Algorithms for Graph Visualization

Summer Semester 2016
Lecture #5

Upward Planar Drawings

(based on slides from Martin Nöllenburg and Robert Görke, KIT)
The Problem

Definition.

A directed Graph $D = (V, A)$ is *upward planar*, when it has a drawing such that:

- all edges are upward y-monotone curves, and
- no two edges cross.
The Problem

Definition.

A directed Graph $D = (V, A)$ is *upward planar*, when it has a drawing such that:

- all edges are upward y-monotone curves, and
- no two edges cross.

Obvious requirements?
The Problem

Definition.

A directed Graph $D = (V, A)$ is *upward planar*, when it has a drawing such that:

- all edges are upward y-monotone curves, and
- no two edges cross.

Obvious requirements? – Planar & acyclic.
The Problem

Definition.

A directed Graph $D = (V, A)$ is *upward planar*, when it has a drawing such that:

- all edges are upward y-monotone curves, and
- no two edges cross.

Obvious requirements?

- Planar & acyclic.
The Problem

Definition.

A directed Graph $D = (V, A)$ is *upward planar*, when it has a drawing such that:

- all edges are upward $y$-monotone curves, and
- no two edges cross.

Obvious requirements?

- Planar & acyclic.

—not sufficient!
Upward Planarity

Problem: Upward Planarity Testing

Given a directed acyclic graph $D = (V, A)$. Determine if $D$ is upward planar. If so, construct a corresponding drawing.
Upward Planarity

Problem: Upward Planarity Testing

Given a directed acyclic graph $D = (V, A)$. Determine if $D$ is upward planar. If so, construct a corresponding drawing.

Problem’: Embedded Upward Planarity Testing

Given an acyclic graph $D = (V, A)$ with an embedding $\mathcal{F}, f_0$. Determine if $D$ is upward planar with respect to $\mathcal{F}, f_0$. If so, construct a corresponding drawing.
## Upward Planarity

<table>
<thead>
<tr>
<th>Problem: Upward Planarity Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given a directed acyclic graph $D = (V, A)$. Determine if $D$ is upward planar. If so, construct a corresponding drawing.</td>
</tr>
</tbody>
</table>

⇒ NP-hard! [Garg & Tamassia ’95]

<table>
<thead>
<tr>
<th>Problem’: Embedded Upward Planarity Testing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Given an acyclic graph $D = (V, A)$ with an embedding $\mathcal{F}, f_0$. Determine if $D$ is upward planar with respect to $\mathcal{F}, f_0$. If so, construct a corresponding drawing.</td>
</tr>
</tbody>
</table>
Upward Planarity

Problem: Upward Planarity Testing

Given a directed acyclic graph $D = (V, A)$. Determine if $D$ is upward planar. If so, construct a corresponding drawing.

NP-hard! \cite{Garg & Tamassia '95}

Problem’: Embedded Upward Planarity Testing

Given an acyclic graph $D = (V, A)$ with an embedding $\mathcal{F}, f_0$. Determine if $D$ is upward planar with respect to $\mathcal{F}, f_0$. If so, construct a corresponding drawing.

Can be tested efficiently! \[this\ lecture\]
The Big Picture: a characterization

**Theorem** [Kelly ’87, Di Battista & Tamassia ’88]

For a directed graph $D = (V, A)$, the following are equivalent.

1. $D$ is upward planar.
2. $D$ has a *straight-line* upward planar drawing.
3. $D$ is a spanning subgraph of a planar st-graph.
The Big Picture: a characterization

**Theorem** [Kelly ’87, Di Battista & Tamassia ’88]

For a directed graph $D = (V, A)$, the following are equivalent.

1. $D$ is upward planar.
2. $D$ has a *straight-line* upward planar drawing.
3. $D$ is a spanning subgraph of a planar st-graph.
Theorem [Kelly ’87, Di Battista & Tamassia ’88]

For a directed graph $D = (V, A)$, the following are equivalent.

1. $D$ is upward planar.
2. $D$ has a *straight-line* upward planar drawing.
3. $D$ is a spanning subgraph of a planar st-graph. *without crossings*
The Big Picture: a characterization

**Theorem** [Kelly ’87, Di Battista & Tamassia ’88]

For a directed graph $D = (V, A)$, the following are equivalent.

1. $D$ is upward planar.
2. $D$ has a *straight-line* upward planar drawing.
3. $D$ is a spanning subgraph of a planar st-graph.

without crossings
The Big Picture: a characterization

<table>
<thead>
<tr>
<th>Theorem</th>
<th>[Kelly ’87, Di Battista &amp; Tamassia ’88]</th>
</tr>
</thead>
<tbody>
<tr>
<td>For a directed graph $D = (V, A)$, the following are equivalent.</td>
<td></td>
</tr>
<tr>
<td>1. $D$ is upward planar.</td>
<td></td>
</tr>
<tr>
<td>2. $D$ has a <em>straight-line</em> upward planar drawing.</td>
<td></td>
</tr>
<tr>
<td>3. $D$ is a spanning subgraph of a planar <em>st-graph</em>.</td>
<td></td>
</tr>
</tbody>
</table>

An acyclic directed graph with a single source $s$ and single sink $t$.
The Big Picture: a characterization

**Theorem** [Kelly ’87, Di Battista & Tamassia ’88]

For a directed graph $D = (V, A)$, the following are equivalent.

1. $D$ is upward planar.
2. $D$ has a *straight-line* upward planar drawing.
3. $D$ is a spanning subgraph of a planar *st-graph*.

Additionally:
- embedded so that $s$ and $t$ are on the outer-face $f_0$.
- without crossings
- acyclic directed graph with a single source $s$ and single sink $t$.  

4-6
The Big Picture: a characterization

Theorem [Kelly '87, Di Battista & Tamassia '88]
For a directed graph $D = (V, A)$, the following are equivalent.

1. $D$ is upward planar.
2. $D$ has a \textit{straight-line} upward planar drawing.
3. $D$ is a spanning subgraph of a planar st-graph.
The Big Picture: a characterization

**Theorem** [Kelly ’87, Di Battista & Tamassia ’88]

For a directed graph \( D = (V, A) \), the following are equivalent.

1. \( D \) is upward planar.
2. \( D \) has a *straight-line* upward planar drawing.
3. \( D \) is a spanning subgraph of a planar \( st \)-graph.

---

![Diagram of a directed graph](image-url)
The Big Picture: a characterization

**Theorem** [Kelly ’87, Di Battista & Tamassia ’88]

For a directed graph $D = (V, A)$, the following are equivalent.

1. $D$ is upward planar.
2. $D$ has a straight-line upward planar drawing.
3. $D$ is a spanning subgraph of a planar st-graph.

*Proof in textbook [DETT, Sec. 6.1]*
The Big Picture: a characterization

Theorem [Kelly ’87, Di Battista & Tamassia ’88]

For a directed graph \( D = (V, A) \), the following are equivalent.

1. \( D \) is upward planar.
2. \( D \) has a \textit{straight-line} upward planar drawing.
3. \( D \) is a spanning subgraph of a planar st-graph.

\( \text{Proof in textbook [DETT, Sec. 6.1]} \)

\[ \text{can be drawn upward planar, see textbook [DETT, Sec. 6.1]} \]
Bimodality

bimodal vertex
Bimodality

bimodal vertex

not bimodal
Bimodality

bimodal vertex

\[\text{not bimodal}\]

Definition

An embedded directed graph is \textit{bimodal} \iff all vertices are bimodal.
Lemma

An embedded directed graph is upward planar only if it is bimodal.

Definition

An embedded directed graph is \textit{bimodal} ⇔ all vertices are bimodal.
Angle Sizes of Sources and Sinks

For a face $f$ of a straight-line drawing, consider angles of
- **local sinks** (vertices with 2 incoming edges on $\partial f$)
- **local sources** (vertices with 2 outgoing edges on $\partial f$)
Angle Sizes of Sources and Sinks

For a face $f$ of a straight-line drawing, consider angles of
- **local sinks** (vertices with 2 incoming edges on $\partial f$)
- **local sources** (vertices with 2 outgoing edges on $\partial f$)
Angle Sizes of Sources and Sinks

For a face $f$ of a straight-line drawing, consider angles of
– local sinks (vertices with 2 incoming edges on $\partial f$)
– local sources (vertices with 2 outgoing edges on $\partial f$)

$\Rightarrow L(f) := \text{number of large angles}$ (Intuition: in drawing $> \pi$)
$\Rightarrow S(f) := \text{number of small angles}$
$\Rightarrow A(f) := \text{number of local sources}$ ($= \text{number of local sinks}$)
Angle Sizes of Sources and Sinks

For a face $f$ of a straight-line drawing, consider angles of

- **local sinks** (vertices with 2 incoming edges on $\partial f$)
- **local sources** (vertices with 2 outgoing edges on $\partial f$)

$\gg L(f) := \text{number of large angles}$ (Intuition: in drawing $\pi$)
$\gg S(f) := \text{number of small angles}$
$\gg A(f) := \text{number of local sources} \; (= \text{number of local sinks})$

Thus:
$L(f) + S(f) =$

```latex
gf
```
Angle Sizes of Sources and Sinks

For a face \( f \) of a straight-line drawing, consider angles of
– local sinks (vertices with 2 incoming edges on \( \partial f \))
– local sources (vertices with 2 outgoing edges on \( \partial f \))

\[ L(f) := \text{number of large angles} \quad \text{(Intuition: in drawing } \pi \text{)} \]
\[ S(f) := \text{number of small angles} \]
\[ A(f) := \text{number of local sources} \quad (= \text{number of local sinks}) \]

Thus:
\[ L(f) + S(f) = 2A(f) \]
Angle Sizes of Sources and Sinks

For a face $f$ of a straight-line drawing, consider angles of
- local sinks (vertices with 2 incoming edges on $\partial f$)
- local sources (vertices with 2 outgoing edges on $\partial f$)

\[ L(f) := \text{number of large angles} \quad (\text{Intuition: in drawing } > \pi) \]
\[ S(f) := \text{number of small angles} \]
\[ A(f) := \text{number of local sources} \quad (= \text{number of local sinks}) \]

Thus:
\[ L(f) + S(f) = 2A(f) \]

By induction:
\[ L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases} \]
Angle Sizes of Sources and Sinks

For a face $f$ of a straight-line drawing, consider angles of
– local sinks (vertices with 2 incoming edges on $\partial f$)
– local sources (vertices with 2 outgoing edges on $\partial f$)

$\gg L(f) := \text{number of large angles}$ (Intuition: in drawing $> \pi$)
$\gg S(f) := \text{number of small angles}$
$\gg A(f) := \text{number of local sources} (= \text{number of local sinks})$

Thus:
$L(f) + S(f) = 2A(f)$

By induction:
$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$
Angle Sizes of Sources and Sinks

For a face $f$ of a straight-line drawing, consider angles of

- **local sinks** (vertices with 2 incoming edges on $\partial f$)
- **local sources** (vertices with 2 outgoing edges on $\partial f$)

$\gg L(f) := \text{number of large angles} \quad (\text{Intuition: in drawing} > \pi)$
$\gg S(f) := \text{number of small angles}$
$\gg A(f) := \text{number of local sources} \quad (= \text{number of local sinks})$

Thus:

$L(f) + S(f) = 2A(f)$

By induction:

$L(f) = \begin{cases} 
-2, & f \neq f_0 \\
+2, & f = f_0 
\end{cases}$

$L(f) = \begin{cases} 
A(f) - 1, & f \neq f_0 \\
A(f) + 1, & f = f_0 
\end{cases}$
Proof: $L(f) - S(f) = -2$ for $f \neq f_0$

$\Rightarrow L(f) = 0$
Proof: \( L(f) - S(f) = -2 \) for \( f \neq f_0 \)

\[ \Rightarrow L(f) = 0 \quad \Rightarrow S(f) = 2 \]
Proof: $L(f) - S(f) = -2$ for $f \neq f_0$

\[ L(f) = 0 \quad \Rightarrow S(f) = 2 \]

\[ L(f) \geq 1 \]
Proof: $L(f) - S(f) = -2$ for $f \neq f_0$

$\implies L(f) = 0$  $\implies S(f) = 2$

$\implies L(f) \geq 1$

Separate $f$ by.
Proof: \( L(f) - S(f) = -2 \) for \( f \neq f_0 \)

\[ \Rightarrow L(f) = 0 \quad \Rightarrow S(f) = 2 \]

\[ \Rightarrow L(f) \geq 1 \]

Separate \( f \) by.

1. \( v \) sink with a small angle:
Proof: \( L(f) - S(f) = -2 \) for \( f \neq f_0 \)

\[ \Rightarrow L(f) = 0 \quad \Rightarrow S(f) = 2 \]

\[ \Rightarrow L(f) \geq 1 \]

Separate \( f \) by.

1. \( v \) sink with a small angle:

\[
L(f) - S(f) = L(f_1) + L(f_2) + 1 - (S(f_1) + S(f_2) - 1) = -2
\]
Proof: $L(f) - S(f) = -2$ for $f \neq f_0$

\[ L(f) = 0 \quad \Rightarrow \quad S(f) = 2 \]

\[ L(f) \geq 1 \]

Separate $f$ by.

1. $v$ sink with a small angle:

\[
L(f) - S(f) = L(f_1) + L(f_2) + 1 - (S(f_1) + S(f_2) - 1) = -2
\]
Proof: $L(f) - S(f) = -2$ for $f \neq f_0$

$\implies L(f) = 0 \implies S(f) = 2$

$\implies L(f) \geq 1$

Separate $f$ by.

1. $v$ sink with a small angle:

$L(f) - S(f) = L(f_1) + L(f_2) + 1 - (S(f_1) + S(f_2) - 1) = -2$

\[\text{induction hypothesis}\]
Proof: $L(f) - S(f) = -2$ for $f \neq f_0$

$\Rightarrow L(f) = 0 \quad \Rightarrow S(f) = 2$

$\Rightarrow L(f) \geq 1$

Separate $f$ by.

2. $v$ sink with a big angle:

$L(f) - S(f) = L(f_1) + L(f_2) + 1$

$\quad \quad - (S(f_1) + S(f_2) - 1)$

$\quad \quad = -2$

induction hypothesis
Proof: $L(f) - S(f) = -2$ for $f \neq f_0$

\[ \Rightarrow L(f) = 0 \quad \Rightarrow S(f) = 2 \]

\[ \Rightarrow L(f) \geq 1 \]

Separate $f$ by.

3. $v$ source with big angle:

\[ L(f) - S(f) = L(f_1) + L(f_2) + 2 - (S(f_1) + S(f_2)) = -2 \]

induction hypothesis
Proof: $L(f) - S(f) = -2$ for $f \neq f_0$

$\implies L(f) = 0 \quad \implies S(f) = 2$

$\implies L(f) \geq 1$

Separate $f$ by.

4. $v$ source with small angle:
Proof: \( L(f) - S(f) = -2 \) for \( f \neq f_0 \)

\[ L(f) = 0 \quad \Rightarrow \quad S(f) = 2 \]

\[ L(f) \geq 1 \]

Separate \( f \) by.

5. \( v \) neither source nor sink:

\[
L(f) - S(f) = L(f_1) + L(f_2) + 1 - (S(f_1) + S(f_2) - 1) = -2
\]

induction hypothesis
Observations

Consider the angle between two incoming/outgoing edges.
Observations

Consider the angle between two incoming/outgoing edges.

**Lemma**

Let $D$ be a directed graph. In every upward planar drawing of $D$:

1. For each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex}, \\ 1 & v \text{ source/sink.} \end{cases}$

2. For each face $f \in F$: $L(f) = \begin{cases} A(f) - 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases}$
Observations

Consider the angle between two incoming/outgoing edges.

Lemma

Let $D$ be a directed graph.
In every upward planar drawing of $D$:

(1) for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex}, \\ 1 & v \text{ source/sink}. \end{cases}$

(2) for each face $f \in F$: $L(f) = \begin{cases} A(f) - 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases}$

$\Phi: S \cup T \to F$

$\nu \mapsto \text{incid. face}$

$|\Phi^{-1}(f)| = \begin{cases} A(f) - 1 & f \neq f_0 \\ A(f) + 1 & f = f_0 \end{cases}$

$\text{global sources and sinks}$
Observations

Consider the angle between two incoming/outgoing edges.

**Lemma**

Let $D$ be a directed graph. In every upward planar drawing of $D$:

1. For each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex}, \\ 1 & v \text{ source/sink}. \end{cases}$

2. For each face $f \in F$: $L(f) = \begin{cases} A(f) - 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases}$

$\Phi: S \cup T \to F$ called consistent
Observations

Consider the angle between two incoming/outgoing edges.

Lemma

Let $D$ be a directed graph.
In every upward planar drawing of $D$:

(1) for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex}, \\ 1 & v \text{ source/sink}. \end{cases}$

(2) for each face $f \in \mathcal{F}$: $L(f) = \begin{cases} A(f) - 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases}$

\[ \Phi: S \cup T \rightarrow \mathcal{F} \] 
\[ v \mapsto \text{incid. face} \]
called consistent

global sources and sinks

\[ |\Phi^{-1}(f)| = \begin{cases} A(f) - 1 & f \neq f_0 \\ A(f) + 1 & f = f_0 \end{cases} \]
Example: Face Assignment
Example: Face Assignment

- $v_1$, $v_2$, $v_3$, $v_4$, $v_5$, $v_6$, $v_7$, $v_8$, $v_9$
- $f_0$, $f_1$, $f_2$, $f_3$, $f_4$, $f_5$, $f_6$, $f_7$, $f_8$, $f_9$

- Global sources and sinks
Example: Face Assignment

\[ A(f_1) = 3 \]

\[ A(f_2) = 1 \]

\[ A(f_3) = 1 \]

\[ A(f_4) = 2 \]

\[ A(f_5) = 2 \]

\[ A(f_6) = 1 \]

\[ A(f_7) = 2 \]

\[ A(f_8) = 1 \]

\[ A(f_9) = 1 \]

\[ v_1 \]

\[ v_2 \]

\[ v_3 \]

\[ v_4 \]

\[ v_5 \]

\[ v_6 \]

\[ v_7 \]

\[ v_8 \]

\[ v_9 \]

\[ f_0 \]

\[ f_1 \]

\[ f_2 \]

\[ f_3 \]

\[ f_4 \]

\[ f_5 \]

\[ f_6 \]

\[ f_7 \]

\[ f_8 \]

\[ f_9 \]

---

Global sources and sinks
Example: Face Assignment

- $A(f_3) = 1$, $L(f_3) = 0$
- $A(f_4) = 2$, $L(f_4) = 1$
- $A(f_5) = 2$, $L(f_5) = 1$
- $A(f_6) = 1$, $L(f_6) = 0$
- $A(f_7) = 2$, $L(f_7) = 1$
- $A(f_8) = 1$, $L(f_8) = 0$
- $A(f_9) = 1$, $L(f_9) = 0$

- Global sources and sinks
Example: Face Assignment

Assignment $\phi : S \cup T \rightarrow F$

- $A(f_3) = 1, L(f_3) = 0$
- $A(f_1) = 3, L(f_1) = 2$
- $A(f_2) = 1, L(f_2) = 0$
- $A(f_0) = 3, L(f_0) = 4$
- $A(f_4) = 2, L(f_4) = 1$
- $A(f_5) = 2, L(f_5) = 1$
- $A(f_6) = 1, L(f_6) = 0$
- $A(f_7) = 2, L(f_7) = 1$
- $A(f_8) = 1, L(f_8) = 0$
- $A(f_9) = 1, L(f_9) = 0$
Main Result

**Theorem**

If $D = (V, A)$ is a dir. acyclic graph with embedding $\mathcal{F}, f_0$. Then:

$D$ upward planar (resp. $\mathcal{F}, f_0$) $\iff$ bimodal and $\exists$ consistent $\Phi$. 
Main Result

**Theorem**

If $D = (V, A)$ is a dir. acyclic graph with embedding $\mathcal{F}, f_0$. Then:

$D$ upward planar (resp. $\mathcal{F}, f_0$) $\iff$ bimodal and $\exists$ consistent $\Phi$.

$\Rightarrow$: as constructed before
Main Result

**Theorem**

If $D = (V, A)$ is a dir. acyclic graph with embedding $\mathcal{F}, f_0$. Then:

$D$ upward planar (resp. $\mathcal{F}, f_0$) $\iff$ bimodal and $\exists$ consistent $\Phi$.

$\Rightarrow$: as constructed before

$\Leftarrow$: ideas
Main Result

**Theorem**

If $D = (V, A)$ is a dir. acyclic graph with embedding $\mathcal{F}, f_0$. Then:

$D$ upward planar (resp. $\mathcal{F}, f_0$) ⇔ bimodal and $\exists$ consistent $\Phi$.

$\Rightarrow$: as constructed before

$\Leftarrow$: ideas

– construct st-Graph $\supseteq D$
Main Result

**Theorem**

If \( D = (V, A) \) is a dir. acyclic graph with embedding \( \mathcal{F}, f_0 \).
Then:
\( D \) upward planar (resp. \( \mathcal{F}, f_0 \)) \iff \text{bimodal and } \exists \text{ consistent } \Phi.

\( \Rightarrow \): as constructed before

\( \Leftarrow \): ideas
  - construct st-Graph \( \supseteq D \)
  - apply equivalence from the beginning of the lecture
Main Result

**Theorem**

If $D = (V, A)$ is a dir. acyclic graph with embedding $\mathcal{F}, f_0$. Then:

$D$ upward planar (resp. $\mathcal{F}, f_0 \iff$ bimodal and $\exists$ consistent $\Phi$.

$\Rightarrow$: as constructed before

$\Leftarrow$: ideas

- construct st-Graph $\supseteq D$
- apply equivalence from the beginning of the lecture

First: $D, \mathcal{F}, f_0 \rightarrow \Phi$ consistent assignment
Flow Network to Construct $\Phi$

Definition Flow Network $N_{\mathcal{F},f_0}(D) = ((W, A_N); l; u; d)$

- $W = \{v \in V \mid v$ is source or sink$\} \cup \mathcal{F}$
- $A_N = \{(v, f) \mid v$ incident to $f\}$
- $l(a) = 0 \quad \forall a \in A_N$
- $u(a) = 1 \quad \forall a \in A_N$
- $d(q) = \begin{cases} 
1 & \forall q \in W \cap V \\
-(A(q) - 1) & \forall q \in \mathcal{F} \setminus \{f_0\} \\
-(A(q) + 1) & q = f_0
\end{cases}$

idea: flow $(v, f) = 1$ iff $v$ is a global source/sink whose large angle is assigned to $f$
Example Network

- normal vertex
- source / sink
Example Network

- normal vertex
- source / sink
- face vertex
Example Network

- normal vertex
- source / sink
- face vertex
Example Network

- normal vertex
- source / sink
- face vertex
Example Network

- normal vertex
- source / sink
- face vertex
Algorithm: $\Phi, \mathcal{F}, f_0 \rightarrow \text{st-Graph} \supseteq D$
Algorithm: $\Phi, \mathcal{F}, f_0 \rightarrow \text{st-Graph} \subseteq D$

Let $f$ be a face. Consider the clockwise angle sequence $\sigma_f$ of L/S on local sources and sinks of $f$. 
Algorithm: $\Phi, \mathcal{F}, f_0 \rightarrow \text{st-Graph} \supseteq D$

Let $f$ be a face. Consider the clockwise angle sequence $\sigma_f$ of L/S on local sources and sinks of $f$

Goal: Add edges to break large angles (sources and sinks).
Algorithm: $\Phi, F, f_0 \rightarrow \text{st-Graph} \supseteq D$

Let $f$ be a face. Consider the clockwise angle sequence $\sigma_f$ of $L/S$ on local sources and sinks of $f$.

Goal: Add edges to break large angles (sources and sinks).

$f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices $x, y, z$. 

![Diagram of st-Graph](image)
Algorithm: $\Phi, \mathcal{F}, f_0 \rightarrow \text{st-Graph} \supseteq D$

Let $f$ be a face. Consider the clockwise angle sequence $\sigma_f$ of L/S on local sources and sinks of $f$

Goal: Add edges to break large angles (sources and sinks).

$f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices $x, y, z$
Algorithm: $\Phi, \mathcal{F}, f_0 \rightarrow \text{st-Graph} \supseteq D$

Let $f$ be a face. Consider the clockwise angle sequence $\sigma_f$ of L/S on local sources and sinks of $f$

$\gg$ Goal: Add edges to break large angles (sources and sinks).

$\gg$ $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices $x, y, z$
Algorithm: \( \Phi, \mathcal{F}, f_0 \rightarrow \text{st-Graph} \supseteq D \)

Let \( f \) be a face. Consider the clockwise angle sequence \( \sigma_f \) of L/S on local sources and sinks of \( f \)

\[ \Rightarrow \text{Goal: Add edges to break large angles (sources and sinks).} \]

\[ \Rightarrow f \neq f_0 \text{ with } |\sigma_f| \geq 2 \text{ containing } \langle L, S, S \rangle \text{ at vertices } x, y, z \]

\[ \Rightarrow x \text{ source } \Rightarrow \text{insert edge } (z, x) \]
Algorithm: $\Phi, F, f_0 \rightarrow \text{st-Graph} \supseteq D$

Let $f$ be a face. Consider the clockwise angle sequence $\sigma_f$ of L/S on local sources and sinks of $f$.

Goal: Add edges to break large angles (sources and sinks).

$\sigma_f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices $x, y, z$.

$x$ source $\Rightarrow$ insert edge $(z, x)$.
Algorithm: $\Phi, \mathcal{F}, f_0 \rightarrow \text{st-Graph} \supseteq D$

Let $f$ be a face. Consider the clockwise angle sequence $\sigma_f$ of L/S on local sources and sinks of $f$

$\Rightarrow$ Goal: Add edges to break large angles (sources and sinks).

$\Rightarrow$ $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices $x, y, z$

$\Rightarrow$ $x$ source $\Rightarrow$ insert edge $(z, x)$
Algorithm: $\Phi, \mathcal{F}, f_0 \rightarrow \text{st-Graph} \supseteq D$

Let $f$ be a face. Consider the clockwise angle sequence $\sigma_f$ of L/S on local sources and sinks of $f$

\[ \Rightarrow \text{Goal: Add edges to break large angles (sources and sinks).} \]

\[ \Rightarrow f \neq f_0 \text{ with } |\sigma_f| \geq 2 \text{ containing } \langle L, S, S \rangle \text{ at vertices } x, y, z \]

\[ \Rightarrow x \text{ source } \Rightarrow \text{insert edge } (z, x) \]
Algorithm: $\Phi, F, f_0 \rightarrow \text{st-Graph} \supseteq D$

Let $f$ be a face. Consider the clockwise angle sequence $\sigma_f$ of $L/S$ on local sources and sinks of $f$

$\Rightarrow$ Goal: Add edges to break large angles (sources and sinks).

$\Rightarrow f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices $x, y, z$

$\Rightarrow x$ source $\Rightarrow$ insert edge $(z, x)$
Algorithm: $\Phi, \mathcal{F}, f_0 \rightarrow \text{st-Graph} \supseteq \mathcal{D}$

Let $f$ be a face. Consider the clockwise angle sequence $\sigma_f$ of L/S on local sources and sinks of $f$

$\Rightarrow$ Goal: Add edges to break large angles (sources and sinks).

$\Rightarrow$ $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices $x, y, z$

$\Rightarrow$ $x$ source $\Rightarrow$ insert edge $(z, x)$
Algorithm: $\Phi, \mathcal{F}, f_0 \rightarrow \text{st-Graph} \supseteq D$

Let $f$ be a face. Consider the clockwise angle sequence $\sigma_f$ of L/S on local sources and sinks of $f$.

$\gg$ Goal: Add edges to break large angles (sources and sinks).

$\gg$ $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices $x, y, z$

$\gg$ $x$ source $\Rightarrow$ insert edge $(z, x)$

$\gg$ $x$ sink $\Rightarrow$ insert edge $(x, z)$
Algorithm: $\Phi, \mathcal{F}, f_0 \rightarrow \text{st-Graph} \supseteq D$

Let $f$ be a face. Consider the clockwise angle sequence $\sigma_f$ of L/S on local sources and sinks of $f$.

Goal: Add edges to break large angles (sources and sinks).

- $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices $x, y, z$

- $x$ source $\Rightarrow$ insert edge $(z, x)$
- $x$ sink $\Rightarrow$ insert edge $(x, z)$
Algorithm: $\Phi, \mathcal{F}, f_0 \rightarrow \text{st-Graph} \supseteq D$

Let $f$ be a face. Consider the clockwise angle sequence $\sigma_f$ of L/S on local sources and sinks of $f$.

Goal: Add edges to break large angles (sources and sinks).

$f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices $x, y, z$.

$x$ source $\Rightarrow$ insert edge $(z, x)$

$x$ sink $\Rightarrow$ insert edge $(x, z)$
Algorithm: $\Phi, \mathcal{F}, f_0 \rightarrow \text{st-Graph} \supseteq D$

Let $f$ be a face. Consider the clockwise angle sequence $\sigma_f$ of L/S on local sources and sinks of $f$

Goal: Add edges to break large angles (sources and sinks).

$\Rightarrow f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices $x, y, z$

$\Rightarrow x$ source $\Rightarrow$ insert edge $(z, x)$

$\Rightarrow x$ sink $\Rightarrow$ insert edge $(x, z)$
Algorithm: $\Phi, \mathcal{F}, f_0 \rightarrow \text{st-Graph} \supseteq D$

Let $f$ be a face. Consider the clockwise angle sequence $\sigma_f$ of L/S on local sources and sinks of $f$

Goal: Add edges to break large angles (sources and sinks).

- $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices $x, y, z$
- $x$ source $\Rightarrow$ insert edge $(z, x)$
- $x$ sink $\Rightarrow$ insert edge $(x, z)$
- Refine the outerface $f_0$
Algorithm: $\Phi, \mathcal{F}, f_0 \rightarrow \text{st-Graph} \supseteq \mathcal{D}$

Let $f$ be a face. Consider the clockwise angle sequence $\sigma_f$ of L/S on local sources and sinks of $f$.

Goal: Add edges to break large angles (sources and sinks).

- $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices $x, y, z$

- $x$ source $\Rightarrow$ insert edge $(z, x)$
- $x$ sink $\Rightarrow$ insert edge $(x, z)$

- Refine the outerface $f_0$

Refine all $f \in \mathcal{F} \Rightarrow \mathcal{D}$ contains a planar st-Graph
Example Refinement
Summary

Given: embedded, directed, acyclic graph $G = (V, E)$. 
Summary

Given: embedded, directed, acyclic graph $G = (V, E)$.

- Test for bimodality
- Test for a consistent assignment $\Phi$ (via flow network).
- If both bimodal and $\Phi$ exists, draw $G$ as upward planar.
Summary

Given: embedded, directed, acyclic graph $G = (V, E)$.

$\Rightarrow$ Test for bimodality

$\Rightarrow$ Test for a consistent assignment $\Phi$ (via flow network).

$\Rightarrow$ If both bimodal and $\Phi$ exists, draw $G$ as upward planar.
  
  $\Rightarrow$ refine $G$ to planar $st$-graph $G'$
  
  $\Rightarrow$ Draw $G'$ via $st$-graph methods
  
  $\Rightarrow$ Delete the edges added by refinement.
Summary

Given: embedded, directed, acyclic graph $G = (V, E)$.

- Test for bimodality
- Test for a consistent assignment $\Phi$ (via flow network).
- If both bimodal and $\Phi$ exists, draw $G$ as upward planar.
  - Refine $G$ to planar $st$-graph $G'$
  - Draw $G'$ via $st$-graph methods
  - Delete the edges added by refinement.

\[\text{gives up. planar drawing, see textbook [DETT, Sec. 6.1]}\]
Summary

Given: embedded, directed, acyclic graph $G = (V, E)$.

- Test for bimodality

- Test for a consistent assignment $\Phi$ (via flow network).

- If both bimodal and $\Phi$ exists, draw $G$ as upward planar.
  
  - refine $G$ to planar $st$-graph $G'$
  
  - Draw $G'$ via $st$-graph methods
  
  - Delete the edges added by refinement.

  gives up. planar drawing, see textbook [DETT, Sec. 6.1] – but the area usage can be exponential!
Finding the angles via the flow network

\[ W := V \cup \mathcal{F} \]
Finding the angles via the flow network

\[ W := V \cup \mathcal{F} \]
\[ A := \{ (v, f) \in V \times \mathcal{F} : v \text{ incident } (\sim) \text{ to } f \} \]
Finding the angles via the flow network

\[ W := V \cup F \]
\[ A := \{(v, f) \in V \times F : v \text{ incident } (\sim) \text{ to } f \} \]
\[ \ell(a) = 0 \quad \forall a \in A \]
Finding the angles via the flow network

\[ W := V \cup F \]

\[ A := \{(v, f) \in V \times F : v \text{ incident (\sim) to } f\} \]

\[ \ell(a) = 0 \quad \forall a \in A \]

\[ u(a) = 2\pi \quad \forall a \in A \]
Finding the angles via the flow network

\[ W := V \cup \mathcal{F} \]
\[ A := \{ (v, f) \in V \times \mathcal{F} : v \text{ incident (\sim) to } f \} \]
\[ \ell(a) = 0 \quad \forall a \in A \]
\[ u(a) = 2\pi \quad \forall a \in A \]
\[ d(v) = 2\pi \quad \forall v \in V \]
Finding the angles via the flow network

\[ W := V \cup \mathcal{F} \]
\[ A := \{(v, f) \in V \times \mathcal{F} : v \text{ incident } (\sim) \text{ to } f\} \]
\[ \ell(a) = 0 \quad \forall a \in A \]
\[ u(a) = 2\pi \quad \forall a \in A \]
\[ d(v) = 2\pi \quad \forall v \in V \]
\[ d(f) = \begin{cases} 
-(\deg(f) - 2)\pi & \text{if } f \neq f_0, \\
-(\deg(f) + 2)\pi & \text{otherwise}
\end{cases} \]
Finding the angles via the flow network

\[ W := V \cup \mathcal{F} \]
\[ A := \{(v, f) \in V \times \mathcal{F} : v \text{ incident (\sim) to } f\} \]
\[ \ell(a) = 0 \quad \forall a \in A \]
\[ u(a) = 2\pi \quad \forall a \in A \]
\[ d(v) = 2\pi \quad \forall v \in V \]
\[ d(f) = \begin{cases} 
-(\deg(f) - 2)\pi & \text{if } f \neq f_0, \\
-(\deg(f) + 2)\pi & \text{otherwise} 
\end{cases} \]

Flow provides an assignment \( x(\cdot, \cdot) \) of angles where:

1. vertices : \( \forall v \in V : \)
2. faces : \( \forall f \in \mathcal{F} : \)
Finding the angles via the flow network

\[ W := V \cup \mathcal{F} \]
\[ A := \{(v, f) \in V \times \mathcal{F} : v \text{ incident } (\sim) \text{ to } f\} \]
\[ \ell(a) = 0 \quad \forall a \in A \]
\[ u(a) = 2\pi \quad \forall a \in A \]
\[ d(v) = 2\pi \quad \forall v \in V \]
\[ d(f) = \begin{cases} 
-(\deg(f) - 2)\pi & \text{if } f \neq f_0, \\
-(\deg(f) + 2)\pi & \text{otherwise}
\end{cases} \]

Flow provides an assignment \( x(\cdot, \cdot) \) of angles where:

1. vertices : \( \forall v \in V : \sum_{f \sim v} x(v, f) = 2\pi \)
2. faces : \( \forall f \in \mathcal{F} : \sum_{v \sim f} x(v, f) = (\deg(f) \pm 2)\pi \)
Finding the angles via the flow network

\[ \begin{align*}
\{W := V \cup F \} \\
\{A := \{(v, f) \in V \times F : v \text{ incident } (\sim) \text{ to } f \} \} \\
\{\ell(a) = 0 \quad \forall a \in A \} \\
\{u(a) = 2\pi \quad \forall a \in A \} \\
\{d(v) = 2\pi \quad \forall v \in V \} \\
\{d(f) = \begin{cases} 
-(\deg(f) - 2)\pi & \text{if } f \neq f_0, \\
-(\deg(f) + 2)\pi & \text{otherwise}
\end{cases} \}
\end{align*} \]

Flow provides an assignment \( x(\cdot, \cdot) \) of angles where:

1. vertices : \( \forall v \in V : \sum_{f \sim v} x(v, f) = 2\pi \)
2. faces : \( \forall f \in F : \sum_{v \sim f} x(v, f) = (\deg(f) \pm 2)\pi \)

1. and 2. mean: assignment \textit{locally consistent}. 
Finding the angles via the flow network

\[
\begin{align*}
W & := V \cup F \\
A & := \{(v, f) \in V \times F : v \text{ incident } (\sim) \text{ to } f\} \\
\ell(a) & = 0 \quad \forall a \in A \\
u(a) & = 2\pi \quad \forall a \in A \\
d(v) & = 2\pi \quad \forall v \in V \\
d(f) & = \begin{cases} 
-(\deg(f) - 2)\pi & \text{if } f \neq f_0, \\
-(\deg(f) + 2)\pi & \text{otherwise}
\end{cases}
\end{align*}
\]

Flow provides an assignment \(x(\cdot, \cdot)\) of angles where:

1. vertices : \(\forall v \in V : \sum_{f \sim v} x(v, f) = 2\pi\)
2. faces : \(\forall f \in F : \sum_{v \sim f} x(v, f) = (\deg(f) \pm 2)\pi\)

1. and 2. mean: assignment locally consistent.

Obs. using edge costs we can maximize angular resolution.
Locally Consistent $\not\Rightarrow$ Globally Consistent
Locally Consistent $\not\Rightarrow$ Globally Consistent
Locally Consistent $\not\Rightarrow$ Globally Consistent

![Diagram](image)

- Not isoceles!
Characterizing Inner Triangulations

**Theorem** [Di Battista & Vismara ’93]

Given planar inner triangulation* with embedding $\mathcal{F}, f_0$ and angle assignment $x$, then:

There is a straight-line drawing with $\mathbb{R}^2 \setminus f_0$ convex

\[
\begin{align*}
1. & \quad \sum \text{ vertex angles} = 2\pi \\
2. & \quad \sum \text{ face angles} = \pi \\
3. & \quad \text{for every } v \sim f_0, \text{ via radius } R_v: \prod_{i=1}^{\deg v} \frac{\sin \alpha_i}{\sin \beta_i} = 1 \\
4. & \quad \text{for every } v \sim f_0, \sum_{v \sim f \neq f_0} x(v, f) \leq \pi
\end{align*}
\]

*) Every face $f \neq f_0$ is a triangle ($C_3$).
Characterizing Inner Triangulations

**Theorem** [Di Battista & Vismara ’93]

Given planar inner triangulation* with embedding $\mathcal{F}, f_0$ and angle assignment $x$, then:

There is a straight-line drawing with $\mathbb{R}^2 \setminus f_0$ convex if and only if:

1. $\sum$ vertex angles $= 2\pi$

2. $\sum$ face angles $= \pi$

3. for every $v \sim f_0$, via radius $R_v$: $\prod_{i=1}^{\deg v} \frac{\sin \alpha_i}{\sin \beta_i} = 1$

4. for every $v \sim f_0$, $\sum_{v \sim f \neq f_0} x(v, f) \leq \pi$

*) Every face $f \neq f_0$ is a triangle ($C_3$).
Characterizing Inner Triangulations

**Theorem** [Di Battista & Vismara ’93]

Given planar inner triangulation* with embedding $\mathcal{F}, f_0$ and angle assignment $x$, then:

There is a straight-line drawing with $\mathbb{R}^2 \setminus f_0$ convex

\[
\begin{align*}
\sum \text{vertex angles} &= 2\pi \\
\sum \text{face angles} &= \pi \\
\text{3. for every } v \sim f_0, \text{ via radius } R_v: & \prod_{i=1}^{\deg v} \frac{\sin \alpha_i}{\sin \beta_i} = 1 \\
\text{4. for every } v \sim f_0, \sum_{v \sim f \neq f_0} x(v, f) & \leq \pi
\end{align*}
\]

\[\iff\]

*Problem:* it’s not a linear condition :-(

*) Every face $f \neq f_0$ is a triangle ($C_3$).