Algorithms for Graph Visualization

Summer Semester 2016
Lecture #5

Upward Planar Drawings

(based on slides from Martin Nöllenburg and Robert Görke, KIT)
The Problem

Definition.

A directed Graph $D = (V, A)$ is *upward planar*, when it has a drawing such that:

- all edges are upward y-monotone curves, and
- no two edges cross.

Obvious requirements?

- Planar & acyclic.

not sufficient!
Problem: Upward Planarity Testing

Given a directed acyclic graph $D = (V, A)$. Determine if D is upward planar. If so, construct a corresponding drawing.

NP-hard! [Garg & Tamassia ’95]

Problem’: Embedded Upward Planarity Testing

Given an acyclic graph $D = (V, A)$ with an embedding \mathcal{F}, f_0. Determine if D is upward planar with respect to \mathcal{F}, f_0. If so, construct a corresponding drawing.

Can be tested efficiently! [this lecture]
The Big Picture: a characterization

Theorem [Kelly ’87, Di Battista & Tamassia ’88]

For a directed graph $D = (V, A)$, the following are equivalent.

1. D is upward planar.
2. D has a *straight-line* upward planar drawing.
3. D is a spanning subgraph of a planar *st-graph*.

Additionally:

- embedded so that s and t are on the outer-face f_0.
- acyclic directed graph with a single source s and single sink t.

\[\begin{align*}
\text{without crossings}
\end{align*}\]
The Big Picture: a characterization

Theorem [Kelly ’87, Di Battista & Tamassia ’88]

For a directed graph $D = (V, A)$, the following are equivalent.

1. D is upward planar.
2. D has a *straight-line* upward planar drawing.
3. D is a spanning subgraph of a planar st-graph.

Proof in textbook [DETT, Sec. 6.1]

can be drawn upward planar, see textbook [DETT, Sec. 6.1]
Bimodality

Lemma
An embedded directed graph is upward planar only if it is bimodal.

Definition
An embedded directed graph is *bimodal* ⇔ all vertices are bimodal.
Angle Sizes of Sources and Sinks

For a face f of a straight-line drawing, consider angles of
– local sinks (vertices with 2 incoming edges on ∂f)
– local sources (vertices with 2 outgoing edges on ∂f)

\[L(f) := \text{number of large angles} \quad (\text{Intuition: in drawing} > \pi) \]
\[S(f) := \text{number of small angles} \]
\[A(f) := \text{number of local sources} \quad (= \text{number of local sinks}) \]

Thus:
\[L(f) + S(f) = 2A(f) \]

By induction:
\[L(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases} \Rightarrow \]
\[A(f) = \begin{cases} A(f) - 1, & f \neq f_0 \\ A(f) + 1, & f = f_0 \end{cases} \]

Proof: \(L(f) - S(f) = -2 \) for \(f \neq f_0 \)

\[\Rightarrow L(f) = 0 \quad \Rightarrow S(f) = 2 \]

\[\Rightarrow L(f) \geq 1 \]

Separate \(f \) by.

5. \(v \) neither source nor sink:

\[
L(f) - S(f) = L(f_1) + L(f_2) + 1 - (S(f_1) + S(f_2) - 1) = -2
\]

induction hypothesis
Observations

Consider the angle between two incoming/outgoing edges.

Lemma

Let D be a directed graph.

In every upward planar drawing of D:

1. For each vertex $v \in V$: \(L(v) = \begin{cases} 0 & v \text{ inner vertex}, \\ 1 & v \text{ source/sink}. \end{cases} \)

2. For each face $f \in \mathcal{F}$: \(L(f) = \begin{cases} A(f) - 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases} \)

\[\Phi: S \cup T \to \mathcal{F} \quad v \mapsto \text{incid. face} \]

\[|\Phi^{-1}(f)| = \begin{cases} A(f) - 1 & f \neq f_0 \\ A(f) + 1 & f = f_0 \end{cases} \]

called *consistent* global sources and sinks
Example: Face Assignment

Assignment \(\phi : S \cup T \rightarrow \mathcal{F} \)

- Global sources and sinks

\[
\begin{align*}
A(f_1) &= 3 \\
L(f_1) &= 2 \\
A(f_3) &= 1 \\
L(f_3) &= 0 \\
A(f_4) &= 2 \\
L(f_4) &= 1 \\
A(f_5) &= 2 \\
L(f_5) &= 1 \\
A(f_6) &= 1 \\
L(f_6) &= 0 \\
A(f_7) &= 2 \\
L(f_7) &= 1 \\
A(f_8) &= 1 \\
L(f_8) &= 0 \\
A(f_9) &= 1 \\
L(f_9) &= 0 \\
A(f_0) &= 3 \\
L(f_0) &= 4 \\
A(f_2) &= 1 \\
L(f_2) &= 0 \\
\end{align*}
\]
Main Result

Theorem

If $D = (V, A)$ is a dir. acyclic graph with embedding \mathcal{F}, f_0. Then:

D upward planar (resp. \mathcal{F}, f_0) \iff bimodal and \exists consistent Φ.

\Rightarrow: as constructed before

\Leftarrow: ideas

$–$ construct st-Graph $\supseteq D$

$–$ apply equivalence from the beginning of the lecture

First: $D, \mathcal{F}, f_0 \xrightarrow{?} \Phi$ consistent assignment
Flow Network to Construct Φ

Definition Flow Network $N_{\mathcal{F}, f_0}(D) = ((W, A_N); l; u; d)$

- $W = \{ v \in V \mid v \text{ is source or sink} \} \cup \mathcal{F}$
- $A_N = \{ (v, f) \mid v \text{ incident to } f \}$
- $l(a) = 0 \quad \forall a \in A_N$
- $u(a) = 1 \quad \forall a \in A_N$
- $d(q) = \begin{cases} 1 & \forall q \in W \cap V \\ -(A(q) - 1) & \forall q \in \mathcal{F} \setminus \{ f_0 \} \\ -(A(q) + 1) & q = f_0 \end{cases}$

idea: flow $(v, f) = 1$ iff v is a global source/sink whose large angle is assigned to f
Example Network

- normal vertex
- source / sink
- face vertex
Algorithm: $\Phi, \mathcal{F}, f_0 \rightarrow \text{st-Graph} \supseteq D$

Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f

Goal: Add edges to break large angles (sources and sinks).

$f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z

- x source \Rightarrow insert edge (z, x)
- x sink \Rightarrow insert edge (x, z)

Refine the outerface f_0

Refine all $f \in \mathcal{F} \Rightarrow D$ contains a planar st-Graph
Example Refinement
Example Refinement
Summary

Given: embedded, directed, acyclic graph \(G = (V, E) \).

- Test for bimodality
- Test for a consistent assignment \(\Phi \) (via flow network).
- If both bimodal and \(\Phi \) exists, draw \(G \) as upward planar.
 - Refine \(G \) to planar \(st \)-graph \(G' \)
 - Draw \(G' \) via \(st \)-graph methods
 - Delete the edges added by refinement.

15 gives up. planar drawing, see textbook [DETT, Sec. 6.1] – but the area usage can be exponential!
Finding the angles via the flow network

\[
\begin{align*}
W & := V \cup \mathcal{F} \\
A & := \{(v, f) \in V \times \mathcal{F} : v \text{ incident (∼) to } f\} \\
\ell(a) & = 0 \quad \forall a \in A \\
u(a) & = 2\pi \quad \forall a \in A \\
d(v) & = 2\pi \quad \forall v \in V \\
d(f) & = \begin{cases}
-(\deg(f) - 2)\pi & \text{if } f \neq f_0, \\
-(\deg(f) + 2)\pi & \text{otherwise}
\end{cases}
\end{align*}
\]

Flow provides an assignment \(x(\cdot, \cdot)\) of angles where:

1. vertices : \(\forall v \in V: \sum_{f \sim v} x(v, f) = 2\pi\)
2. faces : \(\forall f \in \mathcal{F}: \sum_{v \sim f} x(v, f) = (\deg(f) \pm 2)\pi\)

1. and 2. mean: assignment \(\text{locally consistent}\).

Obs. using edge costs we can maximize \(\text{angular resolution}\).
Locally Consistent \nRightarrow Globally Consistent

not isoceles!
Characterizing Inner Triangulations

Theorem [Di Battista & Vismara ’93]

Given planar inner triangulation* with embedding \mathcal{F}, f_0 and angle assignment x, then:

There is a straight-line drawing with $\mathbb{R}^2 \setminus f_0$ convex

\[\sum \text{vertex angles} = 2\pi \]
\[\sum \text{face angles} = \pi \]
\[\text{for every } v \sim f_0, \text{ via radius } R_v: \prod_{i=1}^{\deg v} \frac{\sin \alpha_i}{\sin \beta_i} = 1 \]
\[\text{for every } v \sim f_0, \sum_{v \sim f \neq f_0} x(v, f) \leq \pi \]

\[\Leftrightarrow \]

Problem: it’s not a linear condition :-(

*) Every face $f \neq f_0$ is a triangle (C_3).