Advanced Algorithms

Rearrangement Distance of Phylogenetic Trees

kernelization, fpt, approximation algorithm

Johannes Zink · WS22
Phylogenetic Trees

... represent the evolutionary history of a set of taxa.

Kingfishers (German: *Eisvögel*)
by McCullough et al. (2016)
Phylogenetic Trees

... represent the evolutionary history of a set of taxa.

Tree of Life
www.evogeneao.com
(2017)
Phylogenetic Trees

... represent the evolutionary history of a set of taxa.

Tree of Life
www.evogeneao.com
(2017)

Phylogenetic tree of the Indo-European languages
by Chang & Chundra
(2015)
Phylogenetic Trees

... represent the evolutionary history of a set of taxa.

Properties (in the biological sense):
Phylogenetic Trees

... represent the evolutionary history of a set of taxa.

Properties (in the biological sense):

- Leaves are labelled with taxa.
- Each taxon represents a species, population, individual organism, gene, chromosome, ...
Phylogenetic Trees

... represent the evolutionary history of a set of taxa.

Properties (in the biological sense):

- Leaves are labelled with taxa.
- Each taxon represents a species, population, individual organism, gene, chromosome, ...
- Edge length represents an amount of time passed or a genetic distance.
Phylogenetic Trees

... represent the evolutionary history of a set of taxa.

Properties (in the biological sense):

- Leaves are labelled with taxa.
- Each taxon represents a species, population, individual organism, gene, chromosome, ...
- Edge length represents an amount of time passed or a genetic distance.
- Inference methods compute a phylogenetic tree based on some model and data.

Kingfishers (German: *Eisvögel*) by McCullough et al. (2016)
Phylogenetic Trees

Let $X = \{1, 2, 3, \ldots, n\}$.

A (rooted, binary) phylogenetic tree T is a rooted tree with the following properties:

- The unique root is labeled ρ and has outdegree 1.
- The leaves are bijectively labeled by X.
- All other vertices have indegree 1 and outdegree 2 (i.e., it is a binary tree).
Phylogenetic Trees

Let $X = \{1, 2, 3, \ldots, n\}$. A (rooted, binary) phylogenetic tree T is a rooted tree with the following properties:

- The unique root is labeled ρ and has outdegree 1.
- The leaves are bijectively labeled by X.
- All other vertices have indegree 1 and outdegree 2 (i.e., it is a binary tree).
Phylogenetic Trees

Let $X = \{1, 2, 3, \ldots, n\}$.

A (rooted, binary) phylogenetic tree T is a rooted tree with the following properties:

- The unique root is labeled ρ and has outdegree 1.
- The leaves are bijectively labeled by X.
Phylogenetic Trees

Let $X = \{1, 2, 3, \ldots, n\}$.

A (rooted, binary) phylogenetic tree T is a rooted tree with the following properties:

- The unique root is labeled ρ and has outdegree 1.
- The leaves are bijectively labeled by X.
- All other vertices have indegree 1 and outdegree 2 (i.e., it is a binary tree).
Phylogenetic Trees

Let $X = \{1, 2, 3, \ldots, n\}$.

A (rooted, binary) phylogenetic tree T is a rooted tree with the following properties:

- The unique root is labeled ρ and has outdegree 1.
- The leaves are bijectively labeled by X.
- All other vertices have indegree 1 and outdegree 2 (i.e., it is a binary tree).

Remarks. Here, in our definition

- vertices have no heights and
- the order of the children of a vertex does not matter.
Problem

For the same taxa, we may infer different phylogenetic trees because of the use of
- different inference methods,
- different models, or
- different data.
Problem

For the same taxa, we may infer different phylogenetic trees because of the use of

- different inference methods,
- different models, or
- different data.

We want to be able to compare different phylogenetic trees. How?
Problem

For the same taxa, we may infer **different** phylogenetic trees because of the use of
- different inference methods,
- different models, or
- different data.

We want to be able to **compare** different phylogenetic trees. How?

Goal.

Define a **metric** that specifies how similar two phylogenetic trees on the same set X are and devise algorithms to compute it.
Problem

For the same taxa, we may infer different phylogenetic trees because of the use of:
- different inference methods,
- different models, or
- different data.

We want to be able to compare different phylogenetic trees. How?

Goal.
Define a metric that specifies how similar two phylogenetic trees on the same set X are and devise algorithms to compute it.

Definition:
A metric d is a function of two parameters such that:
- $d(x, x) = 0$ (no distance to itself)
- $d(x, y) > 0$ for $x \neq y$ (positive)
- $d(x, y) = d(y, x)$ (symmetric)
- $d(x, z) \leq d(x, y) + d(y, z)$ (triangle inequality holds)
Problem

For the same taxa, we may infer different phylogenetic trees because of the use of
■ different inference methods,
■ different models, or
■ different data.

We want to be able to compare different phylogenetic trees. How?

Goal.
Define a metric that specifies how similar two phylogenetic trees on the same set \(X \) are and devise algorithms to compute it.

Idea.
Count the number of rearrangement operations that are necessary to transform \(T \) into \(T' \).
Subtree Prune & Regraft (SPR)

An **SPR** operation transforms one phylogenetic tree into another one.

\[T \]

\[\rho \]

1 2 3 4 5
Subtree Prune & Regraft (SPR)

An **SPR** operation transforms one phylogenetic tree into another one.
Subtree Prune & Regraft (SPR)

An SPR operation transforms one phylogenetic tree into another one.
Subtree Prune & Regraft (SPR)

An **SPR** operation transforms one phylogenetic tree into another one.

![Diagram of Subtree Prune & Regraft (SPR)]
Subtree Prune & Regraft (SPR)

An **SPR** operation transforms one phylogenetic tree into another one.

![Diagram](attachment:image.png)
Subtree Prune & Regraft (SPR)

An **SPR** operation transforms one phylogenetic tree into another one.

![Diagram demonstrating the SPR operation](image)

Subtree pruning and regrafting.
Subtree Prune & Regraft (SPR)

An **SPR** operation transforms one phylogenetic tree into another one.

Diagram:

- **Original Tree (T):**
 - Node ρ,
 - Subtree 1, 2, 3,
 - Nodes 4, 5.

- **SPR Operation:**
 - Prune subtree 1, 2, 3.
 - Regraft 4, 5.

- **Transformed Tree (T'):**
 - Node ρ,
 - Nodes 1, 4, 5,
Subtree Prune & Regraft (SPR)

An SPR operation transforms one phylogenetic tree into another one.

Note that an SPR operation is reversible.
SPR-Graph

The SPR operations induce the **SPR-graph** \(G = (V, E) \) for a set \(X \):
The SPR operations induce the **SPR-graph** $G = (V, E)$ for a set X:

- $V = \{ T \mid T \text{ is a phylogenetic tree on } X \}$
The SPR operations induce the **SPR-graph** $G = (V, E)$ for a set X:

- $V = \{T \mid T$ is a phylogenetic tree on $X\}$
- $E = \{\{T, T'\} \mid T$ can be transformed into T' with a single SPR operation\}$
The **SPR-distance** $d_{\text{SPR}}(T, T')$ of T and T' is defined as the distance of T and T' in the SPR-graph G.

The **SPR-distance** $d_{\text{SPR}}(T, T')$ of T and T' is defined as the distance of T and T' in the SPR-graph G.

Lemma 1.
The SPR-graph G is connected.
The **SPR-distance** $d_{\text{SPR}}(T, T')$ of T and T' is defined as the distance of T and T' in the SPR-graph G.

Lemma 1.
The SPR-graph G is connected.

Proof exercise
SPR-Distance

The **SPR-distance** $d_{SPR}(T, T')$ of T and T' is defined as the distance of T and T' in the SPR-graph G.

Lemma 1.
The SPR-graph G is connected.

Proof exercise

Lemma 2.
The SPR-distance is a metric.
The **SPR-distance** $d_{\text{SPR}}(T, T')$ of T and T' is defined as the distance of T and T' in the SPR-graph G.

Lemma 1.
The SPR-graph G is connected.

Lemma 2.
The SPR-distance is a metric.

Definition:
A metric d is a function of two parameters such that:
- $d(x, x) = 0$ (no distance to itself)
- $d(x, y) > 0$ for $x \neq y$ (positive)
- $d(x, y) = d(y, x)$ (symmetric)
- $d(x, z) \leq d(x, y) + d(y, z)$ (triangle inequality holds)
The **SPR-distance** $d_{SPR}(T, T')$ of T and T' is defined as the distance of T and T' in the SPR-graph G.

Lemma 1.
The SPR-graph G is connected.

Lemma 2.
The SPR-distance is a metric.

Proof. G is connected and undirected.

Definition:
A *metric* d is a function of two parameters such that:
- $d(x, x) = 0$ (no distance to itself)
- $d(x, y) > 0$ for $x \neq y$ (positive)
- $d(x, y) = d(y, x)$ (symmetric)
- $d(x, z) \leq d(x, y) + d(y, z)$ (triangle inequality holds)
SPR-Distance

The **SPR-distance** $d_{\text{SPR}}(T, T')$ of T and T' is defined as the distance of T and T' in the SPR-graph G.

Lemma 1.
The SP2R-graph G is connected.

Lemma 2.
The SPR-distance is a metric.

Proof. G is connected and undirected.

Definition:
A *metric* d is a function of two parameters such that:
- $d(x, x) = 0$ (no distance to itself)
- $d(x, y) > 0$ for $x \neq y$ (positive)
- $d(x, y) = d(y, x)$ (symmetric)
- $d(x, z) \leq d(x, y) + d(y, z)$ (triangle inequality holds)
SPR-Distance

The **SPR-distance** $d_{SPR}(T, T')$ of T and T' is defined as the distance of T and T' in the SPR-graph G.

Lemma 1.
The SPR-graph G is connected.

Lemma 2.
The SPR-distance is a metric.

Proof. G is connected and undirected.

Definition:
A *metric* d is a function of two parameters such that:

- $d(x, x) = 0$ (no distance to itself)
- $d(x, y) > 0$ for $x \neq y$ (positive)
- $d(x, y) = d(y, x)$ (symmetric)
- $d(x, z) \leq d(x, y) + d(y, z)$ (triangle inequality holds)

✓ trivial

✓ shortest path exists because G is connected
SPR-Distance

The **SPR-distance** $d_{SPR}(T, T')$ of T and T' is defined as the distance of T and T' in the SPR-graph G.

Lemma 1.
The SPR-graph G is connected.

Lemma 2.
The SPR-distance is a metric.

Proof. G is connected and undirected.

Definition:
A **metric** d is a function of two parameters such that:
- $d(x, x) = 0$ (no distance to itself)
- $d(x, y) > 0$ for $x \neq y$ (positive)
- $d(x, y) = d(y, x)$ (symmetric)
- $d(x, z) \leq d(x, y) + d(y, z)$ (triangle inequality holds)

- trivial
- shortest path exists because G is connected
- all paths can be reversed bc. G is undirected
The **SPR-distance** $d_{\text{SPR}}(T, T')$ of T and T' is defined as the distance of T and T' in the SPR-graph G.

Lemma 1.
The SPR-graph G is connected.

Lemma 2.
The SPR-distance is a metric.

Proof. G is connected and undirected.

Definition:
A **metric** d is a function of two parameters such that:

- $d(x, x) = 0$ (no distance to itself)
- $d(x, y) > 0$ for $x \neq y$ (positive)
- $d(x, y) = d(y, x)$ (symmetric)
- $d(x, z) \leq d(x, y) + d(y, z)$ (triangle inequality holds)

- trivial
- shortest path exists because G is connected
- all paths can be reversed bc. G is undirected
- the triangle inequality holds because we can compose the path $x \rightsquigarrow z$ by $x \rightsquigarrow y \rightsquigarrow z$
SPR-Distance

The **SPR-distance** $d_{\text{SPR}}(T, T')$ of T and T' is defined as the distance of T and T' in the SPR-graph G.

Lemma 1.
The SPR-graph G is connected.

Defintion:
A *metric* d is a function of two parameters such that:
- $d(x, x) = 0$ (no distance to itself)
- $d(x, y) > 0$ for $x \neq y$ (positive)
- $d(x, y) = d(y, x)$ (symmetric)
- $d(x, z) \leq d(x, y) + d(y, z)$ (triangle inequality holds)

Lemma 2.
The SPR-distance is a metric.

Proof. G is connected and undirected.
All properties of a metric follow.

- trivial
- shortest path exists because G is connected
- all paths can be reversed bc. G is undirected
- the triangle inequality holds because we can compose the path $x \leftrightarrow z$ by $x \leftrightarrow y \leftrightarrow z$
SPR-Distance

The **SPR-distance** $d_{SPR}(T, T')$ of T and T' is defined as the distance of T and T' in the SPR-graph G.

Lemma 1.
The SPR-graph G is connected.

Proof exercise

Goal.
Compute the SPR-distance $d_{SPR}(T, T')$.

Lemma 2.
The SPR-distance is a metric.

Proof. G is connected and undirected. All properties of a metric follow.
The **SPR-distance** $d_{\text{SPR}}(T, T')$ of T and T' is defined as the distance of T and T' in the SPR-graph G.

Lemma 1.
The SPR-graph G is connected.

Proof exercise

Goal.
Compute the SPR-distance $d_{\text{SPR}}(T, T')$.

...but G is huge!

$$|V(G)| = (2n - 3)!! = (2n - 3) \cdot (2n - 5) \cdot \ldots \cdot 5 \cdot 3$$

Lemma 2.
The SPR-distance is a metric.

Proof. G is connected and undirected. All properties of a metric follow.

\square
SPR-Distance

The SPR-distance \(d_{\text{SPR}}(T, T') \) of \(T \) and \(T' \) is defined as the distance of \(T \) and \(T' \) in the SPR-graph \(G \).

Lemma 1. The SPR-graph \(G \) is connected.

Proof exercise

Lemma 2. The SPR-distance is a metric.

Proof. \(G \) is connected and undirected. All properties of a metric follow.

...but \(G \) is huge!

\[
|V(G)| = (2n - 3)!! = (2n - 3) \cdot (2n - 5) \cdot \ldots \cdot 5 \cdot 3
\]

Can we rephrase the problem?
Maximum Agreement Forests

\[
\begin{array}{ccc}
T & \xrightarrow{\text{SPR}} & \hat{T} \\
1 & 2 & 3 & 4 & 5 \\
\end{array}
\]

\[
\begin{array}{ccc}
\hat{T} & \xrightarrow{\text{SPR}} & T' \\
1 & 2 & 3 & 4 & 5 \\
\end{array}
\]
Maximum Agreement Forests

\[T \xrightarrow{\text{SPR}} \hat{T} \xrightarrow{\text{SPR}} T' \]

\[\rho \]

\[1 \ 2 \ 3 \ 4 \ 5 \]

\[\hat{T} \]

\[\rho \]

\[1 \ 4 \ 2 \ 3 \ 5 \]

\[T' \]

\[\rho \]

\[4 \ 1 \ 2 \ 3 \ 5 \]

\[\hat{T} \]

\[\rho \]

\[1 \ 2 \ 3 \ 4 \ 5 \]

\[\rho \]
Maximum Agreement Forests

\[T \xrightarrow{\text{SPR}} \hat{T} \xrightarrow{\text{SPR}} T' \]
Maximum Agreement Forests

\[T \xrightarrow{\text{SPR}} \hat{T} \xrightarrow{\text{SPR}} T' \]

\[F \]

\[1 \ 2 \ 3 \ 4 \ 5 \]

\[1 \ 4 \ 2 \ 3 \ 5 \]

\[4 \ 1 \ 2 \ 3 \ 5 \]

\[1 \ 5 \]

\[2 \ 3 \]

\[4 \]
Maximum Agreement Forests

\[T \xrightarrow{\text{SPR}} \hat{T} \xrightarrow{\text{SPR}} T' \]

\[F \text{ into } T \]

\[F \]

\[\rho \]

\[1 \quad 2 \quad 3 \quad 4 \quad 5 \]

\[\rho \]

\[1 \quad 5 \]

\[2 \quad 3 \]

\[4 \]
Maximum Agreement Forests

\[T \xrightarrow{\text{SPR}} \hat{T} \xrightarrow{\text{SPR}} T' \]

\[F \text{ into } T \]

\[F \]

\[F \text{ into } T' \]
An agreement forest (AF) F of T and T' is a forest $\{T_{\rho}, T_1, T_2, \ldots, T_k\}$ such that

- the label sets of the T_i partition $X \cup \{\rho\}$,
Maximum Agreement Forests

An agreement forest (AF) F of T and T' is a forest $\{T_\rho, T_1, T_2, \ldots, T_k\}$ such that

- the label sets of the T_i partition $X \cup \{\rho\}$,
- ρ is in the label set of T_ρ, and
An agreement forest (AF) F of T and T' is a forest \{ T_ρ, T_1, T_2, \ldots, T_k \} such that

- the label sets of the T_i partition $X \cup \{ \rho \}$,
- ρ is in the label set of T_ρ, and
- there is an edge-disjoint embedding of the T_is into T and T' where all edges of T and T' are covered. In other words, we can place all T_is onto T and T' such that the T_is do not overlap and every edge of T and T' lies under some T_i.

Maximum Agreement Forests
Maximum Agreement Forests

An agreement forest (AF) F of T and T' is a forest $\{T_\rho, T_1, T_2, \ldots, T_k\}$ such that

- the label sets of the T_i partition $X \cup \{\rho\}$,
- ρ is in the label set of T_ρ, and
- there is an edge-disjoint embedding of the T_is into T and T' where all edges of T and T' are covered. In other words, we can place all T_is onto T and T' such that the T_is do not overlap and every edge of T and T' lies under some T_i.

If k is minimum, F is a maximum agreement forest (MAF).
Characterization

Let T and T' be two phylogenetic trees on X and let
$F = \{T_\rho, T_1, T_2, \ldots, T_k\}$ be a MAF of T and T'.
Define
$$m(T, T') = k = |F| - 1.$$
Characterization

Let T and T' be two phylogenetic trees on X and let $F = \{T_\rho, T_1, T_2, \ldots, T_k\}$ be a MAF of T and T'. Define

$$m(T, T') = k = |F| - 1.$$

Theorem 3. $m(T, T') = d_{\text{SPR}}(T, T')$
Characterization

Let T and T' be two phylogenetic trees on X and let $F = \{T_\rho, T_1, T_2, \ldots, T_k\}$ be a MAF of T and T'. Define

$$m(T, T') = k = |F| - 1.$$

Theorem 3. $m(T, T') = d_{SPR}(T, T')$

Proof of “≤” by induction on $d = d_{SPR}(T, T')$.

Characterization

Let T and T' be two phylogenetic trees on X and let $F = \{T_\rho, T_1, T_2, \ldots, T_k\}$ be a MAF of T and T'.
Define
\[m(T, T') = k = |F| - 1. \]

Theorem 3. $m(T, T') = d_{SPR}(T, T')$

Proof of “\leq” by induction on $d = d_{SPR}(T, T')$.
- Case $d = 0$ is trivial and Case $d = 1$ is easy. ✓
Characterization

Let \(T \) and \(T' \) be two phylogenetic trees on \(X \) and let \(F = \{T_\rho, T_1, T_2, \ldots, T_k\} \) be a MAF of \(T \) and \(T' \). Define

\[
m(T, T') = k = |F| - 1.
\]

Theorem 3. \(m(T, T') = d_{\text{SPR}}(T, T') \)

Proof of “\(\leq \)” by induction on \(d = d_{\text{SPR}}(T, T') \).
- Case \(d = 0 \) is trivial and Case \(d = 1 \) is easy. ✓
- Assume \(m(T, T') \leq d_{\text{SPR}}(T, T') \) holds for all \(d \leq \ell \).
Characterization

Let \(T \) and \(T' \) be two phylogenetic trees on \(X \) and let \(F = \{ T\rho, T_1, T_2, \ldots, T_k \} \) be a MAF of \(T \) and \(T' \). Define

\[
m(T, T') = k = |F| - 1.
\]

Theorem 3. \(m(T, T') = d_{\text{SPR}}(T, T') \)

Proof of “\(\leq \)” by induction on \(d = d_{\text{SPR}}(T, T') \).

- If \(d = \ell + 1 \), then there exists \(\hat{T} \) with \(d_{\text{SPR}}(T, \hat{T}) = \ell \) and \(d_{\text{SPR}}(\hat{T}, T') = 1 \).
Characterization

Let \(T \) and \(T' \) be two phylogenetic trees on \(X \) and let \(F = \{ T_\rho, T_1, T_2, \ldots, T_k \} \) be a MAF of \(T \) and \(T' \).

Define

\[
m(T, T') = k = |F| - 1.
\]

Theorem 3. \(m(T, T') = d_{\text{SPR}}(T, T') \)

Proof of “\(\leq \)” by induction on \(d = d_{\text{SPR}}(T, T') \).

- If \(d = \ell + 1 \), then there exists \(\hat{T} \) with \(d_{\text{SPR}}(T, \hat{T}) = \ell \) and \(d_{\text{SPR}}(\hat{T}, T') = 1 \).

\[
\begin{align*}
T \quad \text{\(\ell \) SPR} \quad \hat{T} \quad \hat{F} \quad \hat{T} \quad T' \quad F'
\end{align*}
\]
Characterization

Let T and T' be two phylogenetic trees on X and let $F = \{T_\rho, T_1, T_2, \ldots, T_k\}$ be a MAF of T and T'. Define

$$m(T, T') = k = |F| - 1.$$

Theorem 3. $m(T, T') = d_{\text{SPR}}(T, T')$

Proof of “≤” by induction on $d = d_{\text{SPR}}(T, T')$.

- If $d = \ell + 1$, then there exists \hat{T} with $d_{\text{SPR}}(T, \hat{T}) = \ell$ and $d_{\text{SPR}}(\hat{T}, T') = 1$.

- \exists MAF \hat{F} for T & \hat{T} of size $\ell + 1$ and MAF F' for \hat{T} & T' of size 2.

- Compose \hat{T} by subtrees of \hat{F}. The subtree T'_1 of F' is rooted at one edge of \hat{T} within one subtree of \hat{F}.

\[T \quad \hat{T} \quad \hat{F} \quad \hat{T} \quad T' \quad F' \]

\[\rho \quad \rho \quad \rho \quad \rho \quad \rho \quad \rho \]
Characterization

Let T and T' be two phylogenetic trees on X and let $F = \{T_\rho, T_1, T_2, \ldots, T_k\}$ be a MAF of T and T'. Define

$$m(T, T') = k = |F| - 1.$$

Theorem 3. $m(T, T') = d_{\text{SPR}}(T, T')$

Proof of “\leq” by induction on $d = d_{\text{SPR}}(T, T')$.

- If $d = \ell + 1$, then there exists \hat{T} with $d_{\text{SPR}}(T, \hat{T}) = \ell$ and $d_{\text{SPR}}(\hat{T}, T') = 1$.

- \exists MAF \hat{F} for $T \& \hat{T}$ of size $\ell + 1$ and MAF F' for $\hat{T} \& T'$ of size 2.

- Compose \hat{T} by subtrees of \hat{F}. The subtree T'_1 of F' is rooted at one edge of \hat{T} within one subtree of \hat{F}.

![Diagram](image.png)
Characterization

Let T and T' be two phylogenetic trees on X and let $F = \{T_\rho, T_1, T_2, \ldots, T_k\}$ be a MAF of T and T'. Define

$$m(T, T') = k = |F| - 1.$$

Theorem 3. $m(T, T') = d_{\text{SPR}}(T, T')$

Proof of “\leq” by induction on $d = d_{\text{SPR}}(T, T')$.

- If $d = \ell + 1$, then there exists \hat{T} with $d_{\text{SPR}}(T, \hat{T}) = \ell$ and $d_{\text{SPR}}(\hat{T}, T') = 1$.
- There exists MAF \hat{F} for T & \hat{T} of size $\ell + 1$ and MAF F' for \hat{T} & T' of size 2.
- Compose \hat{T} by subtrees of \hat{F}. The subtree T'_1 of F' is rooted at one edge of \hat{T} within one subtree of \hat{F}.
- Subdivide the corresponding tree to obtain F from \hat{F}, which is an AF for T and T'.
Characterization

Let T and T' be two phylogenetic trees on X and let $F = \{T_\rho, T_1, T_2, \ldots, T_k\}$ be a MAF of T and T'.
Define
$$m(T, T') = k = |F| - 1.$$

Theorem 3. $m(T, T') = d_{SPR}(T, T')$

Proof of “\geq” by induction on $m = m(T, T')$.

Characterization

Let T and T' be two phylogenetic trees on X and let $F = \{T_\rho, T_1, T_2, \ldots, T_k\}$ be a MAF of T and T'. Define

$$m(T, T') = k = |F| - 1.$$

Theorem 3. $m(T, T') = d_{\text{SPR}}(T, T')$

Proof of “\geq” by induction on $m = m(T, T')$.

- Case $m = 0$ is trivial and Case $m = 1$ is easy. ✓
Characterization

Let T and T' be two phylogenetic trees on X and let $F = \{T_\rho, T_1, T_2, \ldots, T_k\}$ be a MAF of T and T'. Define

$$m(T, T') = k = |F| - 1.$$

Theorem 3. $m(T, T') = d_{SPR}(T, T')$

Proof of “\geq” by induction on $m = m(T, T')$.
- Case $m = 0$ is trivial and Case $m = 1$ is easy.

![Diagram showing trees and MAF]
Characterization

Let T and T' be two phylogenetic trees on X and let $F = \{T_\rho, T_1, T_2, \ldots, T_k\}$ be a MAF of T and T'. Define

$$m(T, T') = k = |F| - 1.$$

Theorem 3. \(m(T, T') = d_{\text{SPR}}(T, T')\)

Proof of “≥” by induction on \(m = m(T, T')\).

- Case \(m = 0\) is trivial and Case \(m = 1\) is easy.
- Assume \(m(T, T') \geq d_{\text{SPR}}(T, T')\) holds for all \(m \leq \ell\).
Characterization

Let T and T' be two phylogenetic trees on X and let $F = \{T_\rho, T_1, T_2, \ldots, T_k\}$ be a MAF of T and T'. Define

$$m(T, T') = k = |F| - 1.$$

Theorem 3. $m(T, T') = d_{\text{SPR}}(T, T')$

Proof of “\geq” by induction on $m = m(T, T')$.

- Let F be a MAF of T and T' of size $\ell + 2$. $\Rightarrow m = \ell + 1$
Characterization

Let T and T' be two phylogenetic trees on X and let $F = \{T_{\rho}, T_1, T_2, \ldots, T_k\}$ be a MAF of T and T'. Define

$$m(T, T') = k = |F| - 1.$$

Theorem 3. $m(T, T') = d_{SPR}(T, T')$

Proof of “\geq” by induction on $m = m(T, T')$.

- Let F be a MAF of T and T' of size $\ell + 2$. $\Rightarrow m = \ell + 1$
- There exists a T_i that can be pruned in T due to the nesting structure of subtrees.

\[T \quad T' \quad F \]

\[
\begin{array}{c}
\rho \\
\end{array} \quad \begin{array}{c}
\rho \\
\end{array} \quad \begin{array}{c}
\rho \\
\end{array}
\]

\[
\begin{array}{c}
\begin{array}{c}
\rho \\
\end{array} \\
\begin{array}{c}
\rho \\
\end{array} \\
\end{array} \quad \begin{array}{c}
\begin{array}{c}
\rho \\
\end{array} \\
\begin{array}{c}
\rho \\
\end{array} \\
\end{array} \quad \begin{array}{c}
\begin{array}{c}
\rho \\
\end{array} \\
\begin{array}{c}
\rho \\
\end{array} \\
\end{array}
\]

Characterization

Let T and T' be two phylogenetic trees on X and let $F = \{T_\rho, T_1, T_2, \ldots, T_k\}$ be a MAF of T and T'.
Define

$$m(T, T') = k = |F| - 1.$$

Theorem 3. $m(T, T') = d_{SPR}(T, T')$

Proof of “\geq” by induction on $m = m(T, T')$.

- Let F be a MAF of T and T' of size $\ell + 2$.
- There exists a T_i that can be pruned in T due to the nesting structure of subtrees.

![Diagram of trees and MAF](image)

- Regraft T_i according to the embedding of F into $T' \Rightarrow \hat{T} \& \hat{F}$
Characterization

Let \(T \) and \(T' \) be two phylogenetic trees on \(X \) and let \(F = \{ T_\rho, T_1, T_2, \ldots, T_k \} \) be a MAF of \(T \) and \(T' \). Define

\[
m(T, T') = k = |F| - 1.
\]

Theorem 3. \(m(T, T') = d_{\text{SPR}}(T, T') \)

Proof of “\(\geq \)” by induction on \(m = m(T, T') \).

- Let \(F \) be a MAF of \(T \) and \(T' \) of size \(\ell + 2 \).
- There exists a \(T_i \) that can be pruned in \(T \) due to the nesting structure of subtrees.

\[
\begin{array}{cccccc}
T & & T' & & F & & \hat{T} & & \hat{F} \\
\rho & & \rho & & \rho & & \rho & & \rho
\end{array}
\]

- Regraft \(T_i \) according to the embedding of \(F \) into \(T' \) \(\Rightarrow \) \(\hat{T} \& \hat{F} \)
- \(\hat{F} \) is AF for \(\hat{T} \& T' \) and \(|\hat{F}| = \ell + 1 \)
- \(\Rightarrow d_{\text{SPR}}(\hat{T}, T') \leq \ell \)
Characterization

Let T and T' be two phylogenetic trees on X and let $F = \{T_\rho, T_1, T_2, \ldots, T_k\}$ be a MAF of T and T'.
Define
\[
m(T, T') = k = |F| - 1.
\]

Theorem 3. $m(T, T') = d_{\text{SPR}}(T, T')$

Proof of “\geq” by induction on $m = m(T, T')$.

- Let F be a MAF of T and T' of size $\ell + 2$.
- There exists a T_i that can be pruned in T due to the nesting structure of subtrees.

```
T      T'      F      \hat{T}    \hat{F}
\rho    \rho    \rho\triangle \rho\triangle
```

- Regraft T_i according to the embedding of F into T' $\Rightarrow \hat{T}$ & \hat{F}
- \hat{F} is AF for \hat{T} & T' and $|\hat{F}| = \ell + 1$
- $\Rightarrow d_{\text{SPR}}(\hat{T}, T') \leq \ell$
- $d_{\text{SPR}}(T, \hat{T}) = 1$
Let T and T' be two phylogenetic trees on X and let $F = \{T_\rho, T_1, T_2, \ldots, T_k\}$ be a MAF of T and T'.
Define

$$m(T, T') = k = |F| - 1.$$

Theorem 3. $m(T, T') = d_{\text{SPR}}(T, T')$

Proof of “\geq” by induction on $m = m(T, T')$.

- Let F be a MAF of T and T' of size $\ell + 2$.
- There exists a T_i that can be pruned in T due to the nesting structure of subtrees.

![Diagram](image)

- Regraft T_i according to the embedding of F into $T' \Rightarrow \hat{T} & \hat{F}$
- \hat{F} is AF for $\hat{T} & T'$ and $|\hat{F}| = \ell + 1$
- $\Rightarrow d_{\text{SPR}}(\hat{T}, T') \leq \ell$
- $d_{\text{SPR}}(T, \hat{T}) = 1$
- $d_{\text{SPR}}(T, T') \leq \ell + 1 = m(T, T')$
Theorem 4. [HJWZ ’96, BS ’05]
Computing $d_{\text{SPR}}(T, T')$ is NP-hard.

Proof by reduction from Exact Cover by 3-Sets.
Theorem 4. [HJWZ ’96, BS ’05]
Computing \(d_{\text{SPR}}(T, T') \) is NP-hard.

Proof by reduction from Exact Cover by 3-Sets.

Plan.
- Construct kernel of the problem.
- Replace \(T \) and \(T' \) with smaller \(S \) and \(S' \).
- Derive \(d_{\text{SPR}}(T, T') \) from \(d_{\text{SPR}}(S, S') \).
Theorem 4. [HJWZ ’96, BS ’05]
Computing $d_{SPR}(T, T')$ is NP-hard.

Proof by reduction from Exact Cover by 3-Sets.

Plan.
- Construct **kernel** of the problem.
 - Replace T and T' with smaller S and S'.
 - Derive $d_{SPR}(T, T')$ from $d_{SPR}(S, S')$.
- Show that the size of the kernel depends on $d_{SPR}(T, T')$.
Theorem 4. [HJWZ '96, BS '05] Computing $d_{\text{SPR}}(T, T')$ is NP-hard.

Proof by reduction from Exact Cover by 3-Sets.

Plan.

- Construct **kernel** of the problem.

 - Replace T and T' with smaller S and S'.

 - Derive $d_{\text{SPR}}(T, T')$ from $d_{\text{SPR}}(S, S')$.

- Show that the size of the kernel depends on $d_{\text{SPR}}(T, T')$.

- Devise an FPT algorithm with respect to d_{SPR}.
Theorem 4. [HJWZ ’96, BS ’05]
Computing $d_{\text{SPR}}(T, T')$ is NP-hard.

Proof by reduction from Exact Cover by 3-Sets.

Plan.

- Construct **kernel** of the problem.
 - Replace T and T' with smaller S and S'.
 - Derive $d_{\text{SPR}}(T, T')$ from $d_{\text{SPR}}(S, S')$.
- Show that the size of the kernel depends on $d_{\text{SPR}}(T, T')$.
- Devise an FPT algorithm with respect to d_{SPR}.
- Sketch an approximation algorithm.
Kernelization – Subtrees

Common subtree reduction.

- Replace any subtree (with \(\geq 2 \) leaves) that occurs identically in both trees by a single leaf with a new label.
Kernelization – Subtrees

Common subtree reduction.
- Replace any subtree (with \(\geq 2 \) leaves) that occurs identically in both trees by a single leaf with a new label.
Kernelization – Subtrees

Common subtree reduction.
- Replace any subtree (with ≥ 2 leaves) that occurs identically in both trees by a single leaf with a new label.
Common subtree reduction.

- Replace any subtree (with ≥ 2 leaves) that occurs identically in both trees by a single leaf with a new label.

Lemma 5. Applying the common subtree reduction is safe, i.e., $d_{SPR}(T, T') = d_{SPR}(S, S')$.
Kernelization – Subtrees

Common subtree reduction.
- Replace any subtree (with ≥ 2 leaves) that occurs identically in both trees by a single leaf with a new label.

Suppose S is covered by two trees of MAF.

Lemma 5. Applying the common subtree reduction is safe, i.e., $d_{SPR}(T, T') = d_{SPR}(S, S')$.

Proof.
Suppose is covered by two trees of MAF.
Kernelization – Subtrees

Common subtree reduction.
- Replace any subtree (with \(\geq 2 \) leaves) that occurs identically in both trees by a single leaf with a new label.

Lemma 5. Applying the common subtree reduction is safe, i.e., \(d_{SPR}(T, T') = d_{SPR}(S, S') \).

Proof.
Suppose is covered by two trees of MAF then there is an alternative MAF of the same size
Kernelization – Chains

Chain reduction.

- Replace any chain of leaves that occurs identically (from bottom to top) in both trees by three new leaves.
Kernelization – Chains

Chain reduction.
- Replace any chain of leaves that occurs identically (from bottom to top) in both trees by three new leaves.
Kernelization – Chains

Chain reduction.
- Replace any chain of leaves that occurs identically (from bottom to top) in both trees by three new leaves.

\[T \rightarrow T' \rightarrow S \rightarrow S' \]
Kernelization – Chains

Chain reduction.
- Replace any chain of leaves that occurs identically (from bottom to top) in both trees by three new leaves.

\[
\text{Lemma 6. Applying chain reduction is safe, i.e., } d_{\text{SPR}}(T, T') = d_{\text{SPR}}(S, S').
\]
Kernelization – Chains

Chain reduction.
- Replace any chain of leaves that occurs identically (from bottom to top) in both trees by three new leaves.

Lemma 6. Applying chain reduction is safe, i.e., $d_{\text{SPR}}(T, T') = d_{\text{SPR}}(S, S')$.

Proof.
- Show there is a tree with abc-chain in a MAF of S and S'.
- Swap abc-chain with original chain for MAF of T and T'.
Kernelization – Chains

Chain reduction.

■ Replace any chain of leaves that occurs identically (from bottom to top) in both trees by three new leaves.

Lemma 6. Applying chain reduction is safe, i.e., \(d_{\text{SPR}}(T, T') = d_{\text{SPR}}(S, S')\).

Proof.

■ Consider embedding of a MAF \(F\) into \(S\).
Kernelization – Chains

Chain reduction.
- Replace any chain of leaves that occurs identically (from bottom to top) in both trees by three new leaves.

Lemma 6. Applying chain reduction is safe, i.e., \(d_{\text{SPR}}(T, T') = d_{\text{SPR}}(S, S') \).

Proof. Case 1
- Consider embedding of a MAF \(F \) into \(S \).
Kernelization – Chains

Chain reduction.
- Replace any chain of leaves that occurs identically (from bottom to top) in both trees by three new leaves.

Lemma 6. Applying chain reduction is safe, i.e., \(d_{SPR}(T, T') = d_{SPR}(S, S') \).

Proof.
- Consider embedding of a MAF \(F \) into \(S \).
Kernelization – Chains

Chain reduction.
- Replace any chain of leaves that occurs identically (from bottom to top) in both trees by three new leaves.

\[
\begin{align*}
T & \quad T' \\
S & \quad S'
\end{align*}
\]

Lemma 6. Applying chain reduction is safe, i.e., \(d_{\text{SPR}}(T, T') = d_{\text{SPR}}(S, S')\).

Proof.
- Consider embedding of a MAF \(F\) into \(S\).

Case 1
Kernelization – Chains

Chain reduction.
- Replace any chain of leaves that occurs identically (from bottom to top) in both trees by three new leaves.

- Consider embedding of a MAF F into S.

Lemma 6. Applying chain reduction is safe, i.e., $d_{SPR}(T, T') = d_{SPR}(S, S')$.

Proof.
- Consider embedding of a MAF F into S.

Case 2
Kernelization – Chains

Chain reduction.

- Replace any chain of leaves that occurs identically (from bottom to top) in both trees by three new leaves.

\[T \rightarrow T' \rightarrow S \rightarrow S' \]

Lemma 6. Applying chain reduction is safe, i.e., \(d_{\text{SPR}}(T, T') = d_{\text{SPR}}(S, S') \).

Proof.

- Consider embedding of a MAF \(F \) into \(S \).

Case 2
Kernelization – Chains

Chain reduction.
- Replace any chain of leaves that occurs identically (from bottom to top) in both trees by three new leaves.

\[T \rightarrow T' \rightarrow S \rightarrow S' \]

Lemma 6. Applying chain reduction is safe, i.e., \(d_{\text{SPR}}(T, T') = d_{\text{SPR}}(S, S') \).

Proof.
- Consider embedding of a MAF \(F \) into \(S \).
Kernelization – Chains

Chain reduction.
- Replace any chain of leaves that occurs identically (from bottom to top) in both trees by three new leaves.

\[T \quad T' \quad S \quad S' \]

Lemma 6. Applying chain reduction is safe, i.e., \(d_{SPR}(T, T') = d_{SPR}(S, S') \).

Proof.
- Consider embedding of a MAF \(F \) into \(S \).

Case 3
Kernelization – Chains

Chain reduction.
- Replace any chain of leaves that occurs identically (from bottom to top) in both trees by three new leaves.

\[
\begin{array}{c}
T \\
\end{array} \quad \begin{array}{c}
T' \\
\end{array} \quad \begin{array}{c}
S \\
\end{array} \quad \begin{array}{c}
S' \\
\end{array}
\]

Why not using a chain of length \(\leq 2 \)?

Lemma 6. Applying chain reduction is safe, i.e., \(d_{SPR}(T, T') = d_{SPR}(S, S') \).
Kernelization – Chains

Chain reduction.
- Replace any chain of leaves that occurs identically (from bottom to top) in both trees by three new leaves.

![Diagram showing chain reduction](image.png)

Why not using a chain of length ≤ 2?

Lemma 6. Applying chain reduction is safe, i.e., $d_{\text{SPR}}(T, T') = d_{\text{SPR}}(S, S')$.

![Diagram showing Lemma 6](image.png)
Kernelization – Chains

Chain reduction.
- Replace any chain of leaves that occurs identically (from bottom to top) in both trees by three new leaves.

\[T \rightarrow T' \]
\[S \rightarrow S' \]

Why not using a chain of length \(\leq 2 \)?

Lemma 6. Applying chain reduction is safe, i.e., \(d_{\text{SPR}}(T, T') = d_{\text{SPR}}(S, S') \).
Lemma 7. Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then

$$|X'| \leq 28 \cdot d_{SPR}(T, T').$$
Lemma 7.
Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then

$$|X'| \leq 28 \text{d}_{\text{SPR}}(T, T').$$

Proof. Let $F = \{T_ρ, T_1, \ldots, T_k\}$ be MAF for S and S'.

Kernel Size
Lemma 7.
Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then

$$|X'| \leq 28 \cdot d_{SPR}(T, T').$$

Proof. Let $F = \{T_\rho, T_1, \ldots, T_k\}$ be MAF for S and S'. Let $n(T_i) := |\{T_j \mid T_j \in F \land T_i \text{ and } T_j \text{ touch in } S\}|$.

Proof.
Kernel Size

Lemma 7. Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then

$$|X'| \leq 28 d_{\text{SPR}}(T, T').$$

Proof. Let $F = \{T_\rho, T_1, \ldots, T_k\}$ be MAF for S and S'. Let $n(T_i) := |\{T_j \mid T_j \in F \land T_i \text{ and } T_j \text{ touch in } S\}|$. Similarly, let $n'(T_i) := |\{T_j \mid T_j \in F \land T_i \text{ and } T_j \text{ touch in } S'\}|$.

Proof.

Similarly, let $n'(T_i) := |\{T_j \mid T_j \in F \land T_i \text{ and } T_j \text{ touch in } S'\}|$.

Proof.

Kernel Size

Lemma 7. Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then
$$|X'| \leq 28 \, d_{SPR}(T, T').$$

Proof. Let $F = \{T_\rho, T_1, \ldots, T_k\}$ be MAF for S and S'. Let $n(T_i) := |\{T_j \mid T_j \in F \land T_i \text{ and } T_j \text{ touch in } S\}|$. Similarly, let $n'(T_i) := |\{T_j \mid T_j \in F \land T_i \text{ and } T_j \text{ touch in } S'\}|$.

Claim 1. \(\sum_{i=\rho}^{k} (n(T_i) + n'(T_i)) \leq 4k. \)

We know \(k = d_{SPR}(S, S') = d_{SPR}(T, T'). \)
Kernel Size

Lemma 7. Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then

$$|X'| \leq 28 \text{d}_{\text{SPR}}(T, T').$$

Proof. Let $F = \{T_\rho, T_1, \ldots, T_k\}$ be MAF for S and S'. Let $n(T_i) := |\{T_j | T_j \in F \land T_i \text{ and } T_j \text{ touch in } S\}|$. Similarly, let $n'(T_i) := |\{T_j | T_j \in F \land T_i \text{ and } T_j \text{ touch in } S'\}|$.

Claim 1. $\sum_{i=\rho}^{k} (n(T_i) + n'(T_i)) \leq 4k$.

We know $k = \text{d}_{\text{SPR}}(S, S') = \text{d}_{\text{SPR}}(T, T')$.

![Diagram](image-url)
Kernel Size

Lemma 7. Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then
\[|X'| \leq 28 \text{d}_{\text{SPR}}(T, T'). \]

Proof. Let $F = \{T_\rho, T_1, \ldots, T_k\}$ be MAF for S and S'. Let $n(T_i) := |\{T_j \mid T_j \in F \land T_i \text{ and } T_j \text{ touch in } S\}|$. Similarly, let $n'(T_i) := |\{T_j \mid T_j \in F \land T_i \text{ and } T_j \text{ touch in } S'\}|$.

Claim 1. \[\sum_{i=\rho}^{k} (n(T_i) + n'(T_i)) \leq 4k. \]

We know \[k = d_{\text{SPR}}(S, S') = d_{\text{SPR}}(T, T'). \]
Kernel Size

Lemma 7. Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then
\[|X'| \leq 28 \, d_{SPR}(T, T'). \]

Proof. Let $F = \{T_\rho, T_1, \ldots, T_k\}$ be MAF for S and S'. Let $n(T_i) := |\{T_j \mid T_j \in F \land T_i \text{ and } T_j \text{ touch in } S\}|$. Similarly, let $n'(T_i) := |\{T_j \mid T_j \in F \land T_i \text{ and } T_j \text{ touch in } S'\}|$. We know $k = d_{SPR}(S, S') = d_{SPR}(T, T')$.

Claim 1. $\sum_{i=\rho}^{k} (n(T_i) + n'(T_i)) \leq 4k.$

We know $k = d_{SPR}(S, S') = d_{SPR}(T, T')$.

\[|V(H)| = k + 1 \]
Kernel Size

Lemma 7. Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then

$$|X'| \leq 28 \text{d}_{\text{SPR}}(T, T').$$

Proof. Let $F = \{T_{\rho}, T_1, \ldots, T_k\}$ be MAF for S and S'. Let $n(T_i) := |\{T_j | T_j \in F \land T_i \text{ and } T_j \text{ touch in } S\}|$. Similarly, let $n'(T_i) := |\{T_j | T_j \in F \land T_i \text{ and } T_j \text{ touch in } S'\}|$.

Claim 1. $\sum_{i=\rho}^k (n(T_i) + n'(T_i)) \leq 4k.$

We know

$k = d_{\text{SPR}}(S, S') = d_{\text{SPR}}(T, T').$

$$|V(H)| = k + 1 = |E(H)| + 1$$
Kernel Size

Lemma 7.
Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then
\[|X'| \leq 28 \text{d}_{\text{SPR}}(T, T'). \]

Proof. Let $F = \{T_\rho, T_1, \ldots, T_k\}$ be MAF for S and S'. Let $n(T_i) := |\{T_j | T_j \in F \land T_i \text{ and } T_j \text{ touch in } S\}|$. Similarly, let $n'(T_i) := |\{T_j | T_j \in F \land T_i \text{ and } T_j \text{ touch in } S'\}|$.

Claim 1. $\sum_{i=\rho}^{k} (n(T_i) + n'(T_i)) \leq 4k$. We know $k = \text{d}_{\text{SPR}}(S, S') = \text{d}_{\text{SPR}}(T, T')$.

\[|V(H)| = k + 1 = |E(H)| + 1 \]
\[\sum_{i=\rho}^{k} n(T_i) = 2|E(H)| \leq 2k \]
Lemma 7.
Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then
\[|X'| \leq 28 \cdot d_{\text{SPR}}(T, T'). \]

Proof. Let $F = \{T_\rho, T_1, \ldots, T_k\}$ be MAF for S and S'. Let $n(T_i) := |\{T_j \mid T_j \in F \land T_i \text{ and } T_j \text{ touch in } S\}|$. Similarly, let $n'(T_i) := |\{T_j \mid T_j \in F \land T_i \text{ and } T_j \text{ touch in } S'\}|$.

Claim 1. \[\sum_{i=\rho}^{k} (n(T_i) + n'(T_i)) \leq 4k. \]

Claim 2. # leaves of $T_i \leq 7(n(T_i) + n'(T_i))$.

We know $k = d_{\text{SPR}}(S, S') = d_{\text{SPR}}(T, T')$.

Proof. Let $F = \{T_\rho, T_1, \ldots, T_k\}$ be MAF for S and S'. Let S and S' be on X'. Then
\[|X'| \leq 28 \cdot d_{\text{SPR}}(T, T'). \]
Kernel Size

Lemma 7.
Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then

$$|X'| \leq 28 d_{\text{SPR}}(T, T').$$

Proof. Let $F = \{T_\rho, T_1, \ldots, T_k\}$ be MAF for S and S'. Let $n(T_i) := |\{T_j \mid T_j \in F \land T_i \text{ and } T_j \text{ touch in } S\}|$. Similarly, let $n'(T_i) := |\{T_j \mid T_j \in F \land T_i \text{ and } T_j \text{ touch in } S'\}|$.

Claim 1. $\sum_{i=\rho}^{k} (n(T_i) + n'(T_i)) \leq 4k$.

Claim 2. $\# \text{ leaves of } T_i \leq 7(n(T_i) + n'(T_i))$.

We know $k = d_{\text{SPR}}(S, S') = d_{\text{SPR}}(T, T')$.

Proof.

Similarly, let $n'(T_i) := |\{T_j \mid T_j \in F \land T_i \text{ and } T_j \text{ touch in } S'\}|$.

We know $k = d_{\text{SPR}}(S, S') = d_{\text{SPR}}(T, T')$.

T_i

\[
\begin{array}{c}
\text{root} \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \\
/ \
\end{array}
\]
Kernel Size

Lemma 7.
Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then

$$|X'| \leq 28 d_{\text{SPR}}(T, T').$$

Proof. Let $F = \{T_\rho, T_1, \ldots, T_k\}$ be MAF for S and S'. Let $n(T_i) := |\{T_j | T_j \in F \land T_i \text{ and } T_j \text{ touch in } S\}|$. Similarly, let $n'(T_i) := |\{T_j | T_j \in F \land T_i \text{ and } T_j \text{ touch in } S'\}|$.

Claim 1. $\sum_{i=\rho}^{k} (n(T_i) + n'(T_i)) \leq 4k$.

Claim 2. $\# \text{ leaves of } T_i \leq 7(n(T_i) + n'(T_i))$.

We know $k = d_{\text{SPR}}(S, S') = d_{\text{SPR}}(T, T')$.

\[\text{Proof.}\] Let $F = \{T_\rho, T_1, \ldots, T_k\}$ be MAF for S and S'. Let S and S' be on X'. Then

$$|X'| \leq 28 d_{\text{SPR}}(T, T').$$

Lemma 7.
Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then

$$|X'| \leq 28 d_{\text{SPR}}(T, T').$$

Proof. Let $F = \{T_\rho, T_1, \ldots, T_k\}$ be MAF for S and S'. Let $n(T_i) := |\{T_j | T_j \in F \land T_i \text{ and } T_j \text{ touch in } S\}|$. Similarly, let $n'(T_i) := |\{T_j | T_j \in F \land T_i \text{ and } T_j \text{ touch in } S'\}|$.

Claim 1. $\sum_{i=\rho}^{k} (n(T_i) + n'(T_i)) \leq 4k$.

Claim 2. $\# \text{ leaves of } T_i \leq 7(n(T_i) + n'(T_i))$.

We know $k = d_{\text{SPR}}(S, S') = d_{\text{SPR}}(T, T')$.

\[\text{Proof.}\]

\[\text{We know}\]

\[k = d_{\text{SPR}}(S, S') = d_{\text{SPR}}(T, T').\]
Kernel Size

Lemma 7.
Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then
\[|X'| \leq 28 \, d_{SPR}(T, T'). \]

Proof. Let $F = \{T_\rho, T_1, \ldots, T_k\}$ be MAF for S and S'. Let $n(T_i) := |\{T_j \mid T_j \in F \land T_i \text{ and } T_j \text{ touch in } S\}|$. Similarly, let $n'(T_i) := |\{T_j \mid T_j \in F \land T_i \text{ and } T_j \text{ touch in } S'\}|$. We know
\[k = d_{SPR}(S, S') = d_{SPR}(T, T'). \]

Claim 1. $\sum_{i=\rho}^{k} (n(T_i) + n'(T_i)) \leq 4k.$

Claim 2. # leaves of $T_i \leq 7(n(T_i) + n'(T_i)).$
Kernel Size

Lemma 7. Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then $|X'| \leq 28 \text{d}_{\text{SPR}}(T, T')$.

Proof. Let $F = \{T_\rho, T_1, \ldots, T_k\}$ be MAF for S and S'. Let $n(T_i) := |\{T_j \mid T_j \in F \land T_i \text{ and } T_j \text{ touch in } S\}|$. Similarly, let $n'(T_i) := |\{T_j \mid T_j \in F \land T_i \text{ and } T_j \text{ touch in } S'\}|$.

Claim 1. $\sum_{i=\rho}^{k} (n(T_i) + n'(T_i)) \leq 4k$.

Claim 2. # leaves of $T_i \leq 7(n(T_i) + n'(T_i))$.

We know $k = d_{\text{SPR}}(S, S') = d_{\text{SPR}}(T, T')$.

Proof. Let $n(T_i) := |\{T_j \mid T_j \in F \land T_i \text{ and } T_j \text{ touch in } S\}|$. Similarly, let $n'(T_i) := |\{T_j \mid T_j \in F \land T_i \text{ and } T_j \text{ touch in } S'\}|$.

We know $k = d_{\text{SPR}}(S, S') = d_{\text{SPR}}(T, T')$.

Proof. Let $F = \{T_\rho, T_1, \ldots, T_k\}$ be MAF for S and S'. Let S and S' be on X'. Then $|X'| \leq 28 \text{d}_{\text{SPR}}(T, T')$.

Proof. Let $F = \{T_\rho, T_1, \ldots, T_k\}$ be MAF for S and S'.

Let $n(T_i) := |\{T_j \mid T_j \in F \land T_i \text{ and } T_j \text{ touch in } S\}|$. Similarly, let $n'(T_i) := |\{T_j \mid T_j \in F \land T_i \text{ and } T_j \text{ touch in } S'\}|$.

Claim 1. $\sum_{i=\rho}^{k} (n(T_i) + n'(T_i)) \leq 4k$.

Claim 2. # leaves of $T_i \leq 7(n(T_i) + n'(T_i))$.

We know $k = d_{\text{SPR}}(S, S') = d_{\text{SPR}}(T, T')$.

Proof. Let $F = \{T_\rho, T_1, \ldots, T_k\}$ be MAF for S and S'.

Let $n(T_i) := |\{T_j \mid T_j \in F \land T_i \text{ and } T_j \text{ touch in } S\}|$. Similarly, let $n'(T_i) := |\{T_j \mid T_j \in F \land T_i \text{ and } T_j \text{ touch in } S'\}|$.

Claim 1. $\sum_{i=\rho}^{k} (n(T_i) + n'(T_i)) \leq 4k$.

Claim 2. # leaves of $T_i \leq 7(n(T_i) + n'(T_i))$.

We know $k = d_{\text{SPR}}(S, S') = d_{\text{SPR}}(T, T')$.

Proof. Let $F = \{T_\rho, T_1, \ldots, T_k\}$ be MAF for S and S'.

Let $n(T_i) := |\{T_j \mid T_j \in F \land T_i \text{ and } T_j \text{ touch in } S\}|$. Similarly, let $n'(T_i) := |\{T_j \mid T_j \in F \land T_i \text{ and } T_j \text{ touch in } S'\}|$.

Claim 1. $\sum_{i=\rho}^{k} (n(T_i) + n'(T_i)) \leq 4k$.

Claim 2. # leaves of $T_i \leq 7(n(T_i) + n'(T_i))$.
Lemma 7.
Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then
$$|X'| \leq 28 \text{spr}(T, T').$$

Proof. Let $F = \{T_{\rho}, T_1, \ldots, T_k\}$ be MAF for S and S'. Let $n(T_i) := |\{T_j \mid T_j \in F \land T_i \text{ and } T_j \text{ touch in } S\}|$. Similarly, let $n'(T_i) := |\{T_j \mid T_j \in F \land T_i \text{ and } T_j \text{ touch in } S'\}|$.

Claim 1. $\sum_{i=\rho}^{k} (n(T_i) + n'(T_i)) \leq 4k$.

Claim 2. # leaves of $T_i \leq 7(n(T_i) + n'(T_i))$.

We know $k = \text{spr}(S, S') = \text{spr}(T, T')$.

Proof.

\begin{align*}
\text{Similarly, let } n'(T_i) := |\{T_j \mid T_j \in F \land T_i \text{ and } T_j \text{ touch in } S'\}|. \\
\text{We know } k = \text{spr}(S, S') = \text{spr}(T, T').
\end{align*}
Kernel Size

Lemma 7.
Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then

$$|X'| \leq 28 \cdot d_{SPR}(T, T').$$

Proof. Let $F = \{T_\rho, T_1, \ldots, T_k\}$ be MAF for S and S'. Let $n(T_i) := |\{T_j \mid T_j \in F \land T_i \text{ and } T_j \text{ touch in } S\}|$. Similarly, let $n'(T_i) := |\{T_j \mid T_j \in F \land T_i \text{ and } T_j \text{ touch in } S'\}|$.

Claim 1. $\sum_{i=\rho}^{k} (n(T_i) + n'(T_i)) \leq 4k$.

Claim 2. # leaves of $T_i \leq 7(n(T_i) + n'(T_i))$.

We know $k = d_{SPR}(S, S') = d_{SPR}(T, T')$.
Kernel Size

Lemma 7.
Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then
\[|X'| \leq 28 \text{d}_{\text{SPR}}(T, T'). \]

Proof. Let $F = \{T_\rho, T_1, \ldots, T_k\}$ be MAF for S and S'. Let $n(T_i) := |\{T_j | T_j \in F \land T_i \text{ and } T_j \text{ touch in } S\}|$. Similarly, let $n'(T_i) := |\{T_j | T_j \in F \land T_i \text{ and } T_j \text{ touch in } S'\}|$.

Proof. Let $F = \{T_\rho, T_1, ..., T_k\}$ be MAF for S and S'. Let $n(T_i) := |\{T_j | T_j \in F \land T_i \text{ and } T_j \text{ touch in } S\}|$. Similarly, let $n'(T_i) := |\{T_j | T_j \in F \land T_i \text{ and } T_j \text{ touch in } S'\}|$.

Claim 1. \(\sum_{i=\rho}^{k}(n(T_i) + n'(T_i)) \leq 4k.\)

Claim 2. \# leaves of $T_i \leq 7(n(T_i) + n'(T_i)).$
Kernel Size

Lemma 7.
Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then

$$|X'| \leq 28 \, d_{SPR}(T, T').$$

Proof. Let $F = \{T_\rho, T_1, \ldots, T_k\}$ be MAF for S and S'. Let $n(T_i) := |\{T_j \mid T_j \in F \land T_i \text{ and } T_j \text{ touch in } S\}|$. Similarly, let $n'(T_i) := |\{T_j \mid T_j \in F \land T_i \text{ and } T_j \text{ touch in } S'\}|$.

Claim 1. $\sum_{i=\rho}^{k} (n(T_i) + n'(T_i)) \leq 4k$.

Claim 2. $\#$ leaves of $T_i \leq 7(n(T_i) + n'(T_i))$.

We know $k = d_{SPR}(S, S') = d_{SPR}(T, T')$.

Proof.

Similarly, let $n'(T_i) := |\{T_j \mid T_j \in F \land T_i \text{ and } T_j \text{ touch in } S'\}|$.

We know $k = d_{SPR}(S, S') = d_{SPR}(T, T')$.

Proof.

| $X'| = \sum_{i=\rho}^{k} \#$ leaves of T_i
Kernel Size

Lemma 7.
Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then
\[|X'| \leq 28 \cdot d_{SPR}(T, T'). \]

Proof. Let $F = \{T_\rho, T_1, \ldots, T_k\}$ be MAF for S and S'. Let $n(T_i) := |\{T_j \mid T_j \in F \land T_i \text{ and } T_j \text{ touch in } S\}|$. Similarly, let $n'(T_i) := |\{T_j \mid T_j \in F \land T_i \text{ and } T_j \text{ touch in } S'\}|$.

Claim 1. $\sum_{i=\rho}^{k} (n(T_i) + n'(T_i)) \leq 4k$.

Claim 2. # leaves of $T_i \leq 7(n(T_i) + n'(T_i))$.

We know $k = d_{SPR}(S, S') = d_{SPR}(T, T')$.

<table>
<thead>
<tr>
<th>X'</th>
<th>$\leq \sum_{i=\rho}^{k}$ # leaves of T_i</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\leq \sum_{i=\rho}^{k} 7(n(T_i) + n'(T_i))$</td>
<td>$\leq 28 \cdot d_{SPR}(T, T')$</td>
</tr>
</tbody>
</table>
 Lemma 7.
Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then

$$|X'| \leq 28 d_{\text{SPR}}(T, T').$$

Proof. Let $F = \{T_\rho, T_1, \ldots, T_k\}$ be MAF for S and S'. Let $n(T_i) := |\{T_j \mid T_j \in F \land T_i \text{ and } T_j \text{ touch in } S\}|$. Similarly, let $n'(T_i) := |\{T_j \mid T_j \in F \land T_i \text{ and } T_j \text{ touch in } S'\}|$.

Claim 1. $\sum_{i=\rho}^{k} (n(T_i) + n'(T_i)) \leq 4k$.

Claim 2. The number of leaves of $T_i \leq 7(n(T_i) + n'(T_i))$. Then

$$|X'| = \sum_{i=\rho}^{k} \# \text{ leaves of } T_i \leq \sum_{i=\rho}^{k} 7(n(T_i) + n'(T_i)) \leq 28k.$$
Theorem 8.
Computing $d_{SPR}(T, T')$ is fixed-parameter tractable when parameterized by $d_{SPR}(T, T')$.
FPT Algorithm

Theorem 8.
Computing $d_{SPR}(T, T')$ is fixed-parameter tractable when parameterized by $d_{SPR}(T, T')$.

Proof.

- Reduce T and T' to S and S' by exhaustively applying the reduction rules.
- Let S and S' be on X' and let $k = d_{SPR}(S, S')$.

Theorem 8.
Computing $d_{SPR}(T, T')$ is fixed-parameter tractable when parameterized by $d_{SPR}(T, T')$.

Proof.

- Reduce T and T' to S and S' by exhaustively applying the reduction rules.
- Let S and S' be on X' and let $k = d_{SPR}(S, S')$.

FPT Algorithm

Theorem 8.
Computing $d_{\text{SPR}}(T, T')$ is fixed-parameter tractable when parameterized by $d_{\text{SPR}}(T, T')$.

Proof.
- Reduce T and T' to S and S' by exhaustively applying the reduction rules.
- Let S and S' be on X' and let $k = d_{\text{SPR}}(S, S')$.
- S has at most $4|X'|^2$ neighbors in the SPR-graph G.
FPT Algorithm

Theorem 8.
Computing $d_{SPR}(T, T')$ is fixed-parameter tractable when parameterized by $d_{SPR}(T, T')$.

Proof.
- Reduce T and T' to S and S' by exhaustively applying the reduction rules.
- Let S and S' be on X' and let $k = d_{SPR}(S, S')$.

- S has at most $4|X'|^2$ neighbors in the SPR-graph G.
 - S has less than $2|X'|$ edges to cut and to attach to.
FPT Algorithm

Theorem 8.
Computing $d_{\text{SPR}}(T, T')$ is fixed-parameter tractable when parameterized by $d_{\text{SPR}}(T, T')$.

Proof.
- Reduce T and T' to S and S' by exhaustively applying the reduction rules.
- Let S and S' be on X' and let $k = d_{\text{SPR}}(S, S')$.
- S has at most $4|X'|^2$ neighbors in the SPR-graph G.
 - S has less than $2|X'|$ edges to cut and to attach to.
- Length-k BFS from S visits at most $O\left((4|X'|^2)^k\right) = O\left((56k)^{2k}\right)$ trees.
FPT Algorithm

Theorem 8. Computing $d_{SPR}(T, T')$ is fixed-parameter tractable when parameterized by $d_{SPR}(T, T')$.

Proof.

- Reduce T and T' to S and S' by exhaustively applying the reduction rules.
- Let S and S' be on X' and let $k = d_{SPR}(S, S')$.

- S has at most $4|X'|^2$ neighbors in the SPR-graph G.
 - S has less than $2|X'|$ edges to cut and to attach to. by Lemma 7

- Length-k BFS from S visits at most $O\left((4|X'|^2)^k\right) = O\left((56k)^{2k}\right)$ trees.
FPT Algorithm

Theorem 8.
Computing \(d_{\text{SPR}}(T, T') \) is fixed-parameter tractable when parameterized by \(d_{\text{SPR}}(T, T') \).

Proof.
- Reduce \(T \) and \(T' \) to \(S \) and \(S' \) by exhaustively applying the reduction rules.
- Let \(S \) and \(S' \) be on \(X' \) and let \(k = d_{\text{SPR}}(S, S') \).
- \(S \) has at most \(4|X'|^2 \) neighbors in the SPR-graph \(G \).
 - \(S \) has less than \(2|X'| \) edges to cut and to attach to.
- Length-\(k \) BFS from \(S \) visits at most \(O\left(\left(4|X'|^2\right)^k\right) = O\left((56k)^{2k}\right) \) trees.
- Since \(k = d_{\text{SPR}}(S, S') = d_{\text{SPR}}(T, T') \), this yields an FPT algorithm.
Approximation Algorithm

Idea.
- Given trees T and T', which are reduced by the previous rules, we compute an agreement forest F by
 - successively making “cuts” and “eliminations”.
 - These steps let T and T' shrink further and further.
- Show that $|F|$ is at most $3|F^*|$, where F^* is a MAF of T and T'.
Approximation Algorithm

\textsc{approxDSPR}(T, T')

\begin{align*}
i & \leftarrow 1 \\
G_i & \leftarrow T \\
H_i & \leftarrow T'
\end{align*}

while \exists \text{ pair of sibling leaves } a \text{ and } b \text{ in } G_i \text{ do}

return $|H_i| - 1$
Approximation Algorithm

\text{APPROXDSPR}(T, T')

\begin{align*}
i &\leftarrow 1 \\
G_i &\leftarrow T \\
H_i &\leftarrow T' \\
\text{while } &\exists \text{ pair of sibling leaves } a \text{ and } b \text{ in } G_i \text{ do} \\
\text{find the case that applies to } a \text{ and } b \text{ in } H_i &\\
\text{apply the corresponding modification} &\\
\text{to obtain } G_i+1 &\text{ from } G_i \text{ and } H_i+1 &\text{ from } H_i \\
i &+ + \\
\text{return } &|H_i| - 1
\end{align*}
Approximation Algorithm

\[\text{APPROXDSPR}(T, T') \]

\[
i \leftarrow 1
\]
\[
G_i \leftarrow T
\]
\[
H_i \leftarrow T'
\]

\[\text{while } \exists \text{ pair of sibling leaves } a \text{ and } b \text{ in } G_i \text{ do} \]

\[\text{find the case that applies to } a \text{ and } b \text{ in } H_i \]

\[\text{apply the corresponding modification to obtain } G_{i+1} \text{ from } G_i \text{ and } H_{i+1} \text{ from } H_i \]

\[i \leftarrow i + 1\]

\[\text{return } |H_i| - 1\]
Approximation Algorithm

\texttt{APPROXDSPR}(T, T')

\begin{align*}
i & \leftarrow 1 \\
G_i & \leftarrow T \\
H_i & \leftarrow T'
\end{align*}

\textbf{while} \; \exists \; \text{pair of sibling leaves } a \text{ and } b \text{ in } G_i \; \textbf{do}

\begin{align*}
& \text{find the case that applies to } a \text{ and } b \text{ in } H_i \\
& \text{apply the corresponding modification to obtain } G_i+1 \text{ from } G_i \text{ and } H_i+1 \text{ from } H_i
\end{align*}

\textbf{return} \; |H_i| - 1

\texttt{Case 1}

\begin{align*}
G_i & \\
H_i &
\end{align*}
Approximation Algorithm

\texttt{APPROXDSPR}(T, T')

\begin{align*}
i & \leftarrow 1 \\
G_i & \leftarrow T \\
H_i & \leftarrow T'
\end{align*}

\textbf{while} \ \exists \ \text{pair of sibling leaves } a \text{ and } b \text{ in } G_i \textbf{ do}

\begin{align*}
\text{find the case that applies to } a \text{ and } b \text{ in } H_i \\
\text{apply the corresponding modification to obtain } G_{i+1} \text{ from } G_i \text{ and } H_{i+1} \text{ from } H_i
\end{align*}

\textbf{return} |H_i| - 1
Approximation Algorithm

\textsc{approxDSPR}(T, T')

\begin{align*}
i &\leftarrow 1 \\
G_i &\leftarrow T \\
H_i &\leftarrow T'
\end{align*}

while \exists \text{ pair of sibling leaves } a \text{ and } b \text{ in } G_i \text{ do}

\begin{align*}
&\quad \text{find the case that applies to } a \text{ and } b \text{ in } H_i \\
&\quad \text{apply the corresponding modification}
\end{align*}

\text{return } |H_i| - 1
Approximation Algorithm

\textit{APPROXDSPR}(T, T')

\begin{align*}
i & \leftarrow 1 \\
G_i & \leftarrow T \\
H_i & \leftarrow T'
\end{align*}

\textbf{while} \exists \text{ pair of sibling leaves } a \text{ and } b \text{ in } G_i \text{ do}

\begin{align*}
\text{find the case that applies to } a \text{ and } b \text{ in } H_i \\
\text{apply the corresponding modification}
\end{align*}

\textbf{return } |H_i| - 1
Approximation Algorithm

\text{APPROXDSPR}(T, T')

\begin{align*}
i &\leftarrow 1 \\
G_i &\leftarrow T \\
H_i &\leftarrow T'
\end{align*}

\textbf{while} \ \exists \ \text{pair of sibling leaves} \ a \ \text{and} \ b \ \text{in} \ G_i \ \textbf{do}

\begin{align*}
&\text{find the case that applies to} \ a \ \text{and} \ b \ \text{in} \ H_i \\
&\text{apply the corresponding modification} \\
&\text{to obtain} \ G_{i+1} \ \text{from} \ G_i \ \text{and} \ H_{i+1} \ \text{from} \ H_i \\
&i + +
\end{align*}

\textbf{return} \ |H_i| - 1

\begin{align*}
\text{Case 1} && \text{Case 2} && \text{Case 3} && \text{Case 4}
\end{align*}
Approximation Algorithm – Example

\[T = G_1 \]

\[T' = H_1 \]
Approximation Algorithm – Example

$T = G_1$

$T' = H_1$
Approximation Algorithm – Example

\[T = G_1 \]

\[T' = H_1 \]

Should we cut off leaf 1 or leaf 2 or everything between them in \(H_1 \)?
Approximation Algorithm – Example

$T = G_1$

$T' = H_1$

Case 2

- Should we cut off leaf 1 or leaf 2 or everything between them in H_1?
- Do parts of each!
Approximation Algorithm – Example

Case 2

- Should we cut off leaf 1 or leaf 2 or everything between them in H_1?
- Do parts of each!

Diagram:

- G_2
 - ρ
 - 3, 4, 5, 6

- H_2
 - ρ
 - 3, 4, 6
Approximation Algorithm – Example

\[G_2 \]

\[H_2 \]
Case 1

- If the same "cherry" (i.e., pair of leaves) occurs in G_i and H_i, we simply reduce it.
Approximation Algorithm – Example

Case 1

If the same “cherry” (i.e., pair of leaves) occurs in G_i and H_i, we simply reduce it.
Approximation Algorithm – Example

Case 4
- Leaf b is the only leaf of a tree in H_i.
- Cut off b in G_i.
Approximation Algorithm – Example

Return 3.
Approximation algorithm – analysis

Case | G_i | H_i | G_{i+1} | H_{i+1} | Cost

1 | \(a\) \(b\) | \(a\) \(b\) | \(c\) | \(c\) |
Approximation algorithm – analysis

Case	G_i	H_i	G_{i+1}	H_{i+1}	Cost
1 | \(\begin{array}{cc} a & b \\ \end{array} \) | \(\begin{array}{cc} a & b \\ \end{array} \) | \(\begin{array}{c} c \\ \end{array} \) | \(\begin{array}{c} c \\ \end{array} \) | no mistake
Approximation algorithm – analysis

Case	G_i	H_i	G_{i+1}	H_{i+1}	Cost
1 | ![Tree](image1.png) | ![Tree](image2.png) | ![Tree](image3.png) | ![Tree](image4.png) | no mistake
2 | ![Tree](image5.png) | ![Tree](image6.png) | ![Tree](image7.png) | ![Tree](image8.png) |
Approximation algorithm – analysis

<table>
<thead>
<tr>
<th>Case</th>
<th>G_i</th>
<th>H_i</th>
<th>G_{i+1}</th>
<th>H_{i+1}</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$a \ b$</td>
<td>$a \ b$</td>
<td>c</td>
<td>c</td>
<td>no mistake</td>
</tr>
<tr>
<td>2</td>
<td>$a \ b$</td>
<td>$a \ b$</td>
<td>$a \ b$</td>
<td>$a \ b$</td>
<td>3 cuts 1+ good</td>
</tr>
</tbody>
</table>
Approximation algorithm – analysis

<table>
<thead>
<tr>
<th>Case</th>
<th>G_i</th>
<th>H_i</th>
<th>G_{i+1}</th>
<th>H_{i+1}</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no mistake</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 cuts 1+ good</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Approximation algorithm – analysis

<table>
<thead>
<tr>
<th>Case</th>
<th>G_i</th>
<th>H_i</th>
<th>G_{i+1}</th>
<th>H_{i+1}</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no mistake</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 cuts</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td></td>
<td></td>
<td>1+ good</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 cuts</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td></td>
<td></td>
<td>1+ good</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Approximation algorithm – analysis

<table>
<thead>
<tr>
<th>Case</th>
<th>G_i</th>
<th>H_i</th>
<th>G_{i+1}</th>
<th>H_{i+1}</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a</td>
<td>b</td>
<td></td>
<td>c</td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>3 cuts</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>1+ good</td>
</tr>
<tr>
<td>3</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>2 cuts</td>
</tr>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td>1+ good</td>
</tr>
<tr>
<td>4</td>
<td>a</td>
<td>b</td>
<td>a</td>
<td>b</td>
<td></td>
</tr>
</tbody>
</table>
Approximation algorithm – analysis

<table>
<thead>
<tr>
<th>Case</th>
<th>G_i</th>
<th>H_i</th>
<th>G_{i+1}</th>
<th>H_{i+1}</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no mistake</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 cuts 1+ good</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 cuts 1+ good</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 cut 1 good</td>
</tr>
</tbody>
</table>
Approximation algorithm – analysis

<table>
<thead>
<tr>
<th>Case</th>
<th>G_i</th>
<th>H_i</th>
<th>G_{i+1}</th>
<th>H_{i+1}</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 cuts</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 cuts</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 cut</td>
</tr>
</tbody>
</table>

Theorem 9

APPROXDSPR is a 3-approximation algorithm for $d_{SPR}(T, T')$ with an $O(|X|^2)$ running time.
Discussion

Kernelization.
- Kernelization is an important technique to construct FPT algorithms.
- Result important since SPR-distance small in practice.
- Reduction rules actually give a kernel of size at most $15k - 9$ (we have shown $28k$).
- With further reduction rules, we can get a size below $11k - 9$. [KL '18]
- Divide & conquer techniques can (in practice) further reduce the problem sizes. [LS '11]
Discussion

Kernelization.
- Kernelization is an important technique to construct FPT algorithms.
- Result important since SPR-distance small in practice.
- Reduction rules actually give a kernel of size at most $15k - 9$ (we have shown $28k$).
- With further reduction rules, we can get a size below $11k - 9$. [KL '18]
- Divide & conquer techniques can (in practice) further reduce the problem sizes. [LS '11]

Approximation algorithm.
- There exists a 2-approximation algorithms for the SPR-distance with a running time in $O(n^3)$. [CHW '17]
Discussion

Phylogenetic trees.

- There are other classes of phylogenetic trees: unrooted, non-binary, ranked, ...
- Trees can be generalized to **phylogenetic networks**, which can also have indegree 2 outdegree 1 vertices.
Discussion

Phylogenetic trees.

- There are other classes of phylogenetic trees: unrooted, non-binary, ranked, ...

- Trees can be generalized to phylogenetic networks, which can also have indegree 2 outdegree 1 vertices.

Maximum Agreement Forests.

- Reframing (characterizing) a problem in a different way, can sometimes make your life a lot easier.

- MAF can be generalized to Maximum Agreement Graphs, but these do not characterize the SPR-distance of networks anymore. [K '20]
Original papers:
■ [BS ’05] Semple C., Bordewich M.: *On the computational complexity of the rooted subtree prune and regraft distance* (for SPR, MAF, characterisation, fpt, divide & conquer)
■ [RSW ’06] Rodrigues E. M., Sagot M.-F., Wakabayashi Y.: *The maximum agreement forest problem: Approximation algorithms and computational experiments* (for approx. algorithm)

Referenced papers:
■ [LS ’11] Linz S., Semple C.: *A cluster reduction for computing the subtree distance between phylogenies*