Computational Geometry
Winter term 2016/17
Linear Programming
or
Profit Maximization
Lecture #4

Joachim Spoerhase
Maximizing Profit

You are the boss of a small company that produces two products, \(P_1 \) and \(P_2 \). If you produce \(x_1 \) units of \(P_1 \) and \(x_2 \) units of \(P_2 \), your profit in \(\mathbb{E} \) is

\[
G(x_1, x_2) = 300x_1 + 500x_2
\]

Your production runs on three machines \(M_A, M_B, \) and \(M_C \) with the following capacities:

\[
\begin{align*}
M_A &: \quad 4x_1 + 11x_2 \leq 880 \\
M_B &: \quad x_1 + x_2 \leq 150 \\
M_C &: \quad x_2 \leq 60
\end{align*}
\]

Which choice of \((x_1, x_2)\) maximizes your profit?
The Answer

linear constraints:

- \(M_A : 4x_1 + 11x_2 \leq 880 \)
- \(M_B : x_1 + x_2 \leq 150 \)
- \(M_C : x_2 \leq 60 \)

Ax \leq b

x \geq 0

linear objective fct.:

maximize \(c^T x \)

\[G(x_1, x_2) = 300x_1 + 500x_2 = (300, 500) \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \]

G(110, 40) = 53,000

maximal value of objective fct. given constraints

\(\max\{c^T x \mid Ax \leq b, x \geq 0\} \)

"iso-profit line" (orthogonal to \((300, 500)\))
Definition and Known Algorithms

Given a set H of n halfspaces in \mathbb{R}^d and a direction c, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

Many algorithms known, e.g.:
- **Simplex** [Dantzig ’47]
- **Ellipsoid method** [Khatchiyan ’79]
- **Inner-point method** [Karmakar’ 84]

Good for instances where n and d are large.

We consider $d = 2$.

VERY important problem, for example, in Operations Research. [“Book” application: casting]

$\bigcap H$ bounded.

$\bigcap H = \emptyset$ \hspace{1cm} $\bigcap H$ unbd. in dir. c \hspace{1cm} set of optima: segment vs. point
First Approach

- compute $\bigcap H$ explicitly
- walk along $\partial (\bigcap H)$ to find a vertex x with cx maximum

IntersectHalfplanes(H)

\[
\text{if } |H| = 1 \text{ then } \\
C \leftarrow h, \text{ where } \{h\} = H \\
\text{else} \\
\quad \text{split } H \text{ into sets } H_1 \text{ and } H_2 \text{ with } |H_1|, |H_2| \approx |H|/2 \\
\quad C_1 \leftarrow \text{IntersectHalfplanes}(H_1) \\
\quad C_2 \leftarrow \text{IntersectHalfplanes}(H_2) \\
\quad C \leftarrow \text{IntersectConvexRegions}(C_1, C_2) \\
\text{return } C
\]

Running time: $T_{IH}(n) = 2T_{IH}(n/2) + T_{ICR}(n)$
Intersecting Convex Regions

Any ideas?

Use sweep-line algorithm for map overlay (line-segment intersections)!

Running time \(T_{ICR}(n) = O((n + I) \log n) \),

where \(I = \# \) intersection points.

\textit{here}: \(I \leq n \)

Running time \(T_{IH}(n) = 2T_{IH}(n/2) + T_{ICR}(n) \)

\(\leq 2T_{IH}(n/2) + O(n \log n) \)

\(\in O(n \log^2 n) \)

Better ideas?

Use specialized algorithm for intersecting \textit{convex} regions/polyg.
Theorem. The intersection of two convex polygonal regions can be computed in linear time.

Corollary. The intersection of n half planes can be computed in $O(n \log n)$ time.

Can we do better?
A Small Trick: Make Solution Unique

- Add two bounding halfplanes m_1 and m_2

$$ m_1 = \begin{cases}
 x \leq M & \text{if } c_x > 0, \\
 x \geq M & \text{otherwise},
\end{cases} \quad \text{for some sufficiently large } M $$

$$ m_2 = \begin{cases}
 y \leq M & \text{if } c_y > 0, \\
 y \geq M & \text{otherwise}.
\end{cases} $$

- Take the lexicographically largest solution.

⇒ Set of solutions is either empty or a uniquely defined point.
Incremental Approach

Idea: Don’t compute $\bigcap H$, but just one (optimal) point!

Randomized

$$2d\text{BoundedLP}(H, c, m_1, m_2)$$

calculate random permutation of H

$$H_0 = \{m_1, m_2\}; \ C_0 \leftarrow m_1 \cap m_2$$

$v_0 \leftarrow$ unique optimal vertex of C_0 wrt obj.

for $i \leftarrow 1$ to n do

$$H_i = H_{i-1} \cup \{h_i\}; \ C_i = C_{i-1} \cap h_i$$

if $v_{i-1} \in h_i$ then

$$v_i \leftarrow v_{i-1}$$

else

$$v_i \leftarrow 1d\text{BoundedLP}(\pi_{\partial h_i}(H_{i-1}), \pi_{\partial h_i}(c))$$

if $v_i = \text{nil}$ then

return nil

return v_n

$C_i =$ convex hull of H_i

$w-c$ running time:

$$T(n) = \sum_{i=1}^{n} O(i) = O(n^2) \quad \because(\text{Randomized})$$
Result

Theorem. The 2d bounded LP problem can be solved in $O(n)$ expected time.

Proof. Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random variable).

Then the expected running time is

$$E[T_{2d}(n)] = E \left[\sum_{i=1}^{n} (1 - X_i) \cdot O(1) + X_i \cdot O(i) \right]$$

$$= O(n) + \sum E[X_i] \cdot O(i)$$

$$= O(n) + \sum \Pr[X_i = 1] \cdot O(i) = O(n).$$

We fix the i random halfplanes in H_i. This fixes C_i.

$\Pr[X_i = 1] =$ probability that the optimal solution changes when h_i is added to C_{i-1}.

$\Pr[X_i = 1] =$ probability that the optimal solution changes when h_i is removed from C_i.

$\leq 2/i$. This is independent of the choice of H_i. □

Proof technique: Backward analysis!