcal{D}

\[
\begin{align*}
\Delta_0 & \quad \Delta_1 \quad \Delta_2 \quad \Delta_3 \\
p_i \quad q_i \quad s_i
\end{align*}
\]

\[
\begin{align*}
\mathcal{T}(S_{i-1}) & \quad \mathcal{T}(S_i) \\

\text{TrapezoidalMap(set } S \text{ of } n \text{ non-crossing segments})
\end{align*}
\]

\[
R = \text{BBox}(S); \quad \mathcal{T}.\text{init()}; \quad \mathcal{D}.\text{init()}
\]

\[
(s_1, s_2, \ldots, s_n) = \text{RandomPermutation}(S)
\]

\[
\text{for } i = 1 \text{ to } n \text{ do}
\]

\[
(\Delta_0, \ldots, \Delta_k) = \text{FollowSegment}(\mathcal{T}, \mathcal{D}, s_i)
\]

\[
\mathcal{T}.\text{remove}(\Delta_0, \ldots, \Delta_k)
\]

\[
\mathcal{T}.\text{add(new trapezoids incident to } s_i)
\]

\[
\]
Walking through \mathcal{T} and Updating \mathcal{D}

TrapezoidalMap(set S of n non-crossing segments)

\[R = \text{BBox}(S); \quad \mathcal{T}.\text{init}(); \quad \mathcal{D}.\text{init}() \]

\[(s_1, s_2, \ldots, s_n) = \text{RandomPermutation}(S)\]

\[\text{for } i = 1 \text{ to } n \text{ do}\]

\[(\Delta_0, \ldots, \Delta_k) = \text{FollowSegment}(\mathcal{T}, \mathcal{D}, s_i) \]

\[\mathcal{T}.\text{remove}(\Delta_0, \ldots, \Delta_k) \]

\[\mathcal{T}.\text{add}(\text{new trapezoids incident to } s_i) \]

\[\]
Walking through \mathcal{T} and Updating \mathcal{D}

TrapezoidalMap(set S of n non-crossing segments)

$R = \text{BBox}(S); \mathcal{T}.\text{init}(); \mathcal{D}.\text{init}()$

$(s_1, s_2, \ldots, s_n) = \text{RandomPermutation}(S)$

\textbf{for } $i = 1$ \textbf{to } n \textbf{do}

$(\Delta_0, \ldots, \Delta_k) = \text{FollowSegment}(\mathcal{T}, \mathcal{D}, s_i)$

$\mathcal{T}.\text{remove}(\Delta_0, \ldots, \Delta_k)$

$\mathcal{T}.\text{add}(\text{new trapezoids incident to } s_i)$
Walking through \mathcal{T} and Updating \mathcal{D}

\[
\begin{align*}
\text{TrapezoidalMap(set } S \text{ of } n \text{ non-crossing segments)} & \\
R &= \text{BBox}(S); \mathcal{T}.\text{init(); } \mathcal{D}.\text{init()} \\
(s_1, s_2, \ldots, s_n) &= \text{RandomPermutation}(S) \\
\text{for } i = 1 \text{ to } n \text{ do} & \\
(\Delta_0, \ldots, \Delta_k) &= \text{FollowSegment}(\mathcal{T}, \mathcal{D}, s_i) \\
\mathcal{T}.\text{remove}(\Delta_0, \ldots, \Delta_k) & \\
\mathcal{T}.\text{add(new trapezoids incident to } s_i) & \\
\mathcal{D}.\text{remove_leaves}(\Delta_0, \ldots, \Delta_k) & \\
\end{align*}
\]
Walking through \mathcal{T} and Updating \mathcal{D}

TrapezoidalMap(set S of n non-crossing segments)

$R = \text{BBox}(S)$; $\mathcal{T}.\text{init}()$; $\mathcal{D}.\text{init}()$

$(s_1, s_2, \ldots, s_n) = \text{RandomPermutation}(S)$

for $i = 1$ to n do

$(\Delta_0, \ldots, \Delta_k) = \text{FollowSegment}(\mathcal{T}, \mathcal{D}, s_i)$

$\mathcal{T}.\text{remove}(\Delta_0, \ldots, \Delta_k)$

$\mathcal{T}.\text{add}(\text{new trapezoids incident to } s_i)$

$\mathcal{D}.\text{remove} \text{leaves}(\Delta_0, \ldots, \Delta_k)$

}
Walking through \mathcal{T} and Updating \mathcal{D}

TrapezoidalMap(set S of n non-crossing segments)

$R = \text{BBox}(S); \; \mathcal{T}.\text{init}(); \; \mathcal{D}.\text{init}()$

$(s_1, s_2, \ldots, s_n) = \text{RandomPermutation}(S)$

for $i = 1$ to n do

$(\Delta_0, \ldots, \Delta_k) = \text{FollowSegment}(\mathcal{T}, \mathcal{D}, s_i)$

$\mathcal{T}.\text{remove}(\Delta_0, \ldots, \Delta_k)$

$\mathcal{T}.\text{add}(\text{new trapezoids incident to } s_i)$

$\mathcal{D}.\text{remove_leaves}(\Delta_0, \ldots, \Delta_k)$

$\mathcal{D}.\text{add_leaves}(\text{new trapezoids incident to } s_i)$
Walking through \mathcal{T} and Updating \mathcal{D}

TrapezoidalMap(set S of n non-crossing segments)

\[
R = \text{BBox}(S); \quad \mathcal{T}.\text{init}(); \quad \mathcal{D}.\text{init}()
\]

\[(s_1, s_2, \ldots, s_n) = \text{RandomPermutation}(S)\]

\[\text{for } i = 1 \text{ to } n \text{ do} \]

\[\left(\Delta_0, \ldots, \Delta_k\right) = \text{FollowSegment}(\mathcal{T}, \mathcal{D}, s_i)\]

\[\mathcal{T}.\text{remove}(\Delta_0, \ldots, \Delta_k)\]

\[\mathcal{D}.\text{remove_leaves}(\Delta_0, \ldots, \Delta_k)\]

\[\mathcal{T}.\text{add(new trapezoids incident to } s_i)\]

\[\mathcal{D}.\text{add_leaves(new trapezoids incident to } s_i)\]
Walking through \mathcal{T} and Updating \mathcal{D}

TrapezoidalMap(set S of n non-crossing segments)

$R = \text{BBox}(S); \mathcal{T}.\text{init}(); \mathcal{D}.\text{init}()$

$(s_1, s_2, \ldots, s_n) = \text{RandomPermutation}(S)$

for $i = 1 \text{ to } n$ do

$(\Delta_0, \ldots, \Delta_k) = \text{FollowSegment}(\mathcal{T}, \mathcal{D}, s_i)$

$\mathcal{T}.\text{remove}((\Delta_0, \ldots, \Delta_k))$

$\mathcal{T}.\text{add(new trapezoids incident to } s_i)$

$\mathcal{D}.\text{remove_leaves}((\Delta_0, \ldots, \Delta_k))$

$\mathcal{D}.\text{add_leaves(new trapezoids incident to } s_i)$

$\mathcal{D}.\text{add_new_inner_nodes()}$
Walking through \mathcal{T} and Updating \mathcal{D}

TrapezoidalMap(set S of n non-crossing segments)

$R = \text{BBox}(S); \mathcal{T}\text{.init(); } \mathcal{D}\text{.init()}

(s_1, s_2, \ldots, s_n) = \text{RandomPermutation}(S)$

for $i = 1$ to n do

$(\Delta_0, \ldots, \Delta_k) = \text{FollowSegment}(\mathcal{T}, \mathcal{D}, s_i)$

$\mathcal{T}\text{.remove}(\Delta_0, \ldots, \Delta_k)$

$\mathcal{T}\text{.add(new trapezoids incident to } s_i)$

$\mathcal{D}\text{.remove_leaves}(\Delta_0, \ldots, \Delta_k)$

$\mathcal{D}\text{.add_leaves(new trapezoids incident to } s_i)$

$\mathcal{D}\text{.add_new_inner_nodes()}$
The 2d-Result

Theorem. TrapezoidalMap(S) computes $\mathcal{T}(S)$ for a set of n line segments in general position and a search structure \mathcal{D} for $\mathcal{T}(S)$ in $O(n \log n)$ expected time.
The 2d-Result

Theorem. TrapezoidalMap(S) computes $T(S)$ for a set of n line segments in general position and a search structure D for $T(S)$ in $O(n \log n)$ expected time. The expected size of D is $O(n)$ and the expected query time is $O(\log n)$.
The 2d-Result

Theorem. TrapezoidalMap(S) computes $\mathcal{T}(S)$ for a set of n line segments in general position and a search structure \mathcal{D} for $\mathcal{T}(S)$ in $O(n \log n)$ expected time. The expected size of \mathcal{D} is $O(n)$ and the expected query time is $O(\log n)$.

Invariant: Before step i, \mathcal{T} is a trapezoidal map for S_{i-1} and \mathcal{D} is a valid search structure for \mathcal{T}.

Proof.
- Correctness by loop invariant.
- Query time similar to 1d analysis.
 \Rightarrow construction time
Query Time

Let $T(q)$ be the query time for a fixed query pt q.
Query Time

Let $T(q)$ be the query time for a fixed query pt q.

$\Rightarrow T(q) = O(\text{length of the path from D.root to } q)$.
Query Time

Let $T(q)$ be the query time for a fixed query pt q.

$\Rightarrow T(q) = O(\text{length of the path from } D\text{.root to } q)$.
Query Time

Let $T(q)$ be the query time for a fixed query pt q.
⇒ $T(q) = O(\text{length of the path from } D.\text{root to } q)$.

height(D) increases by at most 3 in each step.
Query Time

Let $T(q)$ be the query time for a fixed query pt q.

$\Rightarrow T(q) = O(\text{length of the path from } D.\text{root to } q)$.

height(D) increases by at most 3 in each step. $\Rightarrow T(q) \leq$
Query Time

Let $T(q)$ be the query time for a fixed query pt q.
$\Rightarrow T(q) = O(\text{length of the path from } D.\text{root to } q)$.

height(D) increases by at most 3 in each step. $\Rightarrow T(q) \leq 3n$.
Query Time

Let $T(q)$ be the query time for a fixed query pt q.

$\Rightarrow T(q) = O(\text{length of the path from } D.\text{root to } q)$.

height(D) increases by at most 3 in each step. $\Rightarrow T(q) \leq 3n$.

We are interested in the expected behaviour of D:...
Query Time

Let $T(q)$ be the query time for a fixed query pt q.

$\Rightarrow T(q) = O(\text{length of the path from } D.\text{root to } q)$.

height(D) increases by at most 3 in each step. $\Rightarrow T(q) \leq 3n$.

We are interested in the expected behaviour of D:

\Rightarrow average of $T(q)$ over
Query Time

Let $T(q)$ be the query time for a fixed query pt q.

$\Rightarrow T(q) = O(\text{length of the path from } D.\text{root to } q)$.
height(D) increases by at most 3 in each step. $\Rightarrow T(q) \leq 3n$.

We are interested in the expected behaviour of D:

\Rightarrow average of $T(q)$ over all $n!$ insertion orders
Query Time

Let $T(q)$ be the query time for a fixed query pt q.

$\Rightarrow T(q) = O(\text{length of the path from } D.\text{root to } q)$.

height(D) increases by at most 3 in each step. $\Rightarrow T(q) \leq 3n$.

We are interested in the expected behaviour of D:

\Rightarrow average of $T(q)$ over all $n!$ insertion orders (permut. of S)
Query Time

Let $T(q)$ be the query time for a fixed query pt q.

$\Rightarrow T(q) = O(\text{length of the path from } D\text{.root to } q)$.

height(D) increases by at most 3 in each step. $\Rightarrow T(q) \leq 3n$.

We are interested in the *expected* behaviour of D:

\Rightarrow average of $T(q)$ over all $n!$ insertion orders (permut. of S)

$X_i := \# \text{ nodes that are added to the query path in iteration } i$.
Query Time

Let $T(q)$ be the query time for a fixed query pt q.
$\Rightarrow T(q) = O(\text{length of the path from } \mathcal{D}.\text{root to } q)$.

height(\mathcal{D}) increases by at most 3 in each step. $\Rightarrow T(q) \leq 3n$.

We are interested in the expected behaviour of \mathcal{D}:
\Rightarrow average of $T(q)$ over all $n!$ insertion orders (permut. of S)

$X_i := \# \text{ nodes that are added to the query path in iteration } i$.
S and q are fixed.
Query Time

Let $T(q)$ be the query time for a fixed query pt q.

$\Rightarrow T(q) = O(\text{length of the path from } D.\text{root to } q)$.

height(D) increases by at most 3 in each step. $\Rightarrow T(q) \leq 3n$.

We are interested in the expected behaviour of D:

\Rightarrow average of $T(q)$ over all $n!$ insertion orders (permut. of S)

$X_i := \# \text{ nodes that are added to the query path in iteration } i$.

S and q are fixed.

$\Rightarrow X_i$ random variable that depends only on insertion order of S.
Query Time

Let $T(q)$ be the query time for a fixed query pt q.

$\Rightarrow T(q) = O(\text{length of the path from } D.\text{root to } q)$.

height(D) increases by at most 3 in each step. $\Rightarrow T(q) \leq 3n$.

We are interested in the expected behaviour of D:

\Rightarrow average of $T(q)$ over all $n!$ insertion orders (permut. of S)

$X_i := \# \text{ nodes that are added to the query path in iteration } i$. S and q are fixed.

$\Rightarrow X_i$ random variable that depends only on insertion order of S.

\Rightarrow expected path length from $D.\text{root to } q$ is
Query Time

Let $T(q)$ be the query time for a fixed query pt q.

$\Rightarrow T(q) = O(\text{length of the path from } D.\text{root to } q)$.

height(D) increases by at most 3 in each step. $\Rightarrow T(q) \leq 3n$.

We are interested in the expected behaviour of D:

\Rightarrow average of $T(q)$ over all $n!$ insertion orders (permut. of S)

$X_i := \#\text{ nodes that are added to the query path in iteration } i$.

S and q are fixed.

$\Rightarrow X_i$ random variable that depends only on insertion order of S.

\Rightarrow expected path length from $D.\text{root to } q$ is

$$\mathbb{E}[\sum_{i=1}^{n} X_i] =$$
Query Time

Let $T(q)$ be the query time for a fixed query pt q.

$\Rightarrow T(q) = O(\text{length of the path from } D.\text{root to } q)$.

The height of D increases by at most 3 in each step.

$\Rightarrow T(q) \leq 3n$.

We are interested in the expected behaviour of D:

\Rightarrow average of $T(q)$ over all $n!$ insertion orders (permut. of S)

$X_i := \# \text{ nodes that are added to the query path in iteration } i$.

S and q are fixed.

$\Rightarrow X_i$ random variable that depends only on insertion order of S.

\Rightarrow expected path length from $D.\text{root}$ to q is

$E[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} E[X_i] = ?$
Query Time (cont’d)

\[p_i = \text{prob. that the search path } \Pi_q \text{ of } q \text{ in } \mathcal{D} \text{ contains a node that was created in iteration } i. \]
Query Time (cont’d)

\(p_i = \text{prob. that the search path } \Pi_q \text{ of } q \text{ in } \mathcal{D} \text{ contains a node that was created in iteration } i. \)

\[\Rightarrow E[X_i] = \]
Query Time (cont’d)

\[p_i = \text{prob. that the search path } \Pi_q \text{ of } q \text{ in } \mathcal{D} \text{ contains a node that was created in iteration } i. \]

\[\Rightarrow E[X_i] = \sum_{j=0}^{3} j \cdot P[X_i = j] \leq \]
Query Time (cont’d)

\(p_i \) = prob. that the search path \(\Pi_q \) of \(q \) in \(\mathcal{D} \) contains a node that was created in iteration \(i \).

\[\Rightarrow \mathbb{E}[X_i] = \sum_{j=0}^{3} j \cdot P[X_i = j] \leq \sum_{j=0}^{3} 3 \cdot P[X_i \geq 1] = \]
Query Time (cont’d)

\(p_i = \text{prob. that the search path } \Pi_q \text{ of } q \text{ in } \mathcal{D} \text{ contains a node that was created in iteration } i. \)

\[\Rightarrow E[X_i] = \sum_{j=0}^{3} j \cdot P[X_i = j] \leq \sum_{j=0}^{3} 3 \cdot P[X_i \geq 1] = 3p_i \]
Query Time (cont’d)

$p_i = \text{prob. that the search path } \Pi_q \text{ of } q \text{ in } D \text{ contains a node that was created in iteration } i.$

$\Rightarrow E[X_i] = \sum_{j=0}^{3} j \cdot P[X_i = j] \leq \sum_{j=0}^{3} 3 \cdot P[X_i \geq 1] = 3p_i$

$\Delta_q(S_i) := \text{trapezoid in } \mathcal{T}(S_i) \text{ that contains } q.$
Query Time (cont’d)

\(p_i = \) prob. that the search path \(\Pi_q \) of \(q \) in \(D \) contains a node that was created in iteration \(i \).

\[\Rightarrow E[X_i] = \sum_{j=0}^{3} j \cdot P[X_i = j] \leq \sum_{j=0}^{3} 3 \cdot P[X_i \geq 1] = 3p_i \]

\(\Delta_q(S_i) := \) trapezoid in \(T(S_i) \) that contains \(q \).

Key idea: Iteration \(i \) contributes a node to \(\Pi_q \) iff
Query Time (cont’d)

\(p_i = \) prob. that the search path \(\Pi_q \) of \(q \) in \(D \) contains a node that was created in iteration \(i \).

\[\Rightarrow E[X_i] = \sum_{j=0}^{3} j \cdot P[X_i = j] \leq \sum_{j=0}^{3} 3 \cdot P[X_i \geq 1] = 3p_i \]

\(\Delta_q(S_i) := \) trapezoid in \(T(S_i) \) that contains \(q \).

Key idea: Iteration \(i \) contributes a node to \(\Pi_q \) iff

\[\Delta_q(S_{i-1}) \neq \Delta_q(S_i). \]
Query Time (cont’d)

\(p_i = \text{prob. that the search path } \Pi_q \text{ of } q \text{ in } \mathcal{D} \text{ contains a node that was created in iteration } i. \)

\[\Rightarrow E[X_i] = \sum_{j=0}^{3} j \cdot P[X_i = j] \leq \sum_{j=0}^{3} 3 \cdot P[X_i \geq 1] = 3p_i \]

\(\Delta_q(S_i) := \text{trapezoid in } T(S_i) \text{ that contains } q. \)

Key idea: Iteration \(i \) contributes a node to \(\Pi_q \) iff

\[\Delta_q(S_i-1) \neq \Delta_q(S_i). \]

In this case \(\Delta_q(S_i) \) must have been created in iteration \(i \).
Query Time (cont’d)

\(p_i = \text{prob. that the search path } \Pi_q \text{ of } q \text{ in } D \text{ contains a node that was created in iteration } i. \)

\[\Rightarrow E[X_i] = \sum_{j=0}^{3} j \cdot P[X_i = j] \leq \sum_{j=0}^{3} 3 \cdot P[X_i \geq 1] = 3p_i \]

\(\Delta_q(S_i) := \text{trapezoid in } T(S_i) \text{ that contains } q. \)

Key idea: Iteration \(i \) contributes a node to \(\Pi_q \) iff

\[\Delta_q(S_{i-1}) \neq \Delta_q(S_i). \]

In this case \(\Delta_q(S_i) \) must have been created in iteration \(i. \)

\[\Rightarrow \Delta := \Delta_q(S_i) \text{ is adjacent to the new segment } s_i. \]
Query Time (cont’d)

\[p_i = \text{prob. that the search path } \Pi_q \text{ of } q \text{ in } \mathcal{D} \text{ contains a node that was created in iteration } i. \]

\[\Rightarrow \mathbb{E}[X_i] = \sum_{j=0}^{3} j \cdot \mathbb{P}[X_i = j] \leq \sum_{j=0}^{3} 3 \cdot \mathbb{P}[X_i \geq 1] = 3p_i \]

\[\Delta_q(S_i) := \text{trapezoid in } T(S_i) \text{ that contains } q. \]

Key idea: Iteration \(i \) contributes a node to \(\Pi_q \) iff

\[\Delta_q(S_{i-1}) \neq \Delta_q(S_i). \]

In this case \(\Delta_q(S_i) \) must have been created in iteration \(i \).

\[\Rightarrow \Delta := \Delta_q(S_i) \text{ is adjacent to the new segment } s_i. \]

\[\Rightarrow \text{top}(\Delta) = s_i, \text{bot}(\Delta) = s_i, \text{leftp}(\Delta) \in s_i, \text{ or rightp}(\Delta) \in s_i. \]
Query Time (cont’d)

\(p_i = \text{prob. that the search path } \Pi_q \text{ of } q \text{ in } \mathcal{D} \text{ contains a node that was created in iteration } i. \)

\[
\Rightarrow E[X_i] = \sum_{j=0}^{3} j \cdot P[X_i = j] \leq \sum_{j=0}^{3} 3 \cdot P[X_i \geq 1] = 3p_i
\]

\(\Delta_q(S_i) := \text{trapezoid in } T(S_i) \text{ that contains } q. \)

Key idea: Iteration \(i \) contributes a node to \(\Pi_q \) iff

\[
\Delta_q(S_{i-1}) \neq \Delta_q(S_i).
\]

In this case \(\Delta_q(S_i) \) must have been created in iteration \(i. \)

\[
\Rightarrow \Delta := \Delta_q(S_i) \text{ is adjacent to the new segment } s_i.
\]

\[
\Rightarrow \text{top}(\Delta) = s_i, \text{ bot}(\Delta) = s_i, \text{ leftp}(\Delta) \in s_i, \text{ or rightp}(\Delta) \in s_i.
\]

Trick: \(T(S_i) \) (and thus \(\Delta \)) is uniquely determined by \(S_i. \).
Query Time (cont’d)

\(p_i = \text{prob. that the search path } \Pi_q \text{ of } q \text{ in } D \text{ contains a node that was created in iteration } i. \)

\[\Rightarrow E[X_i] = \sum_{j=0}^{3} j \cdot P[X_i = j] \leq \sum_{j=0}^{3} 3 \cdot P[X_i \geq 1] = 3p_i \]

\(\Delta_q(S_i) := \text{trapezoid in } \mathcal{T}(S_i) \text{ that contains } q. \)

Key idea: Iteration \(i \) contributes a node to \(\Pi_q \) iff

\[\Delta_q(S_{i-1}) \neq \Delta_q(S_i). \]

In this case \(\Delta_q(S_i) \) must have been created in iteration \(i. \)

\[\Rightarrow \Delta := \Delta_q(S_i) \text{ is adjacent to the new segment } s_i. \]

\[\Rightarrow \text{top}(\Delta) = s_i, \text{bot}(\Delta) = s_i, \text{leftp}(\Delta) \in s_i, \text{ or rightp}(\Delta) \in s_i. \]

Trick: \(\mathcal{T}(S_i) \) (and thus \(\Delta \)) is uniquely determined by \(S_i \).

Consider \(S_i \subseteq S \text{ fixed.} \)
Query Time (cont’d)

\[p_i = \text{prob. that the search path } \Pi_q \text{ of } q \text{ in } \mathcal{D} \text{ contains a node that was created in iteration } i. \]

\[\Rightarrow \mathbf{E}[X_i] = \sum_{j=0}^{3} j \cdot P[X_i = j] \leq \sum_{j=0}^{3} 3 \cdot P[X_i \geq 1] = 3p_i \]

\[\Delta_q(S_i) := \text{trapezoid in } \mathcal{T}(S_i) \text{ that contains } q. \]

Key idea: Iteration \(i \) contributes a node to \(\Pi_q \) iff

\[\Delta_q(S_{i-1}) \neq \Delta_q(S_i). \]

In this case \(\Delta_q(S_i) \) must have been created in iteration \(i. \)

\[\Rightarrow \Delta := \Delta_q(S_i) \text{ is adjacent to the new segment } s_i. \]

\[\Rightarrow \text{top}(\Delta) = s_i, \text{bot}(\Delta) = s_i, \text{leftp}(\Delta) \in s_i, \text{or rightp}(\Delta) \in s_i. \]

Trick: \(\mathcal{T}(S_i) \) (and thus \(\Delta \)) is uniquely determined by \(S_i. \)

Consider \(S_i \subseteq S \text{ fixed.} \)

\[\Rightarrow \Delta \text{ does not depend on insertion order.} \]
Query Time (cont’d)

$p_i = \text{prob. that the search path } \Pi_q \text{ of } q \text{ in } D \text{ contains a node that was created in iteration } i.$

i.e., prob that Δ changes when inserting s_i.

Aim: bound p_i.

Query Time (cont’d)

$p_i = \text{prob. that the search path } \Pi_q \text{ of } q \text{ in } \mathcal{D} \text{ contains a node that was created in iteration } i$.

i.e., prob that Δ changes when inserting s_i.

Aim: bound p_i.

Tool:
Query Time (cont’d)

\(p_i = \text{prob. that the search path } \Pi_q \text{ of } q \text{ in } \mathcal{D} \text{ contains a node that was created in iteration } i. \)

i.e., prob that \(\Delta \) changes when inserting \(s_i \).

Aim: bound \(p_i \).

Tool: *Backwards analysis!*
Query Time (cont’d)

\[p_i = \text{prob. that the search path } \pi_q \text{ of } q \text{ in } D \text{ contains a node that was created in iteration } i. \]
\[\text{i.e., prob that } \Delta \text{ changes when inserting } s_i. \]

Aim: bound \(p_i \).

Tool: Backwards analysis!

\[p_i = \text{prob that } \Delta \text{ changes when } s_i \text{ is removed} \]
Query Time (cont’d)

\(p_i = \text{prob. that the search path } \Pi_q \text{ of } q \text{ in } \mathcal{D} \text{ contains a node that was created in iteration } i. \)

i.e., prob that \(\Delta \) changes when inserting \(s_i \).

Aim: bound \(p_i \).

Tool: Backwards analysis!

\(p_i = \text{prob that } \Delta \text{ changes when } s_i \text{ is removed} \)

Four cases:
Query Time (cont’d)

\(p_i = \text{prob. that the search path } \Pi_q \text{ of } q \text{ in } D \text{ contains a node that was created in iteration } i. \)

i.e., prob that \(\Delta \) changes when inserting \(s_i \).

Aim: bound \(p_i \).

Tool: Backwards analysis!

\(p_i = \text{prob that } \Delta \text{ changes when } s_i \text{ is removed} \)

Four cases:

\[
P(\text{top}(\Delta) = s_i) = ?
\]
Query Time (cont’d)

\(p_i = \text{prob. that the search path } \Pi_q \text{ of } q \text{ in } \mathcal{D} \text{ contains a node that was created in iteration } i. \)

i.e., prob that \(\Delta \) changes when inserting \(s_i \).

Aim: bound \(p_i \).

Tool: *Backwards analysis!*

\(p_i = \text{prob that } \Delta \text{ changes when } s_i \text{ is removed} \)

Four cases:

\[
\Pr(\text{top}(\Delta) = s_i) = \frac{1}{i} \text{ (since exactly one of } i \text{ segments is top}(\Delta)).
\]
Query Time (cont’d)

\(p_i = \text{prob. that the search path } \Pi_q \text{ of } q \text{ in } \mathcal{D} \text{ contains a node that was created in iteration } i. \)

i.e., prob that \(\Delta \) changes when inserting \(s_i \).

Aim: bound \(p_i \).

Tool: Backwards analysis!

\(p_i = \text{prob that } \Delta \text{ changes when } s_i \text{ is removed} \)

Four cases:

\[
P(\text{top}(\Delta) = s_i) = \frac{1}{i} \text{ (since exactly one of } i \text{ segments is } \text{top}(\Delta)).
\]

\(\Rightarrow p_i \leq \frac{4}{i} \)

\(\Rightarrow \mathbb{E}[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} \mathbb{E}[X_i] \leq \sum_{i=1}^{n} 3 \cdot p_i \)

\(= 12 \sum_{i=1}^{n} \frac{1}{i} \leq O(\log n) \)
Query Time (cont’d)

\(p_i = \text{prob. that the search path } \Pi_q \text{ of } q \text{ in } D \text{ contains a node that was created in iteration } i. \)
i.e., \(\text{prob that } \Delta \text{ changes when inserting } s_i. \)

Aim: bound \(p_i. \)

Tool: Backwards analysis!

\(p_i = \text{prob that } \Delta \text{ changes when } s_i \text{ is removed} \)

Four cases:

\[
\Pr(\text{top}(\Delta) = s_i) = \frac{1}{i} \quad \text{(since exactly one of } i \text{ segments is top}(\Delta)).
\]

\[
\Rightarrow p_i \leq \frac{4}{i}
\]

\[
\Rightarrow \mathbb{E}[\sum_{i=1}^{n} X_i] = \sum_{i=1}^{n} \mathbb{E}[X_i] \leq \sum_{i=1}^{n} 3 \cdot p_i
\]

\[
= 12 \sum_{i=1}^{n} \frac{1}{i} \leq O(\log n)
\]