Advanced Planning in Supply Chains - Illustrating the Concepts Using an SAP APO Case Study

8 Deployment
8 Deployment

8.1 Introduction to Deployment
 8.1.1 Deployment Modeling Framework
 8.1.2 Deployment Model Classes

8.2 Planning Tasks and Data for Frutado
 8.2.1 Planning Tasks and Level of Detail
 8.2.2 Data

8.3 Modeling Deployment for Frutado

8.4 Implementation
 8.4.1 Deployment Planning Initialization
 8.4.2 Solution Methods in SAP APO

...
8.5 Deployment Learning Units

8.5.1 Overview

8.5.2 Basic Stream

8.5.3 In-depth Stream
8 Deployment

8.1 Introduction to Deployment

8.1.1 Deployment Modeling Framework

8.1.2 Deployment Model Classes

8.2 Planning Tasks and Data for Frutado

8.2.1 Planning Tasks and Level of Detail

8.2.2 Data

8.3 Modeling Deployment for Frutado

8.4 Implementation

8.4.1 Deployment Planning Initialization

8.4.2 Solution Methods in SAP APO

...
8.1 Introduction to Deployment

- Deployment Planning
 - Determine detailed distribution plan by matching *actual* supply to *planned* supply
 - Appropriately fulfill promised sales orders
 - Determine how to replenish inventories
 - Distribution plan determines: Source, destination, quantity and date of each shipment
 - Make adjustments to the plan created by SNP, in case of:
 - Insufficient quantities available to fulfill demand
 - Available quantities exceed demand
 - Time buckets of SNP disaggregated into smaller time buckets
 - Aggregate representation of transportation capacity taken into account
8.1 Introduction to Deployment

- Necessity of Deployment Planning
 - Integration of planning modules
 - Connecting planning modules with different aggregation levels
 - Inventory shortage or surplus
 - Aggregation-disaggregation errors in forecasts and capacities
 - Deviation of the realized supplies from their expected amounts
 - Literature gap for deployment planning

Advanced Planning in Supply Chains
8.1 Introduction to Deployment

• Deployment - Question

Why is only the aggregate transport capacity taken into account in the deployment model?
8.1 Introduction to Deployment

- **Basic Deployment Problem**
 - Two echelon supply chain
 - Determine an optimal distribution of given *inventories* from *source locations* to *customer locations* in each period of the deployment planning horizon
8.1 Introduction to Deployment

• Basic Deployment Problem
 • Problem definition and assumptions:
 • Customer demand served from inventories of source locations
 • Stocks are replenished according to a detailed production plan
 • Different transportation modes between source and customer location
 • Transportation and inventory capacities are limited
 • Inventory status of customer locations is not known by source locations
 • Transportation and holding costs are linear in the amount transported/ held on stock
 • Consumption of aggregate transportation capacities is linear in quantity and transportation time of shipments
 • Shortage costs are linear in the amount of unfulfilled orders
8.1 Introduction to Deployment

• Basic Deployment Problem

Symbols

Dimensions

\(QU \) Quantity Unit

\(MU \) Monetary Unit

Indices

\(j \) product \(j \in J \)

\(i \) customer location \(i \in I \)

\(l \) source location \(l \in L \)

\(t \) periods of the planning horizon \(t \in T = \{1, \ldots, T'\} \)

\(m \) transportation mode \(m \in M \)
8.1 Introduction to Deployment

• Basic Deployment Problem

Symbols

Data

d_{ijt} \quad \text{demand size of customer location } i \text{ for product } j \text{ in period } t \quad [\text{QU}]

\bar{\rho}_{lim} \quad \text{actual transportation time from location } l \text{ to location } i \text{ with transportation mode } m \text{ expressed in fraction of periods}

\rho_{lim} \quad \text{transportation lead time from source location } l \text{ to customer location } i \text{ with transportation mode } m \text{ expressed in number of periods: } (\rho_{lim} = \lceil \bar{\rho}_{lim} - 1 \rceil)

s_{ljt} \quad \text{planned production of product } j \text{ at source location } l \text{ in period } t \quad [\text{QU}]

c_{limt} \quad \text{cost of delivering one product unit from source location } l \text{ to customer location } i \text{ with transportation mode } m \text{ in period } t \quad [\text{MU/QU}]
8.1 Introduction to Deployment

• Basic Deployment Problem

Symbols

Data

c'_i penalty cost of not fulfilling one unit of demand at customer location i [MU/QU]

h_{lj} cost of storing one unit of product j at source location l for one period [MU/QU]

v_{lm} aggregate transport capacity of transport mode m at source location l per period [QU]

u_l inventory capacity at source location l [QU]

b_j inventory capacity consumption coefficient of product j [QU]

I_{lj0} initial inventory of product j at source location l [QU]
8.1 Introduction to Deployment

• Basic Deployment Problem

Symbols

Variables

\(I_{l,j,t} \) \quad \text{inventory of product } j \text{ at source location } l \text{ at the end of period } t \text{ [QU]}

\(Z_{l,i,j,m,t} \) \quad \text{amount of delivery from source location } l \text{ to cover demand of customer location } i \text{ for product } j \text{ with transportation mode } m \text{ in period } t \text{ [QU]}

\(Z'_{i,j,t} \) \quad \text{amount of unfulfilled demand of customer location } i \text{ for product } j \text{ in period } t \text{ [QU]}
8.1 Introduction to Deployment

- Basic Deployment Problem

Objective function

\[
\begin{align*}
\text{Min} & \quad \sum_{t \in T} \sum_{j \in J} \sum_{l \in L} h_{lj} \cdot I_{ljt} \\
& + \sum_{t \in T} \sum_{m \in M} \sum_{j \in J} \sum_{i \in I} \sum_{l \in L} c_{limt} \cdot Z_{lijmt} \\
& + \sum_{t \in T} \sum_{j \in J} \sum_{i \in I} c_{i}' \cdot Z_{ijt}'
\end{align*}
\]

s.t.

Inventory Balance

\[
I_{ljt} = I_{lj,t-1} - \sum_{m \in M} \sum_{i \in I} Z_{lijmt} + s_{ljt} \quad \forall l \in L, j \in J, t \in T
\]
8.1 Introduction to Deployment

- **Basic Deployment Problem**

 Demand Coverage
 \[
 \sum_{m \in M} \sum_{l \in L} Z_{lijm, t-\rho_{lim}} + Z'_{ijt} = d_{ijt} \quad \forall i \in I, j \in J, t \in T \tag{3}
 \]

 Inventory Capacity
 \[
 \sum_{j \in J} b_j \cdot I_{ljt} \leq u_l \quad \forall l \in L, t \in T \tag{4}
 \]

 Transport Capacity
 \[
 \sum_{j \in J} \sum_{i \in I} Z_{lijmt} \cdot \bar{\rho}_{lim} \leq v_{lm} \quad \forall l \in L, m \in M, t \in T \tag{5}
 \]

 Non-Negativities
 \[
 I_{ljt}, Z'_{ijt}, Z_{lijmt} \geq 0 \quad \forall l \in L, i \in I, j \in J, m \in M, t \in T \tag{6}
 \]
8.1 Introduction to Deployment

• Deployment - Question

What are the advantages and disadvantages of using a discrete vs. a linear optimization method for deployment planning?
8.1 Introduction to Deployment

- Deployment - Answer

<table>
<thead>
<tr>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8 Deployment

8.1 Introduction to Deployment

8.1.1 Deployment Modeling Framework

8.1.2 Deployment Model Classes

8.2 Planning Tasks and Data for Frutado

8.2.1 Planning Tasks and Level of Detail

8.2.2 Data

8.3 Modeling Deployment for Frutado

8.4 Implementation

8.4.1 Deployment Planning Initialization

8.4.2 Solution Methods in SAP APO

...
8.1.1 Deployment Modeling Framework

- Deployment Planning Attributes

![Diagram showing deployment planning attributes and their relationships]

Figure 8.1
8.1.1 Deployment Modeling Framework

- a.1 Product Attributes: Perishability
 - Two types of product perishability
 - Products with fixed shelf life and stable quality
 - Products that continuously degrade in quality

- Average product quality at customers
 - Reflected in deployment objective
 - Quality, a measure of fairness
 - Complex multi-objective

- Minimum level of observed quality at customers
 - Considered in a set of side constraints
8.1.1 Deployment Modeling Framework

Exercise (Perishability)

- How can the basic deployment model be extended to account for limited shelf lives of products? The following additional notation is given:

New Index

- \(\tilde{t} \) \hspace{1cm} production period

New Data

- \(I_{\tilde{t},l,j_0} \) \hspace{1cm} initial inventory of product \(j \) at source location \(l \) from products produced in period \(\tilde{t} \) [QU]

- \(r_{i,j}^t \) \hspace{1cm} maximum age of product \(j \) to fulfill the shelf life requirements of customer location \(i \) expressed in number of periods

New variables

- \(I_{\tilde{t},l,j,t} \) \hspace{1cm} inventory of product \(j \) at source location \(l \) at the end of period \(t \) with products produced in period \(\tilde{t} \) [QU]

- \(Z_{\tilde{t},l,i,j,m,t} \) \hspace{1cm} amount of product \(j \) produced in period \(\tilde{t} \) in source location \(l \) and shipped in period \(t \) with mode \(m \) to cover the demand of customer location \(i \) [QU]
8.1.1 Deployment Modeling Framework

- **Exercise (Perishability)**

 Inventory balance

 \[I_{tljt} = s_{ljt} - \sum_{m \in M} \sum_{i \in I} Z_{tlijmt} \quad \forall t \in T, l \in L, j \in J \]

 \[I_{iljt} = I_{ilj,t-1} - \sum_{m \in M} \sum_{i \in I} Z_{ilijmt} \quad \forall t \in T, l \in L, j \in J, \tilde{t} < t \]

 Demand coverage

 \[\sum_{m \in M} \sum_{l \in L} \sum_{i=t-r_{ij}}^{t-\rho_{lim}} Z_{tlijm,t-\rho_{lim}} + Z_{ijt}' = d_{ijt} \quad \forall i \in I, j \in J, t \in T \]
8.1.1 Deployment Modeling Framework

- **a.2 Product Attributes: Substitutability**
 - Shortage planning in multi-product environments where products can be used interchangeably
 - Trade-off between incurring a shortage (shortage cost incurred) or sending a substitute product (penalty cost incurred)
8.1.1 Deployment Modeling Framework

- **b.1 Location Attributes: Sourcing**
 - Enlarging the solution space
 - Sourcing decisions are given by the long term plan (SNP)
 - Introduction of new challenges
 - Priority definition in flexible sourcing
 - SAP APO supports sourcing flexibility
 - Priority settings on transport connections between every source and destination (priority based planning)
 - Explicit definition of new transport costs (cost based planning)
 - Transshipment links as an alternative approach
8.1.1 Deployment Modeling Framework

b.2 Location Attributes: Customer Priority

- ABC classification
- Two potential approaches
 - Soft customer priorities
 - Different shortage penalties for different combinations of products and customers
 - Low priority customer might be served while a high priority customer is not fully covered!
 - Cost-based deployment planning
- Hard customer priorities
 - Explicit priority numbers
 - No priority violation
 - Priority-based deployment planning
8.1.1 Deployment Modeling Framework

- c.1 Modelling Attributes: Demand Data
 - Supply disruptions (e.g. machine breakdown)
 - Reactive policy
 - Re-running the deployment module
 - Demand uncertainty
 - Safety stocks
 - Forecast consumption method
8.1.1 Deployment Modeling Framework

• c.2 Modelling Attributes: Shortage Modelling
 • Late-delivery (back-orders)
 • Customers accept late delivery until a certain time threshold
 • Incur backlogging penalty
 • Lost sales
 • Source locations cannot fulfill the demand of customers with late delivery
 • Penalty cost incurred

• SAP APO supports both shortage types for deployment planning
8.1.1 Deployment Modeling Framework

- c.3 Modelling Attributes: Central Inventory Surplus Management
 - Local inventory control
 - Customers order based on their inventory status
 - Deployment plan covers customer orders
 - Surplus inventory held at source locations
 - Vendor Managed Inventory (VMI)
 - Central inventory control
 - Suppliers control inventory status of customers
 - Higher planning flexibility
 - The deployment plan guarantees a certain service level
 - Min/max inventory level of customer locations
 - Unfulfilled demand
 - Surplus inventory held at source and customer location
8.1.1 Deployment Modeling Framework

- c.3 Modelling Attributes: Central Inventory Surplus Management
 - Intra-company surplus management
 - Source location: production site
 - Demand location: distribution center
 - Commonly products are pushed to DC
 - Distribute the surplus among DCs according to their share of total demand
 - Surplus completely divided between DCs

- SAP APO’s deployment module supports both attributes
8 Deployment

8.1 Introduction to Deployment

- 8.1.1 Deployment Modeling Framework

8.1.2 Deployment Model Classes

8.2 Planning Tasks and Data for Frutado

- 8.2.1 Planning Tasks and Level of Detail
- 8.2.2 Data

8.3 Modeling Deployment for Frutado

8.4 Implementation

- 8.4.1 Deployment Planning Initialization
- 8.4.2 Solution Methods in SAP APO

...
8.1.2 Deployment Model Classes

- Deviations between actual orders and forecasts

Figure 8.2
8 Deployment

8.1 Introduction to Deployment

8.1.1 Deployment Modeling Framework

8.1.2 Deployment Model Classes

8.2 Planning Tasks and Data for Frutado

8.2.1 Planning Tasks and Level of Detail

8.2.2 Data

8.3 Modeling Deployment for Frutado

8.4 Implementation

8.4.1 Deployment Planning Initialization

8.4.2 Solution Methods in SAP APO

...
8.2 Planning Tasks and Data for Frutado

- Deployment for the Frutado Company
 - Determine detailed distribution of produced beverages
 - From production sites to DCs
 - From DCs to customers
 - Revise medium-term distribution plan from SNP in case of inventory shortage or surplus
 - Time horizon: 2 weeks with granularity level of days
- Products only stored in DCs
- Always sufficient inventory capacities at DCs
- Aggregate transportation capacities
8.2 Planning Tasks and Data for Frutado

- Characteristics of the Problem
 - Sourcing
 - Each customer served through one DC
 - Each DC can be supplied by any production site
 - Customer priority
 - ABC customer classification
 - Shortage management through back-ordering
 - Late deliveries and no-deliveries penalties
 - Inventory control
 - Central inventory system manages inventory status at DC
 - No VMI at customer
8 Deployment

8.1 Introduction to Deployment

8.1.1 Deployment Modeling Framework

8.1.2 Deployment Model Classes

8.2 Planning Tasks and Data for Frutado

8.2.1 Planning Tasks and Level of Detail

8.2.2 Data

8.3 Modeling Deployment for Frutado

8.4 Implementation

8.4.1 Deployment Planning Initialization

8.4.2 Solution Methods in SAP APO

...
8 Deployment

8.1 Introduction to Deployment

8.1.1 Deployment Modeling Framework

8.1.2 Deployment Model Classes

8.2 Planning Tasks and Data for Frutado

8.2.1 Planning Tasks and Level of Detail

8.2.2 Data

8.3 Modeling Deployment for Frutado

8.4 Implementation

8.4.1 Deployment Planning Initialization

8.4.2 Solution Methods in SAP APO

...
8 Deployment

8.1 Introduction to Deployment
 8.1.1 Deployment Modeling Framework
 8.1.2 Deployment Model Classes

8.2 Planning Tasks and Data for Frutado
 8.2.1 Planning Tasks and Level of Detail
 8.2.2 Data

8.3 Modeling Deployment for Frutado

8.4 Implementation
 8.4.1 Deployment Planning Initialization
 8.4.2 Solution Methods in SAP APO

...
8.3 Modeling Deployment for Frutado

- Two sub-models:
 1. Deployment planning model between production sites and DCs (see book page 235)
 2. Deployment planning model between DCs and customer locations (see book page 237)
8 Deployment

8.1 Introduction to Deployment
 8.1.1 Deployment Modeling Framework
 8.1.2 Deployment Model Classes

8.2 Planning Tasks and Data for Frutado
 8.2.1 Planning Tasks and Level of Detail
 8.2.2 Data

8.3 Modeling Deployment for Frutado

8.4 Implementation
 8.4.1 Deployment Planning Initialization
 8.4.2 Solution Methods in SAP APO

...
8.4 Implementation

- Interaction with other SAP APO Modules

Figure 8.3

- The two arrows in dashed line provide information for both PP/DS and Deployment planning modules.
8 Deployment

8.1 Introduction to Deployment

8.1.1 Deployment Modeling Framework

8.1.2 Deployment Model Classes

8.2 Planning Tasks and Data for Frutado

8.2.1 Planning Tasks and Level of Detail

8.2.2 Data

8.3 Modeling Deployment for Frutado

8.4 Implementation

8.4.1 Deployment Planning Initialization

8.4.2 Solution Methods in SAP APO

...
8 Deployment

8.1 Introduction to Deployment
 8.1.1 Deployment Modeling Framework
 8.1.2 Deployment Model Classes

8.2 Planning Tasks and Data for Frutado
 8.2.1 Planning Tasks and Level of Detail
 8.2.2 Data

8.3 Modeling Deployment for Frutado

8.4 Implementation
 8.4.1 Deployment Planning Initialization
 8.4.2 Solution Methods in SAP APO

...
8.4.2 Solution Methods in SAP APO

• Deployment Optimization
 • Optimizer creates a distribution plan for all chosen products for all chosen locations of the supply chain model
 1. Check what product quantities are available at the source locations (available-to-deploy quantity (ATD))
 2. Determine how the ATD quantity is to be distributed to destination locations
8.4.2 Solution Methods in SAP APO

Deployment Optimization

Inventory shortage

1. Cost optimal plan
 - Considers costs and constraints
 - Possible that demand at one location not covered because cheaper to fulfill other location

2. Fair-share plan
 - A distribution plan such that shortage is split among all or some of the customers

3. Fair-share and earliest delivery
 - Fulfill earliest demands if possible

Advanced Planning in Supply Chains
• Deployment Optimization

Inventory surplus

1. Cost optimal plan
 • Distributes excess stock to lowest cost locations

2. Fair-share push plan
 • Distributes quantities evenly
 • A distribution plan that delivers more than the requested products (if possible)

3. Fair-share and earliest delivery
8.4.2 Solution Methods in SAP APO

• Fair-Share Rules in Deployment Optimization
 1. *Fair-share distribution by demand*: Distribution of available products evenly among all customer orders.
 2. *Fair-share distribution by demand and earliest delivery*: Fulfilling customer orders by giving priority to orders with earlier requested delivery dates. For customer orders with the same requested delivery date, fair-share rule 1 is applied.

• Push Rules in Deployment Optimization
 1. *Push distribution by demand*: Distributing the supply surplus evenly among all customers during the entire planning horizon.
 2. *Push distribution by demand and earliest delivery*: Applying the push rule 1 but through pushing the supply surplus to earliest possible demand day.
8.4.2 Solution Methods in SAP APO

• **Exercise**

 • *Fair-share rules for deployment optimization:*

 • The following data is given:

<table>
<thead>
<tr>
<th>Period</th>
<th>ATD quantity (supply quantity)</th>
<th>Demand of customer 1</th>
<th>Demand of customer 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>900</td>
<td>300</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>3</td>
<td>200</td>
<td>500</td>
<td></td>
</tr>
</tbody>
</table>

a) Find a deployment plan based on fair-share rule 1
b) Find a deployment plan based on fair-share rule 2
Exercise - Solution

a) Find a deployment plan based on fair-share rule 1:

Rule 1 - Fair-share distribution by demand:
Distribution of available products evenly among all customer orders.

<table>
<thead>
<tr>
<th>Period</th>
<th>ATD quantity (supply quantity)</th>
<th>Distribution to customer 1</th>
<th>Distribution to customer 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Exercise - Solution

a) Find a deployment plan based on fair-share rule 2:

Rule 2 - Fair-share distribution by demand and earliest delivery:
Fulfilling customer orders by giving priority to orders with earlier requested delivery dates. For customer orders with the same requested delivery date, fair-share rule 1 is applied.

<table>
<thead>
<tr>
<th>Period</th>
<th>ATD quantity (supply quantity)</th>
<th>Distribution to customer 1</th>
<th>Distribution to customer 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8.4.2 Solution Methods in SAP APO

- **Deployment Heuristics**
 - Different variants of the fair-share and push rules
 - Consider each product and each supply source separately

<table>
<thead>
<tr>
<th>Fair-share rules (inventory shortage)</th>
<th>Push rules (inventory surplus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Proportional distribution based on demands</td>
<td>1. Pull Distribution</td>
</tr>
<tr>
<td>B. Proportional distribution based on target stock</td>
<td>2. Pull/Push Distribution</td>
</tr>
<tr>
<td>C. Percentage distribution based on quota arrangements</td>
<td>3. Push Distribution by Demand</td>
</tr>
<tr>
<td>D. Distribution based on distribution priority</td>
<td>4. Push Distribution by Quota Arrangement</td>
</tr>
<tr>
<td>X. User defined fair-share distribution</td>
<td>5. Push Distribution Taking the Safety Stock Horizon into Account</td>
</tr>
<tr>
<td></td>
<td>6. User defined push rule</td>
</tr>
</tbody>
</table>
8 Deployment

8.5 Deployment Learning Units

8.5.1 Overview

8.5.2 Basic Stream

8.5.3 In-depth Stream
8 Deployment

8.5 Deployment Learning Units

- 8.5.1 Overview
- 8.5.2 Basic Stream
- 8.5.3 In-depth Stream
8.5.2 Basic Stream

• Deployment Planning Learning Units

Figure 8.4: SAP-Screenshot
Deployment planning learning units
8 Deployment

8.5 Deployment Learning Units

- 8.5.1 Overview
- 8.5.2 Basic Stream
- 8.5.3 In-depth Stream
8.5.3 In-depth Stream

- Optimization Profile

Figure 8.5: SAP-Screenshot Optimization profile

The safety stock section determines how the penalty cost is calculated if the defined safety stocks are violated.

