Algorithms for Graph Visualization

Summer Semester 2016
Lecture #4

Divide-and-Conquer Algorithms: Trees and Series-Parallel Graphs

(based on slides from Martin Nöllenburg and Robert Görke, KIT)
Uses of Divide & Conquer

Well suited for inductively/recursively defined Graph Classes
Uses of Divide & Conquer

Well suited for inductively/recursively defined Graph Classes

Rooted Binary Trees:
1. draw the left subtree
2. draw the right subtree
3. combine together + draw root
Uses of Divide & Conquer

Well suited for inductively/recursively defined Graph Classes

Rooted Binary Trees:

1. draw the left subtree
2. draw the right subtree
3. combine together + draw root
Uses of Divide & Conquer

Well suited for inductively/recursively defined Graph Classes

Rooted Binary Trees:
1. draw the left subtree
2. draw the right subtree
3. combine together $+$ draw root

Terminology

$\triangleright\triangleright$ depth(v): distance from the root
$\triangleright\triangleright$ traversal
	• preorder
	• inorder
	• postorder
Overview

- balanced drawings of binary trees \(O(nh) \)
- radial drawings of trees \(O(nh) \)
- compact drawings of trees \(O(n \log n) \)
- upward drawings of series parallel graphs \(\exp \)
Overview

<table>
<thead>
<tr>
<th>Grid Size</th>
<th>Balanced Drawings of Binary Trees</th>
<th>Radial Drawings of Trees</th>
<th>Compact Drawings of Trees</th>
<th>Upward Drawings of Series Parallel Graphs</th>
</tr>
</thead>
<tbody>
<tr>
<td>(O(nh))</td>
<td>(O(nh))</td>
<td>(O(n \log n))</td>
<td></td>
<td>exp.</td>
</tr>
</tbody>
</table>
Algorithm of Reingold and Tilford (’81)

Trivial: If $T = \{v\}$, draw v (e.g., as a small disk).
Algorithm of Reingold and Tilford ('81)

Trivial: If $T = \{v\}$, draw v (e.g., as a small disk).
Divide: Run Alg. recursively on the left and right subtrees.
Algorithm of Reingold and Tilford ('81)

Trivial: If $T = \{v\}$, draw v (e.g., as a small disk).
Divide: Run Alg. recursively on the left and right subtrees.
Conquer: shift the partial drawings
Algorithm of Reingold and Tilford ('81)

Trivial: If \(T = \{v\} \), draw \(v \) (e.g., as a small disk).

Divide: Run Alg. recursively on the left and right subtrees.

Conquer: shift the partial drawings to up to 2 units apart
Algorithm of Reingold and Tilford ('81)

Trivial: If $T = \{v\}$, draw v (e.g., as a small disk).

Divide: Run Alg. recursively on the left and right subtrees.

Conquer: shift the partial drawings to up to 2 units apart
place the root r one above and centrally btw. children.
Algorithm of Reingold and Tilford ('81)

Trivial: If $T = \{v\}$, draw v (e.g., as a small disk).

Divide: Run Alg. recursively on the left and right subtrees.

Conquer: Shift the partial drawings to up to 2 units apart and place the root r one above and centrally between children.

Grid Drawing?
Algorithm of Reingold and Tilford ('81)

Trivial: If \(T = \{v\} \), draw \(v \) (e.g., as a small disk).

Divide: Run Alg. recursively on the left and right subtrees.

Conquer: Shift the partial drawings to up to 2 units apart or 3!
place the root \(r \) one above and centrally btw. children.

Grid Drawing?
Algorithm of Reingold and Tilford ('81)

Implementation in 2 Phases:

1. postorder (bottom-up):
 - contours and x-offsets
 - gather the predecessors

2. preorder (top-down):
 - calculate absolute coordinates
Algorithm of Reingold and Tilford ('81)

Implementation in 2 Phases:

1. postorder (bottom-up):
 - contours and x-offsets
 - gather the predecessors

2. preorder (top-down):
 - calculate absolute coordinates

Contour: linked list of vertices (-coordinates)
Algorithm of Reingold and Tilford ('81)

Phase 1:

1. compute $T_\ell(v)$ und $T_r(v)$
2. trace the right contour of $T_\ell(v)$ and left of $T_r(v)$
3. Find $d_v = \text{min. horiz. distance between } v_\ell \text{ und } v_r$
4. $x\text{-offset}(v_\ell) = -\lceil d_v/2 \rceil$, $x\text{-offset}(v_r) = \lceil d_v/2 \rceil$
5. Build left contour of T_v from:
 - $\gg v$,
 - \gg left contour of $T_\ell(v)$,
 - \gg left contour of any low hanging part of $T_r(v)$
6. Symmetrically for right contour.
Algorithm of Reingold and Tilford ('81)

Phase 1:
1. compute $T_\ell(v)$ und $T_r(v)$
2. trace the right contour of $T_\ell(v)$ and left of $T_r(v)$
3. Find $d_v = \text{min. horiz. distance between } v_\ell \text{ und } v_r$
4. x-offset(v_ℓ) = $-\lceil d_v/2 \rceil$, x-offset(v_r) = $\lceil d_v/2 \rceil$
5. Build left contour of T_v from:
 - v
 - left contour of $T_\ell(v)$
 - left contour of any low hanging part of $T_r(v)$
6. Symmetrically for right contour.
Algorithm of Reingold and Tilford ('81)

Phase 1:
1. compute $T_\ell(v)$ und $T_\ell(v)$
2. trace the right contour of $T_\ell(v)$ and left of $T_\ell(v)$
3. Find $d_v = \min.$ horiz. distance between v_ℓ und v_r
4. x-offset(v_ℓ) = $-\lfloor d_v/2 \rfloor$, x-offset(v_r) = $\lceil d_v/2 \rceil$
5. Build left contour of T_v from:
 - v
 - left contour of $T_\ell(v)$
 - left contour of any low hanging part of $T_r(v)$
6. Symmetrically for right contour.
Algorithm of Reingold and Tilford ('81)

Phase 1:
1. compute $T_\ell(v)$ und $T_r(v)$
2. trace the right contour of $T_\ell(v)$ and left of $T_r(v)$
3. Find $d_v = \text{min. horiz. distance between } v_\ell \text{ und } v_r$
4. x-offset(v_ℓ) = $-\lceil d_v/2 \rceil$, x-offset(v_r) = $\lceil d_v/2 \rceil$
5. Build left contour of T_v from:
 - v
 - left contour of $T_\ell(v)$
 - left contour of any low hanging part of $T_r(v)$
6. Symmetrically for right contour.

Runtime?
Algorithm of Reingold and Tilford (’81)

Phase 1:
1. compute $T_\ell(v)$ und $T_r(v)$
2. trace the right contour of $T_\ell(v)$ and left of $T_r(v)$
3. Find $d_v = \min$ horiz. distance between v_ℓ und v_r
4. x-offset(v_ℓ) = $-\lceil d_v/2 \rceil$, x-offset(v_r) = $\lceil d_v/2 \rceil$
5. Build left contour of T_v from:
 - $\gg v$,
 - \gg left contour of $T_\ell(v)$,
 - \gg left contour of any low hanging part of $T_r(v)$
6. Symmetrically for right contour.

Runtime? $\sum_v (\cdots) =$
Algorithm of Reingold and Tilford ('81)

Phase 1:
1. compute $T_\ell(v)$ und $T_r(v)$
2. trace the right contour of $T_\ell(v)$ and left of $T_r(v)$
3. Find $d_v = \min$ horiz. distance between v_ℓ und v_r
4. x-offset(v_ℓ) = $-\lceil d_v/2 \rceil$, x-offset(v_r) = $\lceil d_v/2 \rceil$
5. Build left contour of T_v from:
 - $\gg v$,
 - \gg left contour of $T_\ell(v)$,
 - \gg left contour of any low hanging part of $T_r(v)$
6. Symmetrically for right contour.

Runtime? $\sum_v (1 + \min\{h_\ell(v), h_r(v)\}) = $
Algorithm of Reingold and Tilford (’81)

Phase 1:
1. compute $T_{\ell}(v)$ und $T_{r}(v)$
2. trace the right contour of $T_{\ell}(v)$ and left of $T_{r}(v)$
3. Find $d_v = \min$ horiz. distance between v_{ℓ} und v_{r}
4. x-offset(v_{ℓ}) = $-\lceil d_v / 2 \rceil$, x-offset(v_{r}) = $\lceil d_v / 2 \rceil$
5. Build left contour of T_v from:
 - $\gg v$,
 - \gg left contour of $T_{\ell}(v)$,
 - \gg left contour of any low hanging part of $T_{r}(v)$
6. Symmetrically for right contour.

Runtime? $\sum_v (1 + \min\{h_{\ell}(v), h_{r}(v)\}) = n + \sum_v \min\{\ldots\} \leq$
Algorithm of Reingold and Tilford ('81)

1. Compute \(T_\ell(v) \) and \(T_r(v) \)
2. Trace the right contour of \(T_\ell(v) \) and left of \(T_r(v) \)
3. Find \(d_v = \min \) horiz. distance between \(v_\ell \) und \(v_r \)
4. \(x\)-offset\((v_\ell) = -\lceil d_v/2 \rceil \), \(x\)-offset\((v_r) = \lceil d_v/2 \rceil \)
5. Build left contour of \(T_v \) from:
 \(\gg v, \)
 \(\gg \) left contour of \(T_\ell(v) \),
 \(\gg \) left contour of any low hanging part of \(T_r(v) \)
6. Symmetrically for right contour.

Runtime? \(\sum_v (1 + \min\{h_\ell(v), h_r(v)\}) = n + \sum_v \min\{\ldots\} \leq \)
Algorithm of Reingold and Tilford ('81)

Phase 1:
1. compute $T_{\ell}(v)$ und $T_{r}(v)$
2. trace the right contour of $T_{\ell}(v)$ and left of $T_{r}(v)$
3. Find $d_v = \text{min. horiz. distance between } v_\ell \text{ und } v_r$
4. $x\text{-offset}(v_\ell) = -\lceil d_v/2 \rceil$, $x\text{-offset}(v_r) = \lfloor d_v/2 \rfloor$
5. Build left contour of T_v from:
 - $v,$
 - $T_{\ell}(v),$ left contour of $T_{\ell}(v),$ left contour of any low hanging part of $T_{r}(v)$
6. Symmetrically for right contour.

Runtime? $\sum_v (1 + \min\{h_\ell(v), h_r(v)\}) = n + \sum_v \min\{\ldots\} \leq$
Algorithm of Reingold and Tilford ('81)

Phase 1:

1. compute $T_\ell(v)$ und $T_r(v)$
2. trace the right contour of $T_\ell(v)$ and left of $T_r(v)$
3. Find $d_v = \min.$ horiz. distance between v_ℓ und v_r
4. x-offset$(v_\ell) = -\lceil d_v / 2 \rceil$, x-offset$(v_r) = \lceil d_v / 2 \rceil$
5. Build left contour of T_v from:
 - $\gg v$,
 - \gg left contour of $T_\ell(v)$,
 - \gg left contour of any low hanging part of $T_r(v)$
6. Symmetrically for right contour.

Runtime? $\sum_v (1 + \min\{h_\ell(v), h_r(v)\}) = n + \sum_v \min\{\ldots\} \leq n + n$
Algorithm of Reingold und Tilford (’81)

Phase 2:

\[y(v) = -\text{depth}(v) \text{ for each vertex } v. \]
Algorithm of Reingold und Tilford (’81)

Phase 2:

- Set y-coordinate $y(v) = -\text{depth}(v)$ for each vertex v.
- Set $x(w) := 0$ for the root w, then in preorder for $v \in V$:

 $x(v_\ell) := x(v) + x\text{-offset}(v_\ell)$ and

 $x(v_r) := x(v) + x\text{-offset}(v_r)$.
Algorithm of Reingold und Tilford ('81)

Phase 2:

- Set y-coordinate $y(v) = -\text{depth}(v)$ for each vertex v.
- Set $x(w) := 0$ for the root w, then in preorder for $v \in V$:
 - $x(v_{\ell}) := x(v) + x$-offset(v_{ℓ}) and
 - $x(v_{r}) := x(v) + x$-offset(v_{r}).

Runtime?
Algorithm of Reingold und Tilford ('81)

Phase 2:

- Set y-coordinate $y(v) = -\text{depth}(v)$ for each vertex v.
- Set $x(w) := 0$ for the root w, then in preorder for $v \in V$:
 - $x(v_\ell) := x(v) + x\text{-offset}(v_\ell)$ and
 - $x(v_r) := x(v) + x\text{-offset}(v_r)$.

Runtime? $O(n)$
Theorem [Reingold & Tilford ’81]

For a binary tree with \(n \) vertices, in \(O(n) \) time we can produce a drawing \(\Gamma \) such that:
Summary for Balanced Drawings of Binary Trees

<table>
<thead>
<tr>
<th>Theorem</th>
<th>[Reingold & Tilford ’81]</th>
</tr>
</thead>
<tbody>
<tr>
<td>For a binary tree with n vertices, in $O(n)$ time we can produce a drawing Γ such that:</td>
<td></td>
</tr>
<tr>
<td>Γ is layered, i.e., $y \equiv -\text{depth}$,</td>
<td></td>
</tr>
<tr>
<td>Γ is planar, straightline, and strictly downward,</td>
<td></td>
</tr>
<tr>
<td>Γ matches the embedding (i.e., right children on the right),</td>
<td></td>
</tr>
<tr>
<td>all vertices: horiz. & vert. distances ≥ 1, and on the grid,</td>
<td></td>
</tr>
<tr>
<td>the area is $O(n^2)$,</td>
<td></td>
</tr>
<tr>
<td>parent always centered above children.</td>
<td></td>
</tr>
</tbody>
</table>
Summary for Balanced Drawings of Binary Trees

Theorem [Reingold & Tilford '81]

For a binary tree with \(n \) vertices, in \(O(n) \) time we can produce a drawing \(\Gamma \) such that:

- \(\Gamma \) is layered, i.e., \(y \equiv -\text{depth} \),
- \(\Gamma \) is planar, straightline, and strictly downward,
- \(\Gamma \) matches the embedding (i.e., right children on the right),
- all vertices: horiz. & vert. distances \(\geq 1 \), and on the grid,
- the area is \(O(n^2) \),
- parent always centered above children.
Summary for Balanced Drawings of Binary Trees

Theorem [Reingold & Tilford ’81]

For a binary tree with \(n \) vertices, in \(O(n) \) time we can produce a drawing \(\Gamma \) such that:

\(\Rightarrow \) \(\Gamma \) is layered, i.e., \(y \equiv - \text{depth} \),
\(\Rightarrow \) \(\Gamma \) is planar, straightline, and strictly downward,
\(\Rightarrow \) \(\Gamma \) matches the embedding (i.e., right children on the right),
\(\Rightarrow \) all vertices: horiz. & vert. distances \(\geq 1 \), and on the grid,
\(\Rightarrow \) the area is \(O(n^2) \),
\(\Rightarrow \) parent always centered above children.

Easily generalizes to arbitrary trees!
Summary for Balanced Drawings of Binary Trees

Theorem [Reingold & Tilford ‘81]

For a binary tree with n vertices, in $O(n)$ time we can produce a drawing Γ such that:

- Γ is layered, i.e., $y \equiv -\text{depth}$,
- Γ is planar, straightline, and strictly downward,
- Γ matches the embedding (i.e., right children on the right),
- all vertices: horiz. & vert. distances ≥ 1, and on the grid,
- the area is $O(n^2)$,
- parent always centered above children.

Min. width (but without the grid):

$$\gg$$

Easily generalizes to arbitrary trees!

example?
Summary for Balanced Drawings of Binary Trees

Theorem \([\text{Reingold \& Tilford '81}]\)

For a binary tree with \(n\) vertices, in \(O(n)\) time we can produce a drawing \(\Gamma\) such that:

- \(\Gamma\) is layered, i.e., \(y \equiv -\text{depth}\),
- \(\Gamma\) is planar, straightline, and strictly downward,
- \(\Gamma\) matches the embedding (i.e., right children on the right),
- all vertices: horiz. \& vert. distances \(\geq 1\), and on the grid,
- the area is \(O(n^2)\),
- parent always centered above children.

Min. width (but without the grid): by LP!
Summary for Balanced Drawings of Binary Trees

Theorem [Reingold & Tilford '81]

For a binary tree with \(n \) vertices, in \(O(n) \) time we can produce a drawing \(\Gamma \) such that:

- \(\Gamma \) is layered, i.e., \(y \equiv - \text{depth} \),
- \(\Gamma \) is planar, straightline, and strictly downward,
- \(\Gamma \) matches the embedding (i.e., right children on the right),
- all vertices: horiz. & vert. distances \(\geq 1 \), and on the grid,
- the area is \(O(n^2) \),
- parent always centered above children.

Min. width (but without the grid): by LP!
Min. width and on the grid:
Summary for Balanced Drawings of Binary Trees

<table>
<thead>
<tr>
<th>Theorem</th>
<th>[Reingold & Tilford ’81]</th>
</tr>
</thead>
<tbody>
<tr>
<td>For a binary tree with (n) vertices, in (O(n)) time we can produce a drawing (\Gamma) such that:</td>
<td></td>
</tr>
<tr>
<td>(\Rightarrow) (\Gamma) is layered, i.e., (y \equiv - \text{depth}),</td>
<td></td>
</tr>
<tr>
<td>(\Rightarrow) (\Gamma) is planar, straightline, and strictly downward,</td>
<td></td>
</tr>
<tr>
<td>(\Rightarrow) (\Gamma) matches the embedding (i.e., right children on the right),</td>
<td></td>
</tr>
<tr>
<td>(\Rightarrow) all vertices: horiz. & vert. distances (\geq 1), and on the grid,</td>
<td></td>
</tr>
<tr>
<td>(\Rightarrow) the area is (O(n^2)),</td>
<td>example?</td>
</tr>
<tr>
<td>(\Rightarrow) parent always centered above children.</td>
<td></td>
</tr>
</tbody>
</table>

Min. width (but without the grid): by LP!

Min. width and on the grid: NP-hard!

\[\text{[Supowit & Reingold ’83]}\]
Example of width variation

Output of the Algorithm:

Optimal Drawing:
Example of width variation

Output of the Algorithm:

Optimal Drawing:
2. Radial Drawings of Trees

- balanced drawings of binary trees \(O(nh) \)
- radial drawings of trees \(O(nh) \)
- compact drawings of trees \(O(n \log n) \)
- upward drawings of series parallel graphs \(\text{exp.} \)
Example: Radial Tree Layouts
An Algorithm for Radial Layout?
Restricting to Smaller Sectors

\[
\cos \tau = \frac{\rho_i}{\rho_{i+1}}
\]
Restricting to Smaller Sectors

\[\cos \tau = \frac{\rho_i}{\rho_{i+1}} \]
Restricting to Smaller Sectors

\[\cos \tau = \frac{\rho_i}{\rho_{i+1}} \]

\[\Rightarrow \begin{cases} \alpha_{\text{min}} = \alpha_v - \arccos \frac{\rho_i}{\rho_{i+1}} \\ \alpha_{\text{max}} \end{cases} \]
Restricting to Smaller Sectors

\[\cos \tau \equiv \frac{\rho_i}{\rho_{i+1}} \]

\[\alpha_{\text{min}} = \alpha_v - \arccos \frac{\rho_i}{\rho_{i+1}} \]

\[\alpha_{\text{max}} = \alpha_v + \arccos \frac{\rho_i}{\rho_{i+1}} \]
Pseudocode for radial tree layout

RadialTreeLayout(tree T, root $r \in T$, radii $\rho_1 < \cdots < \rho_k$)

begin
 $postorder(r)$
 $preorder(r, 0, 0, 2\pi)$
 return $(d_v, \alpha_v)_{v \in V(T)}$
 \{vertex pos./ polar coord.\}
end

postorder(vertex v)

$calculate the size of the subtree recursively$
Pseudocode for radial tree layout

RadialTreeLayout(tree T, root $r \in T$, radii $\rho_1 < \cdots < \rho_k$)

begin

 \hspace{1em} postorder(r)
 \hspace{1em} preorder($r, 0, 0, 2\pi$)
 \hspace{1em} return $((d_v, \alpha_v))_{v \in V(T)}$
 \hspace{1em} \{vertex pos./ polar coord.\}

postorder(vertex v)

 $n_v \leftarrow 1$
 \hspace{1em} foreach child w von v do
 \hspace{1em} postorder(w)
 \hspace{2em} $n_v \leftarrow n_v + n_w$
Pseudocode for radial tree layout

RadialTreeLayout(tree T, root $r \in T$, radii $\rho_1 < \cdots < \rho_k$)

\begin{verbatim}
begin
 \textit{postorder}(r)
 \textit{preorder}(r, 0, 0, 2\pi)
 return $(d_v, \alpha_v)_{v \in V(T)}$
 \{vertex pos./ polar coord.\}

\textit{postorder}(vertex v)
 $n_v \leftarrow 1$
 \textbf{foreach} child w von v \textbf{do}
 \textit{postorder}(w)
 $n_v \leftarrow n_v + n_w$
\end{verbatim}
Pseudocode for radial tree layout

RadialTreeLayout(tree T, root $r \in T$, radii $\rho_1 < \cdots < \rho_k$)

\begin{align*}
\text{begin} & \\
& \text{postorder}(r) \\
& \text{preorder}(r, 0, 0, 2\pi) \\
& \text{return } (d_v, \alpha_v)_{v \in V(T)} \\
& \{\text{vertex pos./ polar coord.}\}
\end{align*}

postorder(vertex v)

\begin{align*}
& n_v \leftarrow 1 \\
& \text{foreach child } w \text{ von } v \text{ do} \\
& \quad \text{postorder}(w) \\
& \quad n_v \leftarrow n_v + n_w
\end{align*}

size of the subtree $T(v)$
Pseudocode for radial tree layout

RadialTreeLayout(tree T, root $r \in T$, radii $\rho_1 < \cdots < \rho_k$)

begin

 preorder(r, 0, 0, 2π)

 return $(d_v, \alpha_v)_{v \in V(T)}$

 {vertex pos./ polar coord.}

end

preorder(vertex v, t, α_{min}, α_{max})

$$d_v \leftarrow \rho_t$$
$$\alpha_v \leftarrow (\alpha_{\text{min}} + \alpha_{\text{max}})/2$$

if $t > 0$ then

 $$\alpha_{\text{min}} \leftarrow \max\{\alpha_{\text{min}}, \alpha_v - \arccos \frac{\rho_t}{\rho_{t+1}}\}$$

 $$\alpha_{\text{max}} \leftarrow \min\{\alpha_{\text{max}}, \alpha_v + \arccos \frac{\rho_t}{\rho_{t+1}}\}$$

left $\leftarrow \alpha_{\text{min}}$

foreach child w von v do

 preorder(w, $t + 1$, α_{min}, α_{max})

 $$\alpha_v \leftarrow \arccos \frac{\rho_t}{\rho_{t+1}}$$

 $$\alpha_{\text{max}} \leftarrow \min\{\alpha_{\text{max}}, \alpha_v + \arccos \frac{\rho_t}{\rho_{t+1}}\}$$

 left \leftarrow right

left \leftarrow right

postorder(vertex v)

$$n_v \leftarrow 1$$

foreach child w von v do

 postorder(w)

 $$n_v \leftarrow n_v + n_w$$

size of the subtree $T(v)$
Pseudocode for radial tree layout

RadialTreeLayout(tree T, root $r \in T$, radii $\rho_1 < \cdots < \rho_k$)

begin
 postorder(r)
 preorder($r, 0, 0, 2\pi$)
 return $(d_v, \alpha_v)_{v \in V(T)}$
 \{vertex pos./ polar coord.\}

postorder(vertex v)
 $n_v \leftarrow 1$
 foreach child w von v do
 postorder(w)
 $n_v \leftarrow n_v + n_w$

size of the subtree $T(v)$

preorder(vertex v, t, α_{min}, α_{max})
 $d_v \leftarrow \rho_t$
 $\alpha_v \leftarrow (\alpha_{\text{min}} + \alpha_{\text{max}})/2$
 if $t > 0$ then
 $\alpha_{\text{min}} \leftarrow \max\{\alpha_{\text{min}}, \alpha_v - \arccos \frac{\rho_t}{\rho_{t+1}}\}$
 $\alpha_{\text{max}} \leftarrow \min\{\alpha_{\text{max}}, \alpha_v + \arccos \frac{\rho_t}{\rho_{t+1}}\}$
 left $\leftarrow \alpha_{\text{min}}$
 foreach child w von v do
 right \leftarrow left $+ \frac{n_w}{n_v - 1} \cdot (\alpha_{\text{max}} - \alpha_{\text{min}})$
 preorder($w, t + 1, \text{left}, \text{right}$)
 left \leftarrow right
Pseudocode for radial tree layout

RadialTreeLayout(tree \(T \), root \(r \in T \), radii \(\rho_1 < \cdots < \rho_k \))

begin
 postorder(r)
 preorder(r, 0, 0, 2\pi)
 return \((d_v, \alpha_v)_{v \in V(T)}\) \{vertex pos./ polar coord.\}
end

postorder(vertex \(v \))

\(n_v \leftarrow 1 \)
foreach child \(w \) von \(v \) do
 postorder(w)
 \(n_v \leftarrow n_v + n_w \)

preorder(vertex \(v \), \(t, \alpha_{\text{min}}, \alpha_{\text{max}} \))

\(d_v \leftarrow \rho_t \)
\(\alpha_v \leftarrow (\alpha_{\text{min}} + \alpha_{\text{max}})/2 \) \{ output \}
if \(t > 0 \) then
 \(\alpha_{\text{min}} \leftarrow \max\{\alpha_{\text{min}}, \alpha_v - \arccos \frac{\rho_t}{\rho_{t+1}}\} \)
 \(\alpha_{\text{max}} \leftarrow \min\{\alpha_{\text{max}}, \alpha_v + \arccos \frac{\rho_t}{\rho_{t+1}}\} \)
left \(\leftarrow \alpha_{\text{min}} \)
foreach child \(w \) von \(v \) do
 right \(\leftarrow \) left + \(\frac{n_w}{n_v-1} \cdot (\alpha_{\text{max}} - \alpha_{\text{min}}) \)
 preorder(w, \(t + 1 \), left, right)
left \(\leftarrow \) right
Pseudocode for radial tree layout

RadialTreeLayout(tree T, root $r \in T$, radii $\rho_1 < \cdots < \rho_k$)

begin
 \text{postorder}(r)
 \text{preorder}(r, 0, 0, 2\pi)
 return $(d_v, \alpha_v)_{v \in V(T)}$
 \{vertex pos./ polar coord.\}

\text{postorder}(vertex v)
 $n_v \leftarrow 1$
 \textbf{foreach} child w von v \textbf{do}
 \text{postorder}(w)
 $n_v \leftarrow n_v + n_w$

preorder(vertex v, t, α_{\min}, α_{\max})
 $d_v \leftarrow \rho_t$
 $\alpha_v \leftarrow (\alpha_{\min} + \alpha_{\max})/2$
 \{output\}
 \textbf{if} $t > 0$ \textbf{then}
 $\alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_v - \arccos \frac{\rho_t}{\rho_{t+1}}\}$
 $\alpha_{\max} \leftarrow \min\{\alpha_{\max}, \alpha_v + \arccos \frac{\rho_t}{\rho_{t+1}}\}$
 \text{left} $\leftarrow \alpha_{\min}$
 \textbf{foreach} child w von v \textbf{do}
 \text{right} $\leftarrow \text{left} + \frac{n_w}{n_v-1} \cdot (\alpha_{\max} - \alpha_{\min})$
 \text{preorder}(w, $t+1$, left, right)
 \text{left} $\leftarrow \text{right}$

size of the subtree $T(v)$

Runtime?
Pseudocode for radial tree layout

RadialTreeLayout(tree T, root $r \in T$, radii $\rho_1 < \cdots < \rho_k$)

begin
 preorder(r, 0, 0, 2\pi)
 return $(d_v, \alpha_v)_{v \in V(T)}$

postorder(vertex v)
 $n_v \leftarrow 1$
 foreach child w von v do
 postorder(w)
 $n_v \leftarrow n_v + n_w$

end

preorder(vertex v, t, α_{min}, α_{max})

$d_v \leftarrow \rho_t$
$\alpha_v \leftarrow (\alpha_{\text{min}} + \alpha_{\text{max}})/2$

if $t > 0$ then
 $\alpha_{\text{min}} \leftarrow \max\{\alpha_{\text{min}}, \alpha_v - \arccos \frac{\rho_t}{\rho_{t+1}}\}$;
 $\alpha_{\text{max}} \leftarrow \min\{\alpha_{\text{max}}, \alpha_v + \arccos \frac{\rho_t}{\rho_{t+1}}\}$;

left $\leftarrow \alpha_{\text{min}}$
foreach child w von v do
 right $\leftarrow left + \frac{n_w}{n_v-1} \cdot (\alpha_{\text{max}} - \alpha_{\text{min}})$
 preorder(w, $t+1$, left, right)
 left $\leftarrow right$

size of the subtree $T(v)$

Runtime? $O(n)$.
Pseudocode for radial tree layout

RadialTreeLayout(tree T, root $r \in T$, radii $\rho_1 < \cdots < \rho_k$)

begin
 postorder(r)
 preorder(r, 0, 0, 2π)
 return $(d_v, \alpha_v)_{v \in V(T)}$
 {vertex pos./ polar coord.}

postorder(vertex v)

$n_v \leftarrow 1$

foreach child w von v do
 postorder(w)
 $n_v \leftarrow n_v + n_w$

preorder(vertex v, t, α_{min}, α_{max})

$d_v \leftarrow \rho_t$
$\alpha_v \leftarrow (\alpha_{\text{min}} + \alpha_{\text{max}})/2$
{ output }

if $t > 0$ then

$\alpha_{\text{min}} \leftarrow \max\{\alpha_{\text{min}}, \alpha_v - \arccos\frac{\rho_t}{\rho_{t+1}}\}$
$\alpha_{\text{max}} \leftarrow \min\{\alpha_{\text{max}}, \alpha_v + \arccos\frac{\rho_t}{\rho_{t+1}}\}$

left $\leftarrow \alpha_{\text{min}}$

foreach child w von v do

right \leftarrow left + $\frac{n_w}{n_v-1} \cdot (\alpha_{\text{max}} - \alpha_{\text{min}})$
preorder(w, $t + 1$, left, right)
left \leftarrow right

size of the subtree $T(v)$

Runtime? $O(n)$.
Correctness?
Pseudocode for radial tree layout

RadialTreeLayout(tree T, root $r \in T$, radii $\rho_1 < \cdots < \rho_k$)

begin
 postorder(r)
 preorder($r, 0, 0, 2\pi$)
 return $(d_v, \alpha_v)_{v \in V(T)}$
 \{vertex pos./ polar coord.\}

postorder(vertex v)

$n_v \leftarrow 1$

foreach child w von v do
 postorder(w)
 $n_v \leftarrow n_v + n_w$

preorder(vertex v, t, α_{min}, α_{max})

$d_v \leftarrow \rho_t$

$\alpha_v \leftarrow (\alpha_{\text{min}} + \alpha_{\text{max}})/2$

\{output\}

if $t > 0$ then
 $\alpha_{\text{min}} \leftarrow \max\{\alpha_{\text{min}}, \alpha_v - \arccos \frac{\rho_t}{\rho_{t+1}}\}$

 $\alpha_{\text{max}} \leftarrow \min\{\alpha_{\text{max}}, \alpha_v + \arccos \frac{\rho_t}{\rho_{t+1}}\}$

left $\leftarrow \alpha_{\text{min}}$

foreach child w von v do
 right \leftarrow left $+$ $\frac{n_w}{n_v-1} \cdot (\alpha_{\text{max}} - \alpha_{\text{min}})$

 preorder($w, t+1, \text{left}, \text{right}$)

 left \leftarrow right

size of the subtree $T(v)$

Runtime? $O(n)$. Correctness? ✓
Overview

- balanced drawings of binary trees \(O(nh) \)
- radial drawings of trees \(O(nh) \)
- compact drawings of trees \(O(n \log n) \)
- upward drawings of series parallel graphs \(\exp. \)
Definition.

An *hv-drawing* of a binary tree is a straight line drawing, so that for each vertex v:
Definition.

An *hv-drawing* of a binary tree is a straight line drawing, so that for each vertex v:

\Rightarrow each child of v is either directly right or directly below v.
Definition.

An *hv-drawing* of a binary tree is a straight line drawing, so that for each vertex v:

- each child of v is either directly right or directly below v.

- the smallest axis-parallel rectangle enclosing the subtrees of the children of v are disjoint.
hv-Drawings

Definition.

An *hv-drawing* of a binary tree is a straight line drawing, so that for each vertex v:

- each child of v is either directly right or directly below v.
- the smallest axis-parallel rectangle enclosing the subtrees of the children of v are disjoint.

horizontal combination
hv-Drawings

Definition.

An *hv-drawing* of a binary tree is a straight line drawing, so that for each vertex v:

- each child of v is either directly right or directly below v.
- the smallest axis-parallel rectangle enclosing the subtrees of the children of v are disjoint.
Definition.

An *hv-drawing* of a binary tree is a straight line drawing, so that for each vertex v:

> each child of v is either directly right or directly below v.

> the smallest axis-parallel rectangle enclosing the subtrees of the children of v are disjoint.
Algorithm \textit{RightHeavyHVTreeDraw}

\begin{itemize}
\item[(⇒)] Recursively construct drawings of the left and right subtrees from the root.
\end{itemize}
Algorithm \textit{RightHeavyHVTreeDraw}

\gg Recursively construct drawings of the left and right subtrees from the root.

\gg Place the larger subtree on the right using the horizontal combination, and the smaller on the left
Algorithm *RightHeavyHVTreeDraw*

- Recursively construct drawings of the left and right subtrees from the root.
- Place the larger subtree on the right using the horizontal combination, and the smaller on the left

Size of a subtree :\(=\) number of vertices
Algorithm RightHeavyHVTreDraw

- Recursively construct drawings of the left and right subtrees from the root.
- Place the larger subtree on the right using the horizontal combination, and the smaller on the left.

Size of a subtree := number of vertices
Algorithm \textit{RightHeavyHVTreeDraw}

\begin{itemize}
\item Recursively construct drawings of the left and right subtrees from the root.
\item Place the larger subtree on the right using the horizontal combination, and the smaller on the left
\end{itemize}

Size of a subtree := number of vertices
Algorithm *RightHeavyHVTeeDraw*

- Recursively construct drawings of the left and right subtrees from the root.
- Place the larger subtree on the right using the horizontal combination, and the smaller on the left.

Size of a subtree := number of vertices
Algorithm *RightHeavyHVTreeDraw*

- Recursively construct drawings of the left and right subtrees from the root.
- Place the larger subtree on the right using the horizontal combination, and the smaller on the left

Size of a subtree := number of vertices
Algorithm \textit{RightHeavyHVTreeDraw}

\begin{itemize}
\item Recursively construct drawings of the left and right subtrees from the root.
\item Place the larger subtree on the right using the horizontal combination, and the smaller on the left
\end{itemize}

Size of a subtree := number of vertices
Algorithm *RightHeavyHVTreeDraw*

- Recursively construct drawings of the left and right subtrees from the root.
- Place the larger subtree on the right using the horizontal combination, and the smaller on the left.

Size of a subtree := number of vertices
Algorithm *RightHeavyHVTeeDraw*

- Recursively construct drawings of the left and right subtrees from the root.
- Place the larger subtree on the right using the horizontal combination, and the smaller on the left.

Size of a subtree := number of vertices

Obs. The drawing has width \leq
Algorithm RightHeavyHVTreDraw

- Recursively construct drawings of the left and right subtrees from the root.
- Place the larger subtree on the right using the horizontal combination, and the smaller on the left.

Size of a subtree := number of vertices

Obs. The drawing has width ≤ \(n \), height ≤
Algorithm *RightHeavyHVTreeDraw*

- Recursively construct drawings of the left and right subtrees from the root.
- Place the larger subtree on the right using the horizontal combination, and the smaller on the left.

Size of a subtree := number of vertices

Obs. The drawing has width \(\leq n\), height \(\leq\)
Algorithm *RightHeavyHVTreeDraw*

- Recursively construct drawings of the left and right subtrees from the root.
- Place the larger subtree on the right using the horizontal combination, and the smaller on the left

Size of a subtree := number of vertices

\[\text{Observe.} \quad \text{The drawing has width } \leq n, \quad \text{height } \leq \]

\[\text{16}\]
Algorithm *RightHeavyHVTTreeDraw*

- Recursively construct drawings of the left and right subtrees from the root.
- Place the larger subtree on the right using the horizontal combination, and the smaller on the left.

Size of a subtree := number of vertices

Obs. The drawing has width \(\leq n \), height \(\leq \)
Algorithm $RightHeavyHVTreeDraw$

- Recursively construct drawings of the left and right subtrees from the root.
- Place the larger subtree on the right using the horizontal combination, and the smaller on the left.

Size of a subtree := number of vertices

$\text{Obs.} \quad$ The drawing has width $\leq n$, height $\leq \cdot 2$
Algorithm \textit{RightHeavyHVTreeDraw}

\begin{itemize}
 \item Recursively construct drawings of the left and right subtrees from the root.
 \item Place the larger subtree on the right using the horizontal combination, and the smaller on the left.
\end{itemize}

\text{Size of a subtree} := \text{number of vertices}

\textbf{Obs.} \quad The drawing has width $\leq n$, height $\leq \cdot 2$
Algorithm *RightHeavyHVTREEDRAW*

- Recursively construct drawings of the left and right subtrees from the root.
- Place the larger subtree on the right using the horizontal combination, and the smaller on the left.

Size of a subtree := number of vertices

Obs. The drawing has width $\leq n$, height $\leq \cdot 2$
Algorithm *RightHeavyHVTreeDraw*

>> Recursively construct drawings of the left and right subtrees from the root.

>> Place the larger subtree on the right using the horizontal combination, and the smaller on the left

Size of a subtree := number of vertices

\[\text{Obs. } \text{ The drawing has width } \leq n, \text{ height } \leq \]

\[\text{at least } \cdot 2\]

\[\text{at least } \cdot 2\]
Algorithm *RightHeavyHVTreeDraw*

- Recursively construct drawings of the left and right subtrees from the root.
- Place the larger subtree on the right using the horizontal combination, and the smaller on the left

Size of a subtree := number of vertices

\[
\text{at least } \cdot 2 \\
\text{at least } \cdot 2
\]

Obs. The drawing has width \(\leq n \), height \(\leq \)}
Algorithm *RightHeavyHVTreeDraw*

- Recursively construct drawings of the left and right subtrees from the root.
- Place the larger subtree on the right using the horizontal combination, and the smaller on the left.

Size of a subtree := number of vertices

\[
\text{at least } 2^{\cdot 2} \quad \text{at least } 2^{\cdot 2} \quad \text{at least } 2^{\cdot 2}
\]

\[16\]

Obs. The drawing has width \(\leq n \), height \(\leq \)
Algorithm *RightHeavyHVTreeDraw*

- Recursively construct drawings of the left and right subtrees from the root.
- Place the larger subtree on the right using the horizontal combination, and the smaller on the left.

Size of a subtree $:= \text{number of vertices}$

```
16
```

Obs. The drawing has width $\leq n$, height $\leq \log_2 n$.

```
 at least $\cdot 2$
```
```
 at least $\cdot 2$
```
```
 at least $\cdot 2$
```
Overview

- balanced drawings of binary trees $O(nh)$
- radial drawings of trees $O(nh)$
- compact drawings of trees $O(n \log n)$
- upward drawings of series parallel graphs exp.
Series Parallel Graphs

simple series parallel graph
Series Parallel Graphs

- simple series parallel graph

- Induction: combining two series parallel graphs $G_1, G_2 \ldots$
Series Parallel Graphs

- simple series parallel graph

- Induction: combining two series parallel graphs G_1, G_2, \ldots

\[t_1 = s_2 \]

\[s_1 \quad \quad t_1 \quad \quad t_2 \quad \quad s_2 \]

\[G_1 \quad G_2 \]
Series Parallel Graphs

- simple series parallel graph

- Induction: combining two series parallel graphs $G_1, G_2 \ldots$

- \ldots series \ldots

- \ldots or parallel.
Decomposition Tree for SP-graphs

Generalization: SPQR-Tree
SP-Graphs: applications

Flow Charts

PERT-Diagrams
(Program Evaluation and Review Technique)
SP-Graphs: applications

Flow Charts

Flow Charts

PERT-Diagrams

(Program Evaluation and Review Technique)

Provides:

Linear time algorithms for NP-complete problems (e.g., Maximum Independent Set)
Grid Size

Theorem [Bertolazzi et al. ’92]

There is a family \((G_n)_{n \in \mathbb{N}}\) of embedded SP-graphs where \(G_n\) has \(2^n\) vertices and every upward planar drawing of \(G_n\) requires \(\Omega(4^n)\) area.
Theorem [Bertolazzi et al. '92]

There is a family $(G_n)_{n \in \mathbb{N}}$ of embedded SP-graphs where G_n has 2^n vertices and every upward planar drawing of G_n requires $\Omega(4^n)$ area.

Proof:

21
Theorem [Bertolazzi et al. ’92]

There is a family \((G_n)_{n \in \mathbb{N}} \) of embedded SP-graphs where \(G_n \) has \(2^n \) vertices and every upward planar drawing of \(G_n \) requires \(\Omega(4^n) \) area.

Proof:

\[G_0 \]
Grid Size

Theorem [Bertolazzi et al. ’92]

There is a family \((G_n)_{n \in \mathbb{N}}\) of embedded SP-graphs where \(G_n\) has \(2^n\) vertices and every upward planar drawing of \(G_n\) requires \(\Omega(4^n)\) area.

Proof:
Grid Size

Theorem [Bertolazzi et al. '92]

There is a family \((G_n)_{n \in \mathbb{N}}\) of embedded SP-graphs where \(G_n\) has \(2^n\) vertices and every upward planar drawing of \(G_n\) requires \(\Omega(4^n)\) area.

Proof:

\[
\begin{align*}
G_0 & \quad G_n & \quad G_{n+1} \\
t_0 & \quad t_n & \quad t_{n+1} \\
s_0 & \quad s_n & \quad s_{n+1}
\end{align*}
\]
Grid Size

Theorem [Bertolazzi et al. ’92]

There is a family \((G_n)_{n \in \mathbb{N}}\) of embedded SP-graphs where \(G_n\) has \(2^n\) vertices and every upward planar drawing of \(G_n\) requires \(\Omega(4^n)\) area.

Proof:

\[G_0 \]

\[G_{n+1} \]

\[t_0 \]

\[s_0 \]

\[t_n \]

\[s_n \]

\[t_{n+1} \]

\[s_{n+1} \]
Grid Size

Theorem [Bertolazzi et al. ’92]

There is a family \((G_n)_{n \in \mathbb{N}}\) of embedded SP-graphs where \(G_n\) has \(2^n\) vertices and every upward planar drawing of \(G_n\) requires \(\Omega(4^n)\) area.

Proof:
Grid Size

Theorem [Bertolazzi et al. ’92]

There is a family \((G_n)_{n \in \mathbb{N}}\) of embedded SP-graphs where \(G_n\) has \(2^n\) vertices and every upward planar drawing of \(G_n\) requires \(\Omega(4^n)\) area.

Proof:
Grid Size

Theorem [Bertolazzi et al. '92]

There is a family \((G_n)_{n \in \mathbb{N}}\) of embedded SP-graphs where \(G_n\) has \(2^n\) vertices and every upward planar drawing of \(G_n\) requires \(\Omega(4^n)\) area.

Proof:

\[
a(G_{n+1}) \geq a(\Pi) + a(\Delta_1) + a(\Delta_2)
\]
Grid Size

Theorem [Bertolazzi et al. ’92]

There is a family \((G_n)_{n \in \mathbb{N}}\) of embedded SP-graphs where \(G_n\) has \(2^n\) vertices and every upward planar drawing of \(G_n\) requires \(\Omega(4^n)\) area.

Proof:

\[
a(G_{n+1}) \geq a(\Pi) + a(\Delta_1) + a(\Delta_2)
\]
Grid Size

Theorem [Bertolazzi et al. ’92]

There is a family \((G_n)_{n \in \mathbb{N}}\) of embedded SP-graphs where \(G_n\) has \(2^n\) vertices and every upward planar drawing of \(G_n\) requires \(\Omega(4^n)\) area.

Proof:

\[
a(G_{n+1}) \geq a(\Pi) + a(\Delta_1) + a(\Delta_2) \geq 2 \cdot a(\Pi)
\]
Grid Size

Theorem [Bertolazzi et al. '92]

There is a family \((G_n)_{n \in \mathbb{N}} \) of embedded SP-graphs where \(G_n \) has \(2n \) vertices and every upward planar drawing of \(G_n \) requires \(\Omega(4^n) \) area.

Proof:

\[
a(G_{n+1}) \geq a(\Pi) + a(\Delta_1) + a(\Delta_2) \geq 2 \cdot a(\Pi) \geq 4 \cdot a(G_n)
\]