Algorithms for Graph Visualization

Summer Semester 2016
Lecture #9

Planar Orientations
Tessellations and Visibility Representations
Topological Numbering

Let $G = (V, E)$ be a directed graph.

-topological numbering of G: mapping $\mu: V \rightarrow \mathbb{N}$ where $\mu(u) < \mu(v)$ for every edge (u, v)
Topological Numbering

Let $G = (V, E)$ be a directed graph.

- topological numbering of G: mapping $\mu : V \rightarrow \mathbb{N}$ where $\mu(u) < \mu(v)$ for every edge (u, v)

- topological sort of G: topological numbering where $\mu(V) = \{1, \ldots, n\}$
Topological Numbering

Let $G = (V, E)$ be a directed graph.

- **topological numbering** of G: mapping $\mu: V \rightarrow \mathbb{N}$ where $\mu(u) < \mu(v)$ for every edge (u, v)

- **topological sort** of G:
 topological numbering where $\mu(V) = \{1, \ldots, n\}$

- **weighted topological numbering** of (G, w): topological numbering where $\mu(u) + w(u, v) \leq \mu(v)$ for every edge (u, v)
Topological Numbering

Let $G = (V, E)$ be a directed graph.

- *topological numbering* of G: mapping $\mu : V \rightarrow \mathbb{N}$ where $\mu(u) < \mu(v)$ for every edge (u, v)

- *topological sort* of G: topological numbering where $\mu(V) = \{1, \ldots, n\}$

- *weighted topological numbering* of (G, w): topological numbering where $\mu(u) + w(u, v) \leq \mu(v)$ for every edge (u, v)
 - optimal when: $\max_{v \in V} \mu(v) - \min_{v \in V} \mu(v)$ is minimized
Topological Numbering

Let $G = (V, E)$ be a directed graph.

- **topological numbering** of G: mapping $\mu : V \rightarrow \mathbb{N}$ where $\mu(u) < \mu(v)$ for every edge (u, v)

- **topological sort** of G: topological numbering where $\mu(V) = \{1, \ldots, n\}$

- **weighted topological numbering** of (G, w): topological numbering where $\mu(u) + w(u, v) \leq \mu(v)$ for every edge (u, v)

 optimal when: $\max_{v \in V} \mu(v) - \min_{v \in V} \mu(v)$ is minimized

- Can be calculated in $O(n + m)$ time.

Exercise!
st-graphs

st-graph: a directed *acyclic* graph $G = (V, E)$ with exactly one source and exactly one sink.
st-graphs

st-graph: a directed *acyclic* graph $G = (V, E)$ with exactly one source and exactly one sink.

\implies G numbered topologically: each path traverses nodes in increasing order.
st-graphs

st-graph: a directed *acyclic* graph $G = (V, E)$ with exactly one source and exactly one sink.

- G numbered topologically: each path traverses nodes in increasing order.
- For each vertex v, there is a directed (s, t)-path containing v.
st-graphs

st-graph: a directed *acyclic* graph $G = (V, E)$ with exactly one source and exactly one sink.

\Rightarrow G numbered topologically: each path traverses nodes in increasing order.

\Rightarrow For each vertex v, there is a directed (s, t)-path containing v.

Planar st-graph: an st-graph with a planar embedding such that s and t are on the outerface.
st-graphs

st-graph: a directed *acyclic* graph $G = (V, E)$ with exactly one source and exactly one sink.

> G numbered topologically: each path traverses nodes in increasing order.

> For each vertex v, there is a directed (s, t)-path containing v.

Planar st-graph: an st-graph with a planar embedding such that s and t are on the outerface.
Planar st-graphs

\Rightarrow Normally drawn upwards planar.
Planar st-graphs

Normally drawn upwards planar.
Planar st-graphs

- Normally drawn upwards planar.
- Two outerfaces s^*/t^* left/right.
Planar st-graphs

- Normally drawn upwards planar.
- Two outerfaces s^*/t^* left/right.
Planar st-graphs

- Normally drawn upwards planar.
- Two outerfaces s^*/t^* left/right.
- For each $e = (u, v) \in E$:

![Graph Diagram]
Planar st-graphs

- Normally drawn upwards planar.
- Two outerfaces s^*/t^* left/right.
- For each $e = (u, v) \in E$: $\text{orig}(e) = u$ and $\text{dest}(e) = v$
Planar st-graphs

- Normally drawn upwards planar.
- Two outerfaces s^* / t^* left/right.
- For each $e = (u, v) \in E$: orig(e) = u and dest(e) = v
 - left(e), right(e) $\in F$:
 - face left of e, right of e
Planar st-graphs

- Normally drawn upwards planar.
- Two outerfaces s^* / t^* left/right.
- For each $e = (u, v) \in E$: $\text{orig}(e) = u$ and $\text{dest}(e) = v$,
 $\text{left}(e), \text{right}(e) \in F$: face left of e. right of e

$$G^* = (V^* = F, E^*)$$
\[e \in E \Rightarrow (\text{left}(e), \text{right}(e)) \in E^* \]
Planar st-graphs

- Normally drawn upwards planar.
- Two outerfaces s^*/t^* left/right.
- For each $e = (u, v) \in E$:
 \[\text{orig}(e) = u \text{ and } \text{dest}(e) = v \]
 \[\text{left}(e), \text{right}(e) \in F: \]
 face left of e. right of e}
- $G^* = (V^* = F, E^*)$:
 $e \in E \Rightarrow (\text{left}(e), \text{right}(e)) \in E^*$
Planar st-graphs

▶ Normally drawn upwards planar.

▶ Two outerfaces s^*/t^* left/right.

▶ For each $e = (u, v) \in E$:
 $\text{orig}(e) = u$ and $\text{dest}(e) = v$
 $\text{left}(e), \text{right}(e) \in F$:
 face left of e. right of e

▶ $G^* = (V^* = F, E^*)$:
 $e \in E \Rightarrow (\text{left}(e), \text{right}(e)) \in E^*$
Planar st-graphs

- Normally drawn upwards planar.
- Two outerfaces s^*/t^* left/right.
- For each $e = (u, v) \in E$: $\text{orig}(e) = u$ and $\text{dest}(e) = v$
 $\text{left}(e), \text{right}(e) \in F$: face left of e. right of e
- $G^* = (V^* = F, E^*)$: $e \in E \Rightarrow (\text{left}(e), \text{right}(e)) \in E^*$
- Multigraph
Planar st-graphs

- Normally drawn upwards planar.
- Two outerfaces s^*/t^* left/right.
- For each $e = (u, v) \in E$: $\text{orig}(e) = u$ and $\text{dest}(e) = v$.
 $\text{left}(e), \text{right}(e) \in F$: face left of e. right of e.
- $G^* = (V^* = F, E^*)$: $e \in E \Rightarrow (\text{left}(e), \text{right}(e)) \in E^*$
- Multigraph
- s^*t^*-graph
Properties of Planar st-graphs

Lemma Every face f of G consists of two paths from its source $\text{orig}(f)$ to its sink $\text{dest}(f)$.
Properties of Planar st-graphs

Lemma 1
Every face f of G consists of two paths from its source $\text{orig}(f)$ to its sink $\text{dest}(f)$.

Proof:

![Diagram showing a face f with source $\text{orig}(f)$ and sink $\text{dest}(f)$, illustrating two paths within the face.](image)
Properties of Planar st-graphs

Lemma Every face f of G consists of two paths from its source $\text{orig}(f)$ to its sink $\text{dest}(f)$.

Proof: Assume: $\exists f$, violating the statement.
Properties of Planar st-graphs

Lemma 1. Every face f of G consists of two paths from its source $\text{orig}(f)$ to its sink $\text{dest}(f)$.

Proof: Assume: $\exists f$, violating the statement.
Properties of Planar st-graphs

Lemma$_1$ Every face f of G consists of two paths from its source $\text{orig}(f)$ to its sink $\text{dest}(f)$.

Proof: Assume: $\exists f$, violating the statement.

$\implies G$ acyclic $\Rightarrow f$ has a source q
Properties of Planar st-graphs

Lemma Every face f of G consists of two paths from its source $\text{orig}(f)$ to its sink $\text{dest}(f)$.

Proof: Assume: $\exists f$, violating the statement.

$\Rightarrow \ G$ acyclic $\Rightarrow f$ has a source q

\Rightarrow Follow the paths π_{li}, π_{re} from q along ∂f until a reversed edge is found.
Properties of Planar \textit{st}-graphs

\textbf{Lemma}\textsubscript{1} Every face \(f\) of \(G\) consists of two paths from its source \(\text{orig}(f)\) to its sink \(\text{dest}(f)\).

\textbf{Proof:} Assume: \(\exists f\), violating the statement.
\(\Rightarrow\ G\ \text{acyclic} \Rightarrow f\ \text{has a source}\ q\)
\(\Rightarrow\ \text{Follow the paths}\ \pi_{\text{li}}, \pi_{\text{re}}\ \text{from} q\ \text{along}\ \partial f\ \text{until a reversed edge is found.}\)
\(\Rightarrow\ \text{Obs.}: \exists s, w\text{-path}\ \pi_s\ \text{and}\ u, t\text{-path}\ \pi_t\)
Properties of Planar st-graphs

Lemma Every face f of G consists of two paths from its source $\text{orig}(f)$ to its sink $\text{dest}(f)$.

Proof: Assume: $\exists f$, violating the statement.

- G acyclic $\Rightarrow f$ has a source q
- Follow the paths π_{li}, π_{re} from q along ∂f until a reversed edge is found.
- Obs.: $\exists s, w$-path π_s and u, t-path π_t
- G planar $\Rightarrow \exists$ vertex $x \in \pi_s \cap \pi_t$
Properties of Planar st-graphs

Lemma Every face f of G consists of two paths from its source $\text{orig}(f)$ to its sink $\text{dest}(f)$.

Proof: Assume: $\exists f$, violating the statement.

- G acyclic $\Rightarrow f$ has a source q
- Follow the paths π_{li}, π_{re} from q along ∂f until a reversed edge is found.
- Obs.: $\exists s$, w-path π_s and u, t-path π_t
- G planar $\Rightarrow \exists$ vertex $x \in \pi_s \cap \pi_t$
- \Rightarrow directed cycle

Other cases?
Properties of Planar \(st \)-graphs

Lemma_1 Every face \(f \) of \(G \) consists of two paths from its source \(\text{orig}(f) \) to its sink \(\text{dest}(f) \).

Lemma_2 At each vertex \(v \in V \) the incoming/outgoing edges each form an interval and these intervals are separated by the faces \(\text{left}(v)/\text{right}(v) \).
Properties of Planar \(st \)-graphs

Lemma 1 Every face \(f \) of \(G \) consists of two paths from its source \(\text{orig}(f) \) to its sink \(\text{dest}(f) \).

Lemma 2 At each vertex \(v \in V \) the incoming/outgoing edges each form an interval and these intervals are separated by the faces \(\text{left}(v) \)/\(\text{right}(v) \).

Proof:
Properties of Planar \(st\)-graphs

Lemma_1 Every face \(f\) of \(G\) consists of two paths from its source \(\text{orig}(f)\) to its sink \(\text{dest}(f)\).

Lemma_2 At each vertex \(v \in V\) the incoming/outgoing edges each form an interval and these intervals are separated by the faces \(\text{left}(v)/\text{right}(v)\).

Proof:

\(\implies\) Clear for \(s\) and \(t\)
Properties of Planar st-graphs

Lemma 1 Every face f of G consists of two paths from its source $\text{orig}(f)$ to its sink $\text{dest}(f)$.

Lemma 2 At each vertex $v \in V$ the incoming/outgoing edges each form an interval and these intervals are separated by the faces $\text{left}(v)/\text{right}(v)$.

Proof:

\Rightarrow Clear for s and t

\Rightarrow Let $v \in V \setminus \{s, t\}$, so that the statement is false.
Properties of Planar st-graphs

Lemma 1 Every face f of G consists of two paths from its source $\text{orig}(f)$ to its sink $\text{dest}(f)$.

Lemma 2 At each vertex $v \in V$ the incoming/outgoing edges each form an interval and these intervals are separated by the faces $\text{left}(v)/\text{right}(v)$.

Proof:

\Rightarrow Clear for s and t

\Rightarrow Let $v \in V \setminus \{s, t\}$, so that the statement is false.
Properties of Planar \textit{st}-graphs

\textbf{Lemma}_1 \quad \text{Every face } f \text{ of } G \text{ consists of two paths from its source } \text{orig}(f) \text{ to its sink } \text{dest}(f).

\textbf{Lemma}_2 \quad \text{At each vertex } v \in V \text{ the incoming/outgoing edges each form an interval and these intervals are separated by the faces left}(v)/\text{right}(v).

\textbf{Proof:}

\begin{itemize}
 \item \text{Clear for } s \text{ and } t
 \item \text{Let } v \in V \setminus \{s, t\}, \text{ so that the statement is false.}
\end{itemize}
Properties of Planar st-graphs

Lemma$_1$ Every face f of G consists of two paths from its source $\text{orig}(f)$ to its sink $\text{dest}(f)$.

Lemma$_2$ At each vertex $v \in V$ the incoming/outgoing edges each form an interval and these intervals are separated by the faces $\text{left}(v)/\text{right}(v)$.

Proof:

- Clear for s and t
- Let $v \in V \setminus \{s, t\}$, so that the statement is false.
Properties of Planar st-graphs

Lemma 1 Every face f of G consists of two paths from its source $\text{orig}(f)$ to its sink $\text{dest}(f)$.

Lemma 2 At each vertex $v \in V$ the incoming/outgoing edges each form an interval and these intervals are separated by the faces $\text{left}(v)/\text{right}(v)$.

Proof:

- Clear for s and t
- Let $v \in V \setminus \{s, t\}$, so that the statement is false.
Properties of Planar st-graphs

Lemma 1 Every face f of G consists of two paths from its source $\text{orig}(f)$ to its sink $\text{dest}(f)$.

Lemma 2 At each vertex $v \in V$ the incoming/outgoing edges each form an interval and these intervals are separated by the faces $\text{left}(v)/\text{right}(v)$.

Proof:

⇒ Clear for s and t

⇒ Let $v \in V \setminus \{s, t\}$, so that the statement is false.

⇒ directed cycle
Properties of Planar st-graphs

Lemma 1 Every face f of G consists of two paths from its source $\text{orig}(f)$ to its sink $\text{dest}(f)$.

Lemma 2 At each vertex $v \in V$ the incoming/outgoing edges each form an interval and these intervals are separated by the faces $\text{left}(v)/\text{right}(v)$.
Properties of Planar \textit{st}-graphs

\textbf{Lemma}_1 \, \textit{Every face} \, f \, \textit{of} \, G \, \textit{consists of two paths from its source} \, \text{orig}(f) \, \textit{to its sink} \, \text{dest}(f). \n
\textbf{Lemma}_2 \, \textit{At each vertex} \, v \, \in \, V \, \textit{the incoming/outgoing edges each form an interval and these intervals are separated by the faces} \, \text{left}(v)/\text{right}(v). \n
\textit{Statements imply the same in the dual.}
Properties of Planar st-graphs

Lemma$_1$ Every face f of G consists of two paths from its source $\text{orig}(f)$ to its sink $\text{dest}(f)$.

Lemma$_2$ At each vertex $v \in V$ the incoming/outgoing edges each form an interval and these intervals are separated by the faces $\text{left}(v)/\text{right}(v)$.

Statements imply the same in the dual.
Properties of Planar st-graphs

Lemma\(_1\) Every face f of G consists of two paths from its source $\text{orig}(f)$ to its sink $\text{dest}(f)$.

Lemma\(_2\) At each vertex $v \in V$ the incoming/outgoing edges each form an interval and these intervals are separated by the faces $\text{left}(v)/\text{right}(v)$.

Statements imply the same in the dual.
Properties of Planar st-graphs

Lemma 3 For faces f and g exactly one of the following is true:

- There is a path from $\text{dest}(f)$ to $\text{orig}(g)$ in G.
- There is a path from $\text{dest}(g)$ to $\text{orig}(f)$ in G.
- There is a path from f to g in G^*.
- There is a path from g to f in G^*.
Properties of Planar st-graphs

Lemma For faces f and g exactly one of the following is true:

- There is a path from $\text{dest}(f)$ to $\text{orig}(g)$ in G.
- There is a path from $\text{dest}(g)$ to $\text{orig}(f)$ in G.
- There is a path from f to g in G^*.
- There is a path from g to f in G^*.

Proof:
Properties of Planar \textit{st}-graphs

\textbf{Lemma}_3 For faces \(f\) and \(g\) exactly one of the following is true:
\begin{itemize}
 \item There is a path from \(\text{dest}(f)\) to \(\text{orig}(g)\) in \(G\).
 \item There is a path from \(\text{dest}(g)\) to \(\text{orig}(f)\) in \(G\).
 \item There is a path from \(f\) to \(g\) in \(G^*\).
 \item There is a path from \(g\) to \(f\) in \(G^*\).
\end{itemize}

\textbf{Proof:}
\begin{itemize}
 \item Let \(\mu\) be a top. sort. of \(G\)
\end{itemize}
Properties of Planar st-graphs

Lemma For faces f and g exactly one of the following is true:

- There is a path from $\text{dest}(f)$ to $\text{orig}(g)$ in G.
- There is a path from $\text{dest}(g)$ to $\text{orig}(f)$ in G.
- There is a path from f to g in G^*.
- There is a path from g to f in G^*.

Proof:

- Let μ be a top. sort. of G
- Suppose: $\mu(\text{dest}(f)) < \mu(\text{orig}(g))$
Properties of Planar st-graphs

Lemma 3 For faces f and g exactly one of the following is true:

- There is a path from $\text{dest}(f)$ to $\text{orig}(g)$ in G.
- There is a path from $\text{dest}(g)$ to $\text{orig}(f)$ in G.
- There is a path from f to g in G^*.
- There is a path from g to f in G^*.

Proof:

- Let μ be a top. sort. of G
- Suppose: $\mu(\text{dest}(f)) < \mu(\text{orig}(g))$
- Leftmost path always follows the leftmost edge
 (similarly for rightmost path)
Properties of Planar \textit{st}-graphs

\textbf{Lemma$_3$} For faces \(f\) and \(g\) exactly one of the following is true:
\begin{itemize}
 \item There is a path from \(\text{dest}(f)\) to \(\text{orig}(g)\) in \(G\).
 \item There is a path from \(\text{dest}(g)\) to \(\text{orig}(f)\) in \(G\).
 \item There is a path from \(f\) to \(g\) in \(G^*\).
 \item There is a path from \(g\) to \(f\) in \(G^*\).
\end{itemize}

\textbf{Proof:}
\begin{itemize}
 \item Let \(\mu\) be a top. sort. of \(G\)
 \item Suppose: \(\mu(\text{dest}(f)) < \mu(\text{orig}(g))\)
 \item Leftmost path always follows the leftmost edge
 (similarly for rightmost path)
\end{itemize}
Properties of Planar st-graphs

Lemma For faces f and g exactly one of the following is true:

- There is a path from $\text{dest}(f)$ to $\text{orig}(g)$ in G.
- There is a path from $\text{dest}(g)$ to $\text{orig}(f)$ in G.
- There is a path from f to g in G^*.
- There is a path from g to f in G^*.

Proof:

- Let μ be a top. sort. of G
- Suppose: $\mu(\text{dest}(f)) < \mu(\text{orig}(g))$
- Leftmost path always follows the leftmost edge
 (similarly for rightmost path)
Properties of Planar st-graphs

Lemma Let f and g be faces in a planar st-graph G.

- There is a path from $\text{dest}(f)$ to $\text{orig}(g)$ in G.
- There is a path from $\text{dest}(g)$ to $\text{orig}(f)$ in G.
- There is a path from f to g in G^*.
- There is a path from g to f in G^*.

Proof:

- Let μ be a top. sort. of G.
- Suppose: $\mu(\text{dest}(f)) < \mu(\text{orig}(g))$.
- Leftmost path always follows the leftmost edge.
 (similarly for rightmost path.)
Properties of Planar st-graphs

Lemma For faces f and g exactly one of the following is true:

- There is a path from $\text{dest}(f)$ to $\text{orig}(g)$ in G.
- There is a path from $\text{dest}(g)$ to $\text{orig}(f)$ in G.
- There is a path from f to g in G^*.
- There is a path from g to f in G^*.

For $v \in V$: let $\text{orig}(v) = \text{dest}(v) = v$;
For $f \in F$: let $\text{left}(f) = \text{right}(f) = f$.
Properties of Planar st-graphs

Lemma 3 For faces f and g exactly one of the following is true:

- There is a path from $\text{dest}(f)$ to $\text{orig}(g)$ in G.
- There is a path from $\text{dest}(g)$ to $\text{orig}(f)$ in G.
- There is a path from f to g in G^*.
- There is a path from g to f in G^*.

For $v \in V$: let $\text{orig}(v) = \text{dest}(v) = v$;
For $f \in F$: let $\text{left}(f) = \text{right}(f) = f$.

Lemma 4 For objects $o_1, o_2 \in V \cup E \cup F$ exactly one of the following is true:

- There is a path from $\text{dest}(o_1)$ to $\text{orig}(o_2)$ in G.
- There is a path from $\text{dest}(o_2)$ to $\text{orig}(o_1)$ in G.
- There is a path from $\text{right}(o_1)$ to $\text{left}(o_2)$ in G^*.
- There is a path from $\text{right}(o_2)$ to $\text{left}(o_1)$ in G^*.

Proof: Exercise!
Tessellation / Tiling

Tiles: axis-parallel rectangles
Tessellation / Tiling

- Tiles: axis-parallel rectangles
- Can be unbounded, or degenerate (line segment/point)
Tessellation / Tiling

- Tiles: axis-parallel rectangles
- can be unbounded, or degenerate (line segment/point)
- \(\theta_1, \theta_2 \) horizontally/vertically adjacent \iff\ common vertical/horizontal boundary
Tessellation / Tiling

- Tiles: axis-parallel rectangles
- Can be unbounded, or degenerate (line segment/point)
- θ_1, θ_2 horizontally/vertically adjacent \iff common vertical/horizontal boundary
- We write $\theta = [x_1(\theta), x_2(\theta)] \times [y_1(\theta), y_2(\theta)]$
Tessellation / Tiling

Def. A *tessellation* θ of a planar st-graph G places each object $o \in V \cup E \cup F$ onto a *tile* $\theta(o)$, so that:
Tessellation / Tiling

Def. A *tessellation* θ of a planar st-graph G places each object $o \in V \cup E \cup F$ onto a *tile* $\theta(o)$, so that:

$$o_1 \neq o_2 \Rightarrow \text{int}(\theta(o_1)) \cap \text{int}(\theta(o_2)) = \emptyset$$
Tessellation / Tiling

Def. A *tessellation* θ of a planar st-graph G places each object $o \in V \cup E \cup F$ onto a *tile* $\theta(o)$, so that:

1. $o_1 \neq o_2 \implies \text{int}(\theta(o_1)) \cap \text{int}(\theta(o_2)) = \emptyset$
2. $\bigcup_{o \in V \cup E \cup F} \theta(o)$ is a rectangle.
Tessellation / Tiling

Def. A *tessellation* \(\theta \) of a planar *st*-graph \(G \) places each object \(o \in V \cup E \cup F \) onto a *tile* \(\theta(o) \), so that:

\[o_1 \neq o_2 \Rightarrow \text{int}(\theta(o_1)) \cap \text{int}(\theta(o_2)) = \emptyset \]

\[\bigcup_{o \in V \cup E \cup F} \theta(o) \text{ is a rectangle.} \]
Tessellation / Tiling

Def. A *tessellation* θ of a planar st-graph G places each object $o \in V \cup E \cup F$ onto a *tile* $\theta(o)$, so that:

- $o_1 \neq o_2 \Rightarrow \text{int}(\theta(o_1)) \cap \text{int}(\theta(o_2)) = \emptyset$
- $\bigcup_{o \in V \cup E \cup F} \theta(o)$ is a rectangle.
- $\theta(o_1)$ and $\theta(o_2)$ *horizontally* adjacent \iff
 - $o_1 = \text{left}(o_2)$ or $o_1 = \text{right}(o_2)$ or
 - $o_2 = \text{left}(o_1)$ or $o_2 = \text{right}(o_1)$
Tessellation / Tiling

Def. A *tessellation* θ of a planar *st*-graph G places each object $o \in V \cup E \cup F$ onto a *tile* $\theta(o)$, so that:

$\implies o_1 \neq o_2 \Rightarrow \text{int}(\theta(o_1)) \cap \text{int}(\theta(o_2)) = \emptyset$

$\implies \bigcup_{o \in V \cup E \cup F} \theta(o)$ is a rectangle.

$\implies \theta(o_1)$ and $\theta(o_2)$ *horizontally* adjacent \iff

$\begin{align*}
o_1 &= \text{left}(o_2) \text{ or } o_1 = \text{right}(o_2) \text{ or } \\
o_2 &= \text{left}(o_1) \text{ or } o_2 = \text{right}(o_1)
\end{align*}$
Tessellation / Tiling

Def. A *tessellation* θ of a planar *st*-graph G places each object $o \in V \cup E \cup F$ onto a *tile* $\theta(o)$, so that:

1. $o_1 \neq o_2 \Rightarrow \text{int}(\theta(o_1)) \cap \text{int}(\theta(o_2)) = \emptyset$

2. $\bigcup_{o \in V \cup E \cup F} \theta(o)$ is a rectangle.

3. $\theta(o_1)$ and $\theta(o_2)$ *horizontally* adjacent \iff $o_1 = \text{left}(o_2)$ or $o_1 = \text{right}(o_2)$ or $o_2 = \text{left}(o_1)$ or $o_2 = \text{right}(o_1)$
Tessellation / Tiling

Def. A tessellation \(\theta \) of a planar \(st \)-graph \(G \) places each object \(o \in V \cup E \cup F \) onto a tile \(\theta(o) \), so that:

\[o_1 \neq o_2 \Rightarrow \text{int}(\theta(o_1)) \cap \text{int}(\theta(o_2)) = \emptyset \]

\[\bigcup_{o \in V \cup E \cup F} \theta(o) \text{ is a rectangle.} \]

\[\theta(o_1) \text{ and } \theta(o_2) \text{ horizontally adjacent} \iff \]

\(o_1 = \text{left}(o_2) \text{ or } o_1 = \text{right}(o_2) \text{ or } o_2 = \text{left}(o_1) \text{ or } o_2 = \text{right}(o_1) \)

(neither \(o_1 \) nor \(o_2 \) has distinct neighbours!)
Tessellation / Tiling

Def. A *tessellation* θ of a planar *st*-graph G places each object $o \in V \cup E \cup F$ onto a *tile* $\theta(o)$, so that:

1. $o_1 \neq o_2 \Rightarrow \text{int}(\theta(o_1)) \cap \text{int}(\theta(o_2)) = \emptyset$
2. $\bigcup_{o \in V \cup E \cup F} \theta(o)$ is a rectangle.
3. $\theta(o_1)$ and $\theta(o_2)$ *horizontally* adjacent \Leftrightarrow
 - $o_1 = \text{left}(o_2)$ or $o_1 = \text{right}(o_2)$ or
 - $o_2 = \text{left}(o_1)$ or $o_2 = \text{right}(o_1)$
4. $\theta(o_1)$ and $\theta(o_2)$ *vertically* adjacent \Leftrightarrow
 - $o_1 = \text{orig}(o_2)$ or $o_1 = \text{dest}(o_2)$ or
 - $o_2 = \text{orig}(o_1)$ or $o_2 = \text{dest}(o_1)$

(neither o_1 nor o_2 has distinct neighbours!)
Tessellation / Tiling

Def. A tessellation \(\theta \) of a planar \(st \)-graph \(G \) places each object \(o \in V \cup E \cup F \) onto a tile \(\theta(o) \), so that:

\(o_1 \neq o_2 \Rightarrow \text{int}(\theta(o_1)) \cap \text{int}(\theta(o_2)) = \emptyset \)

\(\bigcup_{o \in V \cup E \cup F} \theta(o) \) is a rectangle.

\(\theta(o_1) \) and \(\theta(o_2) \) horizontally adjacent \(\iff \)
\(o_1 = \text{left}(o_2) \) or \(o_1 = \text{right}(o_2) \) or \(o_2 = \text{left}(o_1) \) or \(o_2 = \text{right}(o_1) \)

\(\theta(o_1) \) and \(\theta(o_2) \) vertically adjacent \(\iff \)
\(o_1 = \text{orig}(o_2) \) or \(o_1 = \text{dest}(o_2) \) or \(o_2 = \text{orig}(o_1) \) or \(o_2 = \text{dest}(o_1) \)

(neither \(o_1 \) nor \(o_2 \) has distinct neighbours!)
Tessellation Algorithm (planar st-graph G)

\Rightarrow Compute the dual G^*.
Tessellation Algorithm (planar st-graph G)

\Rightarrow Compute the dual G^\ast.

\Rightarrow Compute topological numbering X of G^\ast and Y of G.
Tessellation Algorithm (planar st-graph G)

\Rightarrow Compute the dual G^*.
\Rightarrow Compute topological numbering X of G^* and Y of G.
\Rightarrow For each object $o \in V \cup E \cup F$ set:
$\theta(o) = [X(\text{left}(o)), X(\text{right}(o))] \times [Y(\text{orig}(o)), Y(\text{dest}(o))]$.
Tessellation Algorithm (planar st-graph G)

\gg Compute the dual G^*.
\gg Compute topological numbering X of G^* and Y of G.
\gg For each object $o \in V \cup E \cup F$ set:
$$\theta(o) = [X(left(o)), X(right(o))] \times [Y(orig(o)), Y(dest(o))]$$.
Tessellation Algorithm (planar \(st\)-graph \(G\))

\[\begin{align*}
\text{\(\Rightarrow\)} & \text{ Compute the dual } G^*. \\
\text{\(\Rightarrow\)} & \text{ Compute topological numbering } \\
& X \text{ of } G^* \text{ and } Y \text{ of } G. \\
\text{\(\Rightarrow\)} & \text{ For each object } o \in V \cup E \cup F \text{ set:} \\
& \theta(o) = [X(\text{left}(o)), X(\text{right}(o))] \times [Y(\text{orig}(o)), Y(\text{dest}(o))].
\end{align*}\]
Tessellation Algorithm (planar \(st \)-graph \(G \))

- Compute the dual \(G^* \).
- Compute topological numbering \(X \) of \(G^* \) and \(Y \) of \(G \).
- For each object \(o \in V \cup E \cup F \) set:
 \[
 \theta(o) = [X(\text{left}(o)), X(\text{right}(o))] \times [Y(\text{orig}(o)), Y(\text{dest}(o))].
 \]
Tessellation Algorithm (planar st-graph G)

- Compute the dual G^*.
- Compute topological numbering X of G^* and Y of G.
- For each object $o \in V \cup E \cup F$ set:
 $$\theta(o) = [X(\text{left}(o)), X(\text{right}(o))] \times [Y(\text{orig}(o)), Y(\text{dest}(o))].$$
Tessellation Algorithm (planar st-graph G)

\Rightarrow Compute the dual G^*.
\Rightarrow Compute topological numbering X of G^* and Y of G.
\Rightarrow For each object $o \in V \cup E \cup F$ set:
\[
\theta(o) = [X({\text{left}(o)}), X({\text{right}(o)})] \times [Y({\text{orig}(o)}), Y({\text{dest}(o)})].
\]
Tessellation Algorithm (planar \textit{st}-graph G)

\begin{itemize}
 \item Compute the dual G^\ast.
 \item Compute topological numbering X of G^\ast and Y of G.
 \item For each object $o \in V \cup E \cup F$ set:
 \[\theta(o) = [X(\text{left}(o)), X(\text{right}(o))] \times [Y(\text{orig}(o)), Y(\text{dest}(o))]. \]
\end{itemize}
Tessellation Algorithm (planar st-graph G)

\begin{itemize}
\item Compute the dual G^*.
\item Compute topological numbering X of G^* and Y of G.
\item For each object $o \in V \cup E \cup F$ set:
\[\theta(o) = [X(\text{left}(o)), X(\text{right}(o))] \times [Y(\text{orig}(o)), Y(\text{dest}(o))]. \]
\end{itemize}
Tessellation Algorithm (planar st-graph G)

- Compute the dual G^*.
- Compute topological numbering X of G^* and Y of G.
- For each object $o \in V \cup E \cup F$ set:
 $\theta(o) = [X(\text{left}(o)), X(\text{right}(o))] \times [Y(\text{orig}(o)), Y(\text{dest}(o))]$.
Tessellation Algorithm (planar st-graph G)

\Rightarrow Compute the dual G^*.
\Rightarrow Compute topological numbering X of G^* and Y of G.
\Rightarrow For each object $o \in V \cup E \cup F$ set:

$$\theta(o) = [X(\text{left}(o)), X(\text{right}(o))] \times [Y(\text{orig}(o)), Y(\text{dest}(o))].$$
Tessellation Algorithm (planar st-graph G)

\gg Compute the dual G^*.
\gg Compute topological numbering X of G^* and Y of G.
\gg For each object $o \in V \cup E \cup F$ set:
$$\theta(o) = [X(\text{left}(o)), X(\text{right}(o))] \times [Y(\text{orig}(o)), Y(\text{dest}(o))]$$.
Tessellation Algorithm (planar \(st \)-graph \(G \))

\[\Rightarrow \text{Compute the dual } G^*. \]
\[\Rightarrow \text{Compute topological numbering } X \text{ of } G^* \text{ and } Y \text{ of } G. \]
\[\Rightarrow \text{For each object } o \in V \cup E \cup F \text{ set:} \]
\[\theta(o) = [X(\text{left}(o)), X(\text{right}(o))] \times [Y(\text{orig}(o)), Y(\text{dest}(o))]. \]
Tessellation Algorithm (planar st-graph G)

- Compute the dual G^*.
- Compute topological numbering X of G^* and Y of G.
- For each object $o \in V \cup E \cup F$ set:
 $$\theta(o) = [X(\text{left}(o)), X(\text{right}(o))] \times [Y(\text{orig}(o)), Y(\text{dest}(o))].$$
Tessellation Algorithm (planar st-graph G)

- Compute the dual G^*.
- Compute topological numbering X of G^* and Y of G.
- For each object $o \in V \cup E \cup F$ set: $	heta(o) = [X(\text{left}(o)), X(\text{right}(o))] \times [Y(\text{orig}(o)), Y(\text{dest}(o))]$.
Tessellation Algorithm (planar \textit{st}-graph G)

\begin{itemize}
\item Compute the dual G^*.\end{itemize}

\begin{itemize}
\item Compute topological numbering X of G^* and Y of G.\end{itemize}

\begin{itemize}
\item For each object $o \in V \cup E \cup F$ set:
 \[\theta(o) = [X(\text{left}(o)), X(\text{right}(o))] \times [Y(\text{orig}(o)), Y(\text{dest}(o))]. \]
\end{itemize}
Tessellation Algorithm (planar \textit{st}-graph G)

\begin{itemize}
 \item Compute the dual G^*. \[\gg \]
 \item Compute topological numbering X of G^* and Y of G. \[\gg \]
 \item For each object $o \in V \cup E \cup F$ set: \[\gg \]
 \[\theta(o) = [X(\text{left}(o)), X(\text{right}(o))] \times [Y(\text{orig}(o)), Y(\text{dest}(o))]. \]
\end{itemize}
Tessellation Algorithm (planar \textit{st}-graph G)

\begin{itemize}
\item Compute the dual G^\ast.
\item Compute topological numbering X of G^\ast and Y of G.
\item For each object $o \in V \cup E \cup F$ set:
\[\theta(o) = [X(\text{left}(o)), X(\text{right}(o))] \times [Y(\text{orig}(o)), Y(\text{dest}(o))]. \]
\end{itemize}
Tessellation Algorithm (planar st-graph G)

\(\Rightarrow \) Compute the dual \(G^* \).
\(\Rightarrow \) Compute topological numbering \(X \) of \(G^* \) and \(Y \) of \(G \).
\(\Rightarrow \) For each object \(o \in V \cup E \cup F \) set:
\[
\theta(o) = [X(\text{left}(o)), X(\text{right}(o))] \times [Y(\text{orig}(o)), Y(\text{dest}(o))].
\]
Tessellation Algorithm (planar st-graph G)

\implies Compute the dual G^*.
\implies Compute topological numbering X of G^* and Y of G.
\implies For each object $o \in V \cup E \cup F$ set:

$$\theta(o) = [X(\text{left}(o)), X(\text{right}(o))] \times [Y(\text{orig}(o)), Y(\text{dest}(o))].$$

vertices \equiv horizontal segments
faces \equiv vertical segments
edges \equiv regions
Tessellation Algorithm (planar \(st\)-graph \(G\))

\[\text{Compute the dual } G^* .\]
\[\text{Compute topological numbering } X \text{ of } G^* \text{ and } Y \text{ of } G .\]
\[\text{For each object } o \in V \cup E \cup F \text{ set: } \theta(o) = [X(\text{left}(o)), X(\text{right}(o))] \times [Y(\text{orig}(o)), Y(\text{dest}(o))].\]

Correctness:

\[\text{Lemma}_4 \text{ guarantees disjointness.}\]
Tessellation Algorithm (planar st-graph G)

- Compute the dual G^*.
- Compute topological numbering X of G^* and Y of G.
- For each object $o \in V \cup E \cup F$ set:
 \[\theta(o) = [X(\text{left}(o)), X(\text{right}(o))] \times [Y(\text{orig}(o)), Y(\text{dest}(o))]. \]

Correctness:

- Lemma 4 guarantees disjointness.
- Neighbourhood conditions follow from the coordinate mapping.
Tessellation Algorithm (planar \textit{st}-graph \(G\))

\begin{itemize}
 \item Compute the dual \(G^*\).
 \item Compute topological numbering \(X\) of \(G^*\) and \(Y\) of \(G\).
 \item For each object \(o \in V \cup E \cup F\) set:
 \[\theta(o) = [X(\text{left}(o)), X(\text{right}(o))] \times [Y(\text{orig}(o)), Y(\text{dest}(o))].\]
\end{itemize}

Correctness:

\begin{itemize}
 \item Lemma\(_4\) guarantees disjointness.
 \item Neighbourhood conditions follow from the coordinate mapping.
\end{itemize}

Runtime:
Tessellation Algorithm (planar \(st\)-graph \(G\))

\[
\begin{align*}
\quad & \text{›› Compute the dual } \(G^*\).
\quad & \text{›› Compute topological numbering}
\quad & \begin{align*}
X \text{ of } G^* \text{ and } Y \text{ of } G.
\quad & \text{›› For each object } o \in V \cup E \cup F \text{ set:}
\quad & \theta(o) = [X(\text{left}(o)), X(\text{right}(o))] \times [Y(\text{orig}(o)), Y(\text{dest}(o))].
\end{align*}
\end{align*}
\]

Correctness:

\[
\begin{align*}
\quad & \text{›› Lemma}_4 \text{ guarantees disjointness.}
\quad & \text{›› Neighbourhood conditions follow from the coordinate mapping.}
\end{align*}
\]

Runtime: \(O(n)\)
Tessellation Algorithm (planar st-graph G)

- Compute the dual G^*.
- Compute topological numbering X of G^* and Y of G.
- For each object $o \in V \cup E \cup F$ set:
 $\theta(o) = [X(\text{left}(o)), X(\text{right}(o))] \times [Y(\text{orig}(o)), Y(\text{dest}(o))]$.

Correctness:

- Lemma 4 guarantees disjointness.
- Neighbourhood conditions follow from the coordinate mapping.

Runtime: $O(n)$ but ... this is degenerate
Size Conditions

Minimum height/width $h, w : E \rightarrow \mathbb{R}_{\geq 0}$ for each edge tile.
Size Conditions

Minimum height/width $h, w : E \to \mathbb{R}_{\geq 0}$ for each edge tile.

Compute optimal weighted topological numbering Y of $G = (V, E; h)$ and X of $G^* = (F, E^*; w)$.
Size Conditions

Minimum height/width \(h, w : E \rightarrow \mathbb{R}_{\geq 0} \) for each edge tile.

\(\Rightarrow \) Compute optimal *weighted* topological numbering \(Y \) of \(G = (V, E; h) \) and \(X \) of \(G^* = (F, E^*; w) \).

\(\Rightarrow \) Vertex/Face tiles: modify \(G \) to \(G' \)
Size Conditions

Minimum height/width $h, w : E \rightarrow \mathbb{R}_{\geq 0}$ for each edge tile.

- Compute optimal weighted topological numbering Y of $G = (V, E; h)$ and X of $G^* = (F, E^*; w)$.

- Vertex/Face tiles: modify G to G'
Size Conditions

Minimum height/width $h, w : E \to \mathbb{R}_{\geq 0}$ for each edge tile.

Compute optimal weighted topological numbering Y of $G = (V, E; h)$ and X of $G^* = (F, E^*; w)$.

Vertex/Face tiles: modify G to G'
Size Conditions

Minimum height/width $h, w : E \to \mathbb{R}_{\geq 0}$ for each edge tile.

Compute optimal *weighted* topological numbering Y of $G = (V, E; h)$ and X of $G^* = (F, E^*; w)$.

Vertex/Face tiles: modify G to G'
Size Conditions

Minimum height/width $h, w : E \to \mathbb{R}_{\geq 0}$ for each edge tile.

- Compute optimal *weighted* topological numbering Y of $G = (V, E; h)$ and X of $G^* = (F, E^*; w)$.

- **Vertex/Face tiles:** modify G to G'

- Now each object of G is an edge in G'.
Size Conditions

Minimum height/width $h, w: E \rightarrow \mathbb{R}_{\geq 0}$ for each edge tile.

- Compute optimal weighted topological numbering Y of $G = (V, E; h)$ and X of $G^* = (F, E^*; w)$.

- Vertex/Face tiles: modify G to G'

- Now each object of G is an edge in G'.

Thm: A minimum area tessellation of a planar st-graph G with minimum height/width $h, w: V \cup E \cup F \rightarrow \mathbb{R}_{\geq 0}$ can be computed in $O(n)$ time.
Visibility Representations

Def. A visibility representation Γ of a planar st-graph G has

\Rightarrow vertex v as a horizontal segment $\Gamma(v)$
Visibility Representations

Def. A visibility representation \(\Gamma \) of a planar \(st \)-graph \(G \) has

- vertex \(v \) as a horizontal segment \(\Gamma(v) \)
- and edge \((u, v)\) as a vertical segment \(\Gamma(u, v) \)
Visibility Representations

Def. A visibility representation Γ of a planar st-graph G has

- vertex v as a horizontal segment $\Gamma(v)$
- and edge (u, v) as a vertical segment $\Gamma(u, v)$

such that

- vertex segments are pairwise disjoint,
- edge segments are pairwise disjoint, and
Visibility Representations

Def. A visibility representation Γ of a planar st-graph G has

- vertex v as a horizontal segment $\Gamma(v)$
- and edge (u, v) as a vertical segment $\Gamma(u, v)$

such that

- vertex segments are pairwise disjoint,
- edge segments are pairwise disjoint, and

- the edge segment $\Gamma(u, v)$ starts from the top of the vertex segment $\Gamma(u)$, ends on the bottom of vertex segment $\Gamma(v)$, and does not intersect other vertex segments.
Computing a visibility representation
Computing a visibility representation

Use the tessellation; vertices are degenerate (i.e., line segments); faces are not degenerate
Computing a visibility representation

Use the tessellation; vertices are degenerate (i.e., line segments); faces are not degenerate
Computing a visibility representation

Use the tessellation; vertices are degenerate (i.e., line segments); faces are not degenerate

edge segments
Algorithm Visibility(planar st-graph G)

\Rightarrow Compute the dual G^*.
Algorithm Visibility(planar \(st \)-graph \(G \))

\[
\begin{align*}
\triangleright & \quad \text{Compute the dual } G^*. \\
\triangleright & \quad \text{Compute an optimal weighted topological numbering } Y \text{ of } G, X \text{ of } G^* \text{ with } \textit{unit weights}
\end{align*}
\]
Algorithm Visibility(planar \textit{st}-graph \textit{G})

\begin{itemize}
\item Compute the dual \(G^*\).
\item Compute an optimal weighted topological numbering \(Y\) of \(G\), \(X\) of \(G^*\) with \textit{unit weights}
\item For each vertex \(v \in V\) set
\(\Gamma(v) = [X(\text{left}(v)), X(\text{right}(v)) - 1] \times \{Y(v)\}\).
\end{itemize}
Algorithm Visibility(planar *st*-graph *G*)

\[\begin{align*}
\text{Compute the dual } G^\ast. \\
\text{Compute an optimal weighted topological numbering } Y \text{ of } G, \ X \text{ of } G^\ast \text{ with unit weights} \\
\text{For each vertex } v \in V \text{ set} \\
\Gamma(v) = [X(\text{left}(v)), X(\text{right}(v)) - 1] \times \{Y(v)\}. \\
\text{For each edge } e \in E \text{ set} \\
\Gamma(e) = \{X(\text{left}(e))\} \times [Y(\text{orig}(e)), Y(\text{dest}(e))].
\end{align*}\]
Algorithm Visibility(planar st-graph G)

\Rightarrow Compute the dual G^*.
\Rightarrow Compute an optimal weighted topological numbering Y of G, X of G^* with *unit weights*

\Rightarrow

\Rightarrow
Algorithm Visibility(planar st-graph G)

- Compute the dual G^*.
- Compute an optimal weighted topological numbering Y of G, X of G^* with *unit weights*
Algorithm Visibility(planar st-graph G)

- Compute the dual G^*.
- Compute an optimal weighted topological numbering Y of G, X of G^* with *unit weights*
- For each vertex $v \in V$ set
 $$\Gamma(v) = [X(left(v)), X(right(v)) - 1] \times \{Y(v)\}.$$
- For each edge $e \in E$ set
 $$\Gamma(e) = \{X(left(e))\} \times [Y(orig(e)), Y(dest(e))].$$

Thm: In $O(n)$ time, the Visibility algorithm generates a visibility representation with integer coordinates and at most $O(n^2)$ total area.