Algorithmic Graph Theory

Sommer Term 2015

Lecture #11

Fixed Parameter Tractability

Prof. R. Inkulu

IIT Guwahati
Approaches to NP-Hard Problems

- Exponential-time algorithms, for example: back-tracking
- Approximation algorithms: Trade quality against runtime
- Heuristics: empirical investigations on benchmark sets
- Randomization: Searching for a needle in a stack of hay
- Design of parametrized algorithms
Today’s Example: Vertex Cover

Def. (Let’s recall...) Let \(G = (V, E) \) be an undirected graph. We call \(C \subseteq V \) a vertex cover of \(G \) if \(\{u, v\} \cap C \neq \emptyset \) for all \(uv \in E \).

Prob. Minimum Vertex Cover – Optimization problem
Given: Graph \(G \)
Find: a minimum-cardinality vertex cover of \(G \)

Prob. \(k \)-vertex cover (\(k \)-VC) – Decision problem
Given: Graph \(G \), positive integer \(k \)
Find: Vertex cover of size \(\leq k \) of \(G \) – if such a cover exists (otherwise return „no“)
Previous Work

- one of the first problems that was shown NP-hard
 \((\text{SAT} \preceq_p \text{CLIQUE} \preceq_p \text{VC} \preceq_p \ldots)\) \[\text{[Karp, 1972]}\]

- one of the six fundamental NP-hard problems in the classic book:
 \[\text{[Garey & Johnson, 1979]}\]

- can be approximated:
 Maximal matching “yields” factor-2 approximation.

- \ldots, but not arbitrarily well:
 There is no faktor-1.361 approximation algorithm for VC if \(\mathcal{P} \neq \mathcal{NP}\).
 \[\text{[Dinur & Safra, 2004]}\]
An Exact Algorithm for k-VC

BruteForceVC(Graph G, Integer k)

foreach $C \in \binom{V}{k}$ do

 // test whether C is a VC

 $vc = true$

 foreach $uv \in E$ do

 if $\{u, v\} \cap C = \emptyset$ then

 $vc = false$

 if vc then

 return ("yes", C

 return ("no", \emptyset

Runtime. $O(n^k m)$ – This is not polynomial in the size of the input ($= n + m$) since k is not a constant, but part of the input.
A New Aim

Find an algorithm for k-VC with running time

$$O(f(k) + |I|^c),$$

where $f : \mathbb{N} \rightarrow \mathbb{N}$ is a computable function (independent of I), I is the given instance, c a constant (independent of I).

That is, the runtime must depend
– arbitrarily on the parameter k, hardness of the problem
– polynomially on the size $|I|$ of the instance I.

A problem that can be solved within this time bound is called fixed-parameter tractable with respect to k.

$\mathcal{FPT} =$ class of fixed-parameter tractable problems.

Comment. The class \mathcal{FPT} does not change if we replace $+$ by \cdot.
A Few Simple Observations . . .

Let \(G \) be a graph, \(C \) VC of \(G \), \(v \) vertex not in \(C \). Then which vertices are certainly contained in \(C \)?

Obs. 1. Let \(G \) be a graph, \(C \) a VC of \(G \), \(v \) a vertex. Then \(v \in C \) or \(N(v) \subseteq C \).

Consider decision problem \(k\)-VC.
What holds for vertices of degree \(> k \)?

Obs. 2. Every vertex of degree \(> k \) is contained in every \(k\)-VC.

What happens if \(|E| > k^2 \) and all vertices are of degree \(\leq k \)?

Obs. 3. If \(|E| > k^2 \) and \(\Delta(G) := \max_{v \in V} \deg v \leq k \), then \(G \) has no \(k\)-VC.
Algorithm of Buss

BussVC(Graph G, Integer k)

I) Reduce to the kernel of the problem

$C = \{v \in V | \deg v > k\}$
if $|C| > k$ then return “no”

$G' = (V', E') := G[V \setminus C]$ (without isolated vertices)
$k' = k - |C|$
if $|E'| > k'^2$ then return “no”

II) Solve remaining problem by brute force

$(vc, C') = \text{BruteForceVC}(G', k')$
return $(vc, C \cup C')$

Runtime. $O(n + m) \text{ time}$

Hence: k-VC $\in \mathcal{FPT}$!
Search Tree Algorithm

Idea. Improve Phase II by building a search tree.

If there is a leaf ℓ with $E_\ell = \emptyset$, then C_ℓ is a k-VC of G. If such a leaf doesn’t exist, then G doesn’t have any k-VC.

#nodes: $S(k) \leq 2S(k-1) + 1$, $S(0) = 1 \implies S(k) \leq 2^{k+1} - 1 \in O(2^k) \implies \text{Runtime: } O^*(2^k)$

If there is a leaf ℓ with $E_\ell = \emptyset$, then C_ℓ is a k-VC of G. If such a leaf doesn’t exist, then G doesn’t have any k-VC.
The Degree-3 Algorithm

Idea. Improve bound for $|N(v)|$.

⇒ tree size $S(k) = S(k - 3) + S(k - 1) + 1$, $S(\leq 3) = \text{const.}$

branching vector $(3, 1)$

Test $S(k) = z^k - 1 \Rightarrow z^k = z^{k-3} + z^{k-1} \cdot \frac{1}{z^{k-3}}$

⇒ Characteristic polynomial: $z^3 = 1 + z^2$

⇒ Largest real solution: $z \approx 1.466$ (branching number)

⇒ $S(k) \in O(1.466^k)$ – but how do we guarantee $\deg v \geq 3$?
Kernelization II

Previous Kernelization:

rule k: Put vertices of deg. $\geq k$ into cover C.
rule 0: Eliminate vertices of degree 0.

Improved Kernelization:

rule 1: Eliminate vertices of degree 1:

- set $G' = G - \{v, w\}$
- set $k' = k - 1$
- solve (G', k', C')
- set $C = C' \cup \{w\}$

Claim. C is a k-VC of G \iff C' is a k'-VC of G'.

\Rightarrow Suppose \exists edge e in G' not covered by C'. But then e is not covered by C either.

\Leftarrow w covers all edges not contained in G'. So if C' covers G', then $C' \cup \{w\}$ covers G.
Improved Kernelization:

rule 2.1: Eliminate deg-2 vertices whose neighbors aren’t adjacent.

- set $k' = k - 1$
- solve (G', k', C')
- If vertex uw is in C', put u and w in C, otherwise put v in C.

rule 2.2: Eliminate deg-2 vertices whose neighbors are adjacent.

- set $k' = k - 2$
- solve (G', k', C')
- set $C = C' \cup \{u, w\}$
The Degree-3 Algorithm

Idea: Apply the improved kernelization *in each node* of the search tree *exhaustively*!

\[\Rightarrow \textbf{Runtime: } O(nk + k^2 \cdot 1,466^k) \subseteq O^*(1.466^k) \]

The Degree-4 Algorithm

rule 3.1: Eliminate deg-3 vertices whose neighbors aren’t adjacent.

\[\Rightarrow S(k) \leq S(k - 4) + S(k - 1) + 1, \quad S(\leq 4) = \text{const.} \]

rule 3.2: Eliminate deg-3 vertices whose neighbors are adjacent.

\[\Rightarrow \text{Charakteristic polynomial: } z^4 = 1 + z^3 \]

\[\Rightarrow \text{Largest real solution: } z \approx 1.38 \]

\[\Rightarrow \text{Search tree has size } S(k) \in O(1.38^k) \]
Conclusions

- k-VC can be solved exactly in $O(nk + 1.38^k k^2)$ time by the degree-4 algorithm.

Currently fastest algorithm for k-VC:
$O(nk + 1.274^k)$ time \[\text{[Chen, Kanj, Xia, MFCS’06]}\]

- Parametrized complexity =
 new toolbox for NP-hard problems:
 kernelization, DP tables, search trees, . . .

- It always makes sense to identify bounded parameters –
 FPT exploits them!

- hope:
 “natural” problem $P \in \mathcal{FPT} \Rightarrow f(k)$ bearable.
Books about **FPT**

- **Parameterized Complexity**
 - R.G. Downey
 - M.R. Fellows
 - 1999

- **Parameterized Complexity Theory**
 - Jörg Flum
 - Martin Grohe
 - 2006

- **Invitation to Fixed-Parameter Algorithms**
 - Rolf Niedermeier
 - 2006