Algorithmic Graph Theory

Sommer Term 2015

Lecture #10

Testing Planarity

Prof. Rajasekhar Inkulu

IIT Guwahati
Planarity Test

Theorem. [Hopcroft & Tarjan, J. ACM 1974]
Let G be a simple undirected graph with n vertices. The planarity of G can be tested in $O(n)$ time.

John Edward Hopcroft
*1939, Seattle, WA, U.S.A.

Robert Endre Tarjan
*1948 Pomona, CA, USA
Planarity Test

Theorem. [Hopcroft & Tarjan, J. ACM 1974]
Let G be a simple undirected graph with n vertices. The planarity of G can be tested in $O(n)$ time.

Planarity Test

Theorem. [Hopcroft & Tarjan, J. ACM 1974]
Let G be a simple undirected graph with n vertices. The planarity of G can be tested in $O(n)$ time.

We will treat a simpler, but slower algorithm.
Planarity Test II

Theorem. [Auslander & Parter 1961]
Let G be a simple undirected graph with n vertices. The planarity of G can be tested in $O(n^3)$ time.
Planarity Test II

Theorem. [Auslander & Parter 1961]
Let G be a simple undirected graph with n vertices. The planarity of G can be tested in $O(n^3)$ time.

Observation. G planar \iff each of its connected components is planar.
Planarity Test II

Theorem. [Auslander & Parter 1961]
Let \(G \) be a simple undirected graph with \(n \) vertices. The planarity of \(G \) can be tested in \(O(n^3) \) time.

\[G \text{ planar } \iff \text{ each of its connected components is planar}. \]

\[\Rightarrow \text{ It suffices to treat connected graphs.} \]
2-Connectivity

Claim. G planar \iff each of its 2-connected components (2CC) is planar.
2-Connectivity

Claim. \(G \) planar \(\iff \) each of its 2-connected components (2CC) is planar.
2-Connectivity

Claim. G planar \iff each of its 2-connected components (2CC) is planar.

Maximal vertex set $K \subseteq V$ such that $G[K]$ is 2-connected.

The 2CC are connected via *cut vertices*.

The adjacency graph of the 2CC is the so-called *2-block tree*.
2-Connectivity

Claim. G planar \iff each of its 2-connected components (2CC) is planar.

The 2CC are connected via *cut vertices*.

The adjacency graph of the 2CC is the so-called **2-block tree**.

Maximal vertex set $K \subseteq V$ such that $G[K]$ is 2-connected.
2-Connectivity

Claim. \(G \) planar \(\iff \) each of its 2-connected components (2CC) is planar.

The 2CC are connected via cut vertices.

The adjacency graph of the 2CC is the so-called 2-block tree.

Maximal vertex set \(K \subseteq V \) such that \(G[K] \) is 2-connected.
2-Connectivity

Claim. \(G \) planar \(\iff \) each of its 2-connected components (2CC) is planar.

The 2CC are connected via cut vertices.

The adjacency graph of the 2CC is the so-called 2-block tree.

Maximal vertex set \(K \subseteq V \) such that \(G[K] \) is 2-connected.
2-Connectivity

Claim. G planar \iff each of its 2-connected components (2CC) is planar.

The 2CC are connected via cut vertices.
The adjacency graph of the 2CC is the so-called 2-block tree.

Maximal vertex set $K \subseteq V$ such that $G[K]$ is 2-connected.

\Rightarrow suffices to consider 2-connected graphs!
Strategy

Aim. Planarity test for 2-connected graphs.
Strategy

Aim. Planarity test for 2-connected graphs.

Strategy.

- Compute separating cycle and partition graph in pieces.
- Test pieces recursively.
Def. Let C be a cycle, and let $e, e' \not\in C$ be edges.
Def. Let C be a cycle, and let $e, e' \not\in C$ be edges.
Def. Let C be a cycle, and let $e, e' \notin C$ be edges. We say e and e' are *equivalent* (with respect to C), if they are connected by a path that does not touch C.
Def. Let C be a cycle, and let $e, e' \notin C$ be edges. We say e and e' are *equivalent* (with respect to C), if they are connected by a path that does not touch C. We call the resulting equivalence classes *pieces* (w.r.t. C).
Pieces

Def. Let C be a cycle, and let $e, e' \not\in C$ be edges. We say e and e' are *equivalent* (with respect to C), if they are connected by a path that does not touch C. We call the resulting equivalence classes *pieces* (w.r.t. C).
Pieces

Def. Let C be a cycle, and let $e, e' \notin C$ be edges. We say e and e' are equivalent (with respect to C), if they are connected by a path that does not touch C. We call the resulting equivalence classes pieces (w.r.t. C).

Question: How many pieces are there?
Piecess

Def. Let C be a cycle, and let $e, e' \not\in C$ be edges. We say e and e' are *equivalent* (with respect to C), if they are connected by a path that does not touch C. We call the resulting equivalence classes *pieces* (w.r.t. C).
Pieces

Def. Let C be a cycle, and let $e, e' \not\in C$ be edges. We say e and e' are *equivalent* (with respect to C), if they are connected by a path that does not touch C. We call the resulting equivalence classes *pieces* (w.r.t. C).

Note.

Every piece has connectors (on C).
Pieces

Def. Let C be a cycle, and let $e, e' \not\in C$ be edges. We say e and e' are equivalent (with respect to C), if they are connected by a path that does not touch C. We call the resulting equivalence classes pieces (w.r.t. C).

Note.
Every piece has ≥ 2 connectors (on C).
Def. A cycle C is *separating* if it induces at least two pieces.
Def. A cycle C is *separating* if it induces at least two pieces.

- C_1 is separating.
- C_2 is not separating.
Existence of a Separating Cycle

Lem$_1$. Let C be a *non-separating* cycle with piece P. If P is not a path, G contains a separating cycle C', that consists of a piece of C and a path in P connecting two connectors.

Proof.
Existence of a Separating Cycle

Lem$_1$. Let C be a *non-separating* cycle with piece P. If P is *not* a path, G contains a separating cycle C', that consists of a piece of C and a path in P connecting two connectors.

Proof.

Let u,v be consecutive connectors of P in the cyclic order on C.
Existence of a Separating Cycle

Lem\textsubscript{1}. Let C be a *non-separating* cycle with piece P. If P is *not* a path, G contains a separating cycle C', that consists of a piece of C and a path in P connecting two connectors.

Proof.

Let u, v be consecutive connectors of P in the cyclic order on C.

Consider u–v path γ on C w/o connectors.
Existence of a Separating Cycle

Lem$_1$. Let C be a non-separating cycle with piece P. If P is not a path, G contains a separating cycle C', that consists of a piece of C and a path in P connecting two connectors.

Proof.
Let u, v be consecutive connectors of P in the cyclic order on C.

Consider u–v path γ on C w/o connectors.

Let π be a u–v path in P.
Existence of a Separating Cycle

Lem 1. Let C be a *non-separating* cycle with piece P. If P is *not* a path, G contains a separating cycle C', that consists of a piece of C and a path in P connecting two connectors.

Proof.

Let u, v be consecutive connectors of P in the cyclic order on C.

Consider u–v path γ on C w/o connectors.

Let π be a u–v path in P.

Consider cycle $C' := C + \pi - \gamma$.
Existence of a Separating Cycle

Lem$_1$. Let C be a *non-separating* cycle with piece P. If P is *not* a path, G contains a separating cycle C', that consists of a piece of C and a path in P connecting two connectors.

Proof.

Let u, v be consecutive connectors of P in the cyclic order on C.

Consider u–v path γ on C w/o connectors.

Let π be a u–v path in P.

Consider cycle $C' := C + \pi - \gamma$. $\Rightarrow \gamma$ is piece w.r.t. C'.
Existence of a Separating Cycle

Lem 1. Let C be a *non-separating* cycle with piece P. If P is *not* a path, G contains a separating cycle C', that consists of a piece of C and a path in P connecting two connectors.

Proof.

Let u, v be consecutive connectors of P in the cyclic order on C.

Consider u–v path γ on C w/o connectors.

Let π be a u–v path in P.

Consider cycle $C' := C + \pi - \gamma$. \(\Rightarrow\) γ is piece w.r.t. C'.

If P is not a path, there is an edge $e \in E(P) - E(\pi)$.
Existence of a Separating Cycle

Lem Let C be a *non-separating* cycle with piece P. If P is *not* a path, G contains a separating cycle C', that consists of a piece of C and a path in P connecting two connectors.

Proof.

Let u, v be consecutive connectors of P in the cyclic order on C.

Consider u–v path γ on C w/o connectors.

Let π be a u–v path in P.

Consider cycle $C' := C + \pi - \gamma$. $\Rightarrow \gamma$ is piece w.r.t. C'.

If P is not a path, there is an edge $e \in E(P) - E(\pi)$.

Piece δ that contains e is different from γ.
Existence of a Separating Cycle

Lem\(^1\). Let \(C \) be a non-separating cycle with piece \(P \). If \(P \) is not a path, \(G \) contains a separating cycle \(C' \), that consists of a piece of \(C \) and a path in \(P \) connecting two connectors.

Proof.

Let \(u, v \) be consecutive connectors of \(P \) in the cyclic order on \(C \).

Consider \(u-v \) path \(\gamma \) on \(C \) w/o connectors.

Let \(\pi \) be a \(u-v \) path in \(P \).

Consider cycle \(C' := C + \pi - \gamma \). \(\Rightarrow \) \(\gamma \) is piece w.r.t. \(C' \).

If \(P \) is not a path, there is an edge \(e \in E(P) - E(\pi) \).

Piece \(\delta \) that contains \(e \) is different from \(\gamma \). \(\Rightarrow \) \(C' \) separating. \(\square \)
Conflicting Pieces

G planar \Rightarrow every piece must be embedded either completely inside or completely outside of C.
Conflicting Pieces

G planar \Rightarrow every piece must be embedded either completely inside or completely outside of C.

Obs. Pieces $P \neq Q$ can be embedded on the same side of C. \Leftrightarrow There exists a path γ on C such that γ contains all connectors of Q but no interior vertex of γ is a connector for P.
Conflicting Pieces

\(G \) planar \(\Rightarrow \) every piece must be embedded either completely inside or completely outside of \(C \).

Obs. Pieces \(P \neq Q \) can be embedded on the same side of \(C \).
\[\Leftrightarrow \] There exists a path \(\gamma \) on \(C \) such that \(\gamma \) contains all connectors of \(Q \) but no interior vertex of \(\gamma \) is a connector for \(P \).

Def. Two pieces that cannot be embedded on the same side of \(C \) are *in conflict*.
Conflict Graph

Def. The *conflict graph* I (w.r.t. C) has a vertex for each piece and an edge whenever the two pieces are in conflict.
Conflict Graph

Def. The *conflict graph* I (w.r.t. C) has a vertex for each piece and an edge whenever the two pieces are in conflict.
Bipartite Conflict Graph

Lem_2. Let G be a graph with separating cycle C and conflict graph I. Graph G is planar if and only if

(i) for each piece P, the graph $C + P$ is planar and
(ii) the conflict graph I is bipartite.
Bipartite Conflict Graph

Lem$_2$. Let G be a graph with separating cycle C and conflict graph I. Graph G is planar if and only if

(i) for each piece P, the graph $C + P$ is planar and

(ii) the conflict graph I is bipartite.

Proof. Exercise. □
Bipartite Conflict Graph

Lemma 2. Let G be a graph with separating cycle C and conflict graph I. Graph G is planar if and only if

(i) for each piece P, the graph $C + P$ is planar and
(ii) the conflict graph I is bipartite.

Proof. Exercise. □
Bipartite Conflict Graph

Lem2. Let G be a graph with separating cycle C and conflict graph I. Graph G is planar if and only if

(i) for each piece P, the graph $C + P$ is planar and
(ii) the conflict graph I is bipartite.

Proof. Exercise. ⊌

I bipartite
⇒ G planar
Bipartite Conflict Graph

Lem$_2$. Let G be a graph with separating cycle C and conflict graph I. Graph G is planar if and only if

(i) for each piece P, the graph $C + P$ is planar and

(ii) the conflict graph I is bipartite.

Proof. Exercise. \square
Lemma 2. Let G be a graph with separating cycle C and conflict graph I. Graph G is planar if and only if

(i) for each piece P, the graph $C + P$ is planar and

(ii) the conflict graph I is bipartite.

Proof. Exercise. \square
Bipartite Conflict Graph

Lem$_2$. Let G be a graph with separating cycle C and conflict graph I. Graph G is planar if and only if

(i) for each piece P, the graph $C + P$ is planar and

(ii) the conflict graph I is bipartite.

Proof. Exercise. □
Bipartite Conflict Graph

Lem$_2$. Let G be a graph with separating cycle C and conflict graph I. Graph G is planar if and only if

(i) for each piece P, the graph $C + P$ is planar and

(ii) the conflict graph I is bipartite.

Proof. Exercise. □
Bipartite Conflict Graph

Lem2. Let G be a graph with separating cycle C and conflict graph I. Graph G is planar if and only if

(i) for each piece P, the graph $C + P$ is planar and

(ii) the conflict graph I is bipartite.

Proof. Exercise. □
Bipartite Conflict Graph

Lemma 2. Let G be a graph with separating cycle C and conflict graph I. Graph G is planar if and only if

(i) for each piece P, the graph $C + P$ is planar and

(ii) the conflict graph I is bipartite.

Proof. Exercise. □
Computation of the Conflict Graph

Obs. The neighbors of a piece P in the conflict graph can be computed in $O(n)$ time if all pieces are known.
Computation of the Conflict Graph

Obs. The neighbors of a piece P in the conflict graph can be computed in $O(n)$ time if all pieces are known.

Number vertices of C with numbers $\{0, \ldots, 2k - 1\}$ as depicted ($k = \#$ connectors of P).
Computation of the Conflict Graph

Obs. The neighbors of a piece P in the conflict graph can be computed in $O(n)$ time if all pieces are known.

Number vertices of C with numbers $\{0, \ldots, 2k - 1\}$ as depicted ($k = \#$ connectors of P).

Piece Q is *not* in conflict with P if there exists i such that all connectors of Q lie in the interval $[2i, (2i + 2) \mod (2k + 2)]$.

P, Q, Q', and C are depicted with vertex labels to illustrate the neighbors and conflict conditions.
Computation of the Conflict Graph

Obs. The neighbors of a piece P in the conflict graph can be computed in $O(n)$ time if all pieces are known.

Number vertices of C with numbers $\{0, \ldots, 2k - 1\}$ as depicted ($k = \# \text{ connectors of } P$).

Piece Q is *not* in conflict with P if $\exists i \text{ s.t. all connectors of } Q \text{ lie in the interval} [2i, (2i + 2) \mod (2k + 2)]$

Cor. The conflict graph can be constructed in $O(n^2)$ time.
Planarity Test

PlanarityTest(2-connected graph $G = (V, E)$, separ. cycle C)

compute pieces w.r.t. C

foreach piece P which is not a path do

$G' := C + P$

$C' := C - \gamma + \pi$ as in Lemma 1

if PlanarityTest(G', C') = false

return false

compute conflict graph I

if I is bipartite

return true

else

return false
Planarity Test

PlanarityTest(2-connected graph $G = (V, E)$, separ. cycle C)

compute pieces w.r.t. C

foreach piece P which is not a path do

$G' := C + P$

$C' := C - \gamma + \pi$ as in Lemma 1

if I is bipartite then

return true

else

return false
Planarity Test

PlanarityTest(2-connected graph $G = (V, E)$, separ. cycle C)

compute pieces w.r.t. C

forall piece P which is not a path do

$G' := C + P$

$C' := C - \gamma + \pi$ as in Lemma 1

if PlanarityTest(G', C') = false then

return false
Planarity Test

PlanarityTest(2-connected graph \(G = (V, E) \), separ. cycle \(C \))

compute pieces w.r.t. \(C \)

\textbf{foreach} piece \(P \) which is not a path \textbf{do}

\[G' := C + P \]
\[C' := C - \gamma + \pi \text{ as in Lemma}_1 \]

\textbf{if} PlanarityTest(\(G' \), \(C' \)) = false \textbf{then}

\[\text{return} \ false \]

compute conflict graph \(I \)
Planarity Test

PlanarityTest(2-connected graph $G = (V, E)$, separ. cycle C)

compute pieces w.r.t. C

$\textbf{foreach}$ piece P which is not a path \textbf{do}

$G' := C + P$

$C' := C - \gamma + \pi$ as in Lemma 1

\textbf{if} PlanarityTest(G', C') $= \text{false}$ \textbf{then}

\textbf{return} false

compute conflict graph I

\textbf{if} I is bipartite \textbf{then}

\textbf{return} true

else

\textbf{return} false
Planarity Test

PlanarityTest(2-connected graph $G = (V, E)$, separ. cycle C)

compute pieces w.r.t. C

foreach piece P which is not a path do

$G' := C + P$

$C' := C - \gamma + \pi$ as in Lemma 1

if PlanarityTest(G', C') = false then

return false

compute conflict graph I

if I is bipartite then

return true

else

return false

Correctness?
Planarity Test

PlanarityTest(2-connected graph \(G = (V, E) \), separ. cycle \(C \))

compute pieces w.r.t. \(C \)

\textbf{foreach} piece \(P \) which is \textbf{not} a path \textbf{do}

\(G' := C + P \)

\(C' := C - \gamma + \pi \) as in Lemma 1

\textbf{if} PlanarityTest(\(G', C' \)) = false \textbf{then}

\hspace{1em} \textbf{return} false

\textbf{compute conflict graph } \(I \)

\textbf{if } \(I \) is bipartite \textbf{then}

\hspace{1em} \textbf{return} true

\textbf{else}

\hspace{1em} \textbf{return} false

Correctness?
Planarity Test

PlanarityTest(2-connected graph $G = (V, E)$, separ. cycle C)

compute pieces w.r.t. C

foreach piece P which is not a path do

$G' := C + P$

$C' := C - \gamma + \pi$ as in Lemma 1

if PlanarityTest(G', C') = false then

return false

compute conflict graph I

if I is bipartite then

return true

else

return false

Correctness?

Exercise:
If G has no separating cycle, G is planar.

Exercise:
G' is 2-connected!
Planarity Test

PlanarityTest(2-connected graph \(G = (V, E) \), separ. cycle \(C \))

compute pieces w.r.t. \(C \)

foreach piece \(P \) which is not a path **do**

\[
G' := C + P \quad \text{as in Lemma 1} \\
C' := C - \gamma + \pi
\]

if PlanarityTest\((G', C') = \text{false} \) **then**

\[\text{return } \text{false} \]

compute conflict graph \(I \)

if \(I \) is bipartite **then**

\[\text{return } \text{true} \]

else

\[\text{return } \text{false} \]

Correctness? By induction on \(|E|\) using Lemma 2.
Running Time

If G has $\geq 3n - 6$ edges, then G not planar.
Running Time

If G has $\geq 3n - 6$ edges, then G not planar. So we can assume that G has $O(n)$ edges.
Running Time

If G has $\geq 3n - 6$ edges, then G not planar.
So we can assume that G has $O(n)$ edges.

Computation of the pieces:
Running Time

If G has $\geq 3n - 6$ edges, then G not planar. So we can assume that G has $O(n)$ edges.

Computation of the pieces: in $O(n)$ total time by a modification of BFS (don’t explore vertices on C).
Running Time

If G has $\geq 3n - 6$ edges, then G not planar. So we can assume that G has $O(n)$ edges.

Computation of the pieces:
in $O(n)$ total time by a modification of BFS (don’t explore vertices on C).

Computing the conflict graph:
Running Time

If G has $\geq 3n - 6$ edges, then G not planar.
So we can assume that G has $O(n)$ edges.

Computation of the pieces:
in $O(n)$ total time by a modification of BFS
(don’t explore vertices on C).

Computing the conflict graph: $O(n^2)$ time
Running Time

If \(G \) has \(\geq 3n - 6 \) edges, then \(G \) not planar.
So we can assume that \(G \) has \(O(n) \) edges.

Computation of the pieces:
in \(O(n) \) total time by a modification of BFS
(don’t explore vertices on \(C \)).

Computing the conflict graph: \(O(n^2) \) time

\[\Rightarrow \text{Every call (without recursion) takes } O(n^2) \text{ time.} \]
Running Time

If G has $\geq 3n - 6$ edges, then G not planar.
So we can assume that G has $O(n)$ edges.

Computation of the pieces:
in $O(n)$ total time by a modification of BFS
(don’t explore vertices on C).

Computing the conflict graph: $O(n^2)$ time

\Rightarrow Every call (without recursion) takes $O(n^2)$ time.

Number of calls is:
Running Time

If G has $\geq 3n - 6$ edges, then G not planar. So we can assume that G has $O(n)$ edges.

Computation of the pieces:
in $O(n)$ total time by a modification of BFS (don’t explore vertices on C).

Computing the conflict graph: $O(n^2)$ time

\Rightarrow Every call (without recursion) takes $O(n^2)$ time.

Number of calls is:
$O(n)$: associate with each call a unique edge $e \in C' - C$.
Running Time

If G has $\geq 3n - 6$ edges, then G not planar.
So we can assume that G has $O(n)$ edges.

Computation of the pieces:
in $O(n)$ total time by a modification of BFS (don’t explore vertices on C).

Computing the conflict graph: $O(n^2)$ time

\Rightarrow Every call (without recursion) takes $O(n^2)$ time.

Number of calls is:
$O(n)$: associate with each call a unique edge $e \in C' - C$.

Total running time is: $O(n^3)$