Advanced Algorithms

Approximation Algorithms

Coloring and scheduling problems

Alexander Wolff · WS22
Dealing with NP-Hard Optimization Problems

What should we do?

- Sacrifice optimality for speed
 - Heuristics
 - Approximation algorithms
- Optimal solutions
 - Exact exponential-time algorithms
 - Fine-grained analysis – parameterized algorithms
Dealing with NP-Hard Optimization Problems

What should we do?

- Sacrifice optimality for speed
 - Heuristics
 - Approximation algorithms

- Optimal solutions
 - Exact exponential-time algorithms
 - Fine-grained analysis – parameterized algorithms

- This lecture
 - Heuristics
 - Approximation algorithms

In this lecture, we focus on:

- Heuristics
- Approximation algorithms

These techniques allow us to find solutions quickly, even though they may not be optimal. This is particularly useful when dealing with NP-hard optimization problems, where finding an exact solution in a reasonable time is often impractical.
Approximation Algorithms

Problem.

- For NP-hard optimization problems, we cannot compute the optimal solution of every instance efficiently (unless \(P = NP \)).
- Heuristics offer no guarantee on the quality of their solutions.
Approximation Algorithms

Problem.
- For NP-hard optimization problems, we cannot compute the optimal solution of every instance efficiently (unless P = NP).
- Heuristics offer no guarantee on the quality of their solutions.

Goal.
- Design **approximation algorithms**: run in polynomial time and compute solutions of guaranteed quality.
- Study techniques for the design and analysis of approximation algorithms.
Approximation Algorithms

Problem.
■ For NP-hard optimization problems, we cannot compute the optimal solution of every instance efficiently (unless P = NP).
■ Heuristics offer no guarantee on the quality of their solutions.

Goal.
■ Design approximation algorithms:
 ■ run in polynomial time and
 ■ compute solutions of guaranteed quality.
■ Study techniques for the design and analysis of approximation algorithms.

Overview.
■ Approximation algorithms that compute solutions with/that are
 ■ additive guarantee, ■ relative guarantee, ■ “arbitrarily good”.
Approximation with Additive Guarantee

Definition.
Let Π be an optimization problem, let A be a polynomial-time algorithm for Π, let I be an instance of Π, and let $\text{ALG}(I)$ be the value of the objective function of the solution that A computes given I.

Then A is called an **approximation algorithm with additive guarantee** δ if

$$|\text{OPT}(I) - \text{ALG}(I)| \leq \delta$$

for every instance I of Π.
Approximation with Additive Guarantee

Definition.
Let \(\Pi \) be an optimization problem, let \(\mathcal{A} \) be a polynomial-time algorithm for \(\Pi \), let \(I \) be an instance of \(\Pi \), and let \(\text{ALG}(I) \) be the value of the objective function of the solution that \(\mathcal{A} \) computes given \(I \).

Then \(\mathcal{A} \) is called an approximation algorithm with additive guarantee \(\delta \) if

\[
|\text{OPT}(I) - \text{ALG}(I)| \leq \delta
\]

for every instance \(I \) of \(\Pi \).

Most problems that we know do not admit an approximation algorithm with additive guarantee.
Minimum Vertex Coloring

Input. A graph $G = (V, E)$. Let Δ be the maximum degree of G.

![Graph Diagram]
Minimum Vertex Coloring

Input. A graph $G = (V, E)$. Let Δ be the maximum degree of G.

Output. A **minimum vertex coloring**, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.
Minimum Vertex Coloring

Input. A graph $G = (V, E)$. Let Δ be the maximum degree of G.

Output. A **minimum vertex coloring**, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.

- Minimum Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.
Minimum Vertex Coloring

Input. A graph $G = (V, E)$. Let Δ be the maximum degree of G.

Output. A *minimum vertex coloring*, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.

- Minimum Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(connected graph G)
Color vertices in some order with the lowest feasible color.
Minimum Vertex Coloring

Input. A graph $G = (V, E)$. Let Δ be the maximum degree of G.

Output. A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.

- Minimum Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(connected graph G)
Color vertices in some order with the lowest feasible color.
Minimum Vertex Coloring

Input. A graph $G = (V, E)$. Let Δ be the maximum degree of G.

Output. A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.

- Minimum Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(connected graph G)
Color vertices in some order with the lowest feasible color.
Minimum Vertex Coloring

Input. A graph \(G = (V, E) \). Let \(\Delta \) be the maximum degree of \(G \).

Output. A **minimum vertex coloring**, that is, an assignment of the vertices of \(G \) to colors such that no two adjacent vertices get the same color and the number of colors is minimum.

- Minimum Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(connected graph \(G \))

Color vertices in some order with the lowest feasible color.
Minimum Vertex Coloring

Input. A graph $G = (V, E)$. Let Δ be the maximum degree of G.

Output. A **minimum vertex coloring**, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.

- Minimum Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(connected graph G)

Color vertices in some order with the lowest feasible color.
Minimum Vertex Coloring

Input. A graph $G = (V, E)$. Let Δ be the maximum degree of G.

Output. A *minimum vertex coloring*, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.

- Minimum Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(connected graph G)

Color vertices in some order with the lowest feasible color.
Minimum Vertex Coloring

Input. A graph $G = (V, E)$. Let Δ be the maximum degree of G.

Output. A *minimum vertex coloring*, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.

- Minimum Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(connected graph G)

Color vertices in some order with the lowest feasible color.
Minimum Vertex Coloring

Input. A graph $G = (V, E)$. Let Δ be the maximum degree of G.

Output. A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.

- Minimum Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring(connected graph G)
Color vertices in some order with the lowest feasible color.

Theorem 1.
The algorithm GreedyVertexColoring computes a vertex coloring with at most $\Delta + 1$ colors in $O(V + E)$ time. Hence, it has an additive approximation guarantee of $\Delta - 1$.

\[
\text{Theorem 1.}\quad \text{The algorithm GreedyVertexColoring computes a vertex coloring with at most } \Delta + 1 \text{ colors in } O(V + E) \text{ time. Hence, it has an additive approximation guarantee of } \Delta - 1.
\]
Minimum Vertex Coloring

Input. A graph $G = (V, E)$. Let Δ be the maximum degree of G.

Output. A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.

- Minimum Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.

Theorem 1. The algorithm GreedyVertexColoring computes a vertex coloring with at most $\Delta + 1$ colors in $O(V + E)$ time. Hence, it has an additive approximation guarantee of $\Delta - 1$.
Minimum Vertex Coloring

Input. A graph $G = (V, E)$. Let Δ be the maximum degree of G.

Output. A minimum vertex coloring, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.

- Minimum Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.

GreedyVertexColoring (connected graph G)

Color vertices in some order with the lowest feasible color.

Theorem 1.
The algorithm GreedyVertexColoring computes a vertex coloring with at most $\Delta + 1$ colors in $O(V + E)$ time. Hence, it has an additive approximation guarantee of $\Delta - 1$.
Minimum Vertex Coloring

Input. A graph $G = (V, E)$. Let Δ be the maximum degree of G.

Output. A *minimum vertex coloring*, that is, an assignment of the vertices of G to colors such that no two adjacent vertices get the same color and the number of colors is minimum.

- Minimum Vertex Coloring is NP-hard.
- Even Vertex 3-Coloring is NP-complete.

Theorem 1.
The algorithm GreedyVertexColoring computes a vertex coloring with at most $\Delta + 1$ colors in $O(V + E)$ time. Hence, it has an additive approximation guarantee of $\Delta - 1$.

We can get $\Delta - 2$ if we return a 2-coloring whenever G is bipartite.
Minimum Edge Coloring

Input. A graph $G = (V, E)$. Let Δ be the maximum degree of G.

\[\begin{tikzpicture}
 \node (v1) at (0,0) [shape=circle, fill=black] {};
 \node (v2) at (1,1) [shape=circle, fill=black] {};
 \node (v3) at (1,-1) [shape=circle, fill=black] {};
 \draw (v1) -- (v2);
 \draw (v1) -- (v3);
 \draw (v2) -- (v3);
\end{tikzpicture} \]
Minimum Edge Coloring

Input. A graph $G = (V, E)$. Let Δ be the maximum degree of G.

Output. A minimum edge coloring, that is, an assignment of colors to the edges of G such that no two adjacent edges get the same color and the number of colors is minimum.
Minimum Edge Coloring

Input. A graph $G = (V, E)$. Let Δ be the maximum degree of G.

Output. A **minimum edge coloring**, that is, an assignment of colors to the edges of G such that no two adjacent edges get the same color and the number of colors is minimum.

- Minimum Edge Coloring is NP-hard.
- Even Edge 3-Coloring is NP-complete.
Minimum Edge Coloring

Input. A graph $G = (V, E)$. Let Δ be the maximum degree of G.

Output. A minimum edge coloring, that is, an assignment of colors to the edges of G such that now two adjacent edges get the same color and the number of colors is minimum.

- Minimum Edge Coloring is NP-hard.
- Even Edge 3-Coloring is NP-complete.
- The minimum number of colors needed for an edge coloring of G is called the **chromatic index** $\chi'(G)$.
- $\chi'(G)$ is lowerbounded by
Minimum Edge Coloring

Input. A graph $G = (V, E)$. Let Δ be the maximum degree of G.

Output. A **minimum edge coloring**, that is, an assignment of colors to the edges of G such that now two adjacent edges get the same color and the number of colors is minimum.

- Minimum Edge Coloring is NP-hard.
- Even Edge 3-Coloring is NP-complete.
- The minimum number of colors needed for an edge coloring of G is called the **chromatic index** $\chi'(G)$.
- $\chi'(G)$ is lowerbounded by Δ.
Minimum Edge Coloring

Input. A graph $G = (V, E)$. Let Δ be the maximum degree of G.

Output. A **minimum edge coloring**, that is, an assignment of colors to the edges of G such that now two adjacent edges get the same color and the number of colors is minimum.

- Minimum Edge Coloring is NP-hard.
- Even Edge 3-Coloring is NP-complete.
- The minimum number of colors needed for an edge coloring of G is called the **chromatic index** $\chi'(G)$.
- $\chi'(G)$ is lowerbounded by Δ.
- We show that $\chi'(G) \leq \Delta + 1$.

The minimum number of colors needed for an edge coloring of G is called the chromatic index $\chi'(G)$.

$\chi'(G)$ is lowerbounded by Δ.

We show that $\chi'(G) \leq \Delta + 1$.

Minimum Edge Coloring – Upper Bound

Vizing’s Theorem.
For every graph \(G = (V, E) \) with maximum degree \(\Delta \), it holds that \(\Delta \leq \chi'(G) \leq \Delta + 1 \).
Minimum Edge Coloring – Upper Bound

Vizing’s Theorem.
For every graph $G = (V, E)$ with maximum degree Δ, it holds that $\Delta \leq \chi'(G) \leq \Delta + 1$.

Proof by induction on $m = |E|$.

- Base case $m = 1$ is trivial.
Minimum Edge Coloring – Upper Bound

Vizing’s Theorem.

For every graph $G = (V, E)$ with maximum degree Δ, it holds that $\Delta \leq \chi'(G) \leq \Delta + 1$.

Proof by induction on $m = |E|$.

- **Base case** $m = 1$ is trivial.

Let G be a graph on m edges, and let $e = uv$ be an edge of G.

- **By induction**, $G - e$ has a $(\Delta(G - e) + 1)$-edge coloring.

Vadim G. Vizing
(Kiew 1937 – 2017 Odessa)
Minimum Edge Coloring – Upper Bound

Vizing’s Theorem.
For every graph $G = (V, E)$ with maximum degree Δ, it holds that $\Delta \leq \chi'(G) \leq \Delta + 1$.

Proof by induction on $m = |E|$.
- Base case $m = 1$ is trivial.

Let G be a graph on m edges, and let $e = uv$ be an edge of G.
- By induction, $G - e$ has a $(\Delta(G - e) + 1)$-edge coloring.
- If $\Delta(G) > \Delta(G - e)$, color e with color $\Delta(G) + 1$.

Vadim G. Vizing
(Kiew 1937 – 2017 Odessa)
Minimum Edge Coloring – Upper Bound

Vizing’s Theorem.
For every graph $G = (V, E)$ with maximum degree Δ, it holds that $\Delta \leq \chi'(G) \leq \Delta + 1$.

Proof by induction on $m = |E|$.

- Base case $m = 1$ is trivial.

Let G be a graph on m edges, and let $e = uv$ be an edge of G.
- By induction, $G - e$ has a $(\Delta(G - e) + 1)$-edge coloring.
- If $\Delta(G) > \Delta(G - e)$, color e with color $\Delta(G) + 1$.
- If $\Delta(G) = \Delta(G - e)$, change the coloring such that u and v miss the same color α.

Vadim G. Vizing
(Kiew 1937 – 2017 Odessa)
Minimum Edge Coloring – Upper Bound

Vizing’s Theorem.
For every graph $G = (V, E)$ with maximum degree Δ, it holds that $\Delta \leq \chi'(G) \leq \Delta + 1$.

Proof by induction on $m = |E|$.

- Base case $m = 1$ is trivial.

Let G be a graph on m edges, and let $e = uv$ be an edge of G.

- By induction, $G - e$ has a $(\Delta(G - e) + 1)$-edge coloring.
- If $\Delta(G) > \Delta(G - e)$, color e with color $\Delta(G) + 1$.
- If $\Delta(G) = \Delta(G - e)$, change the coloring such that u and v miss the same color α.
- Then color e with α.

Vadim G. Vizing
(Kiew 1937 – 2017 Odessa)
Lemma 2.
Let G be a graph with a $(\Delta + 1)$-edge coloring c, let u, v be non-adjacent vertices with $\deg(u), \deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.
Lemma 2.
Let G be a graph with a $(\Delta + 1)$-edge coloring c, let u, v be non-adjacent vertices with $\text{deg}(u), \text{deg}(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

Proof. Note that every vertex is missing a color.
Lemma 2.
Let G be a graph with a $(\Delta + 1)$-edge coloring c, let u, v be non-adjacent vertices with $\deg(u), \deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

Proof. Note that every vertex is missing a color. Let u miss β and v miss α_1; apply the following algorithm:
Lemma 2.
Let G be a graph with a $(\Delta + 1)$-edge coloring c, let u, v be non-adjacent vertices with $\deg(u), \deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

Proof. Note that every vertex is missing a color. Let u miss β and v miss α_1; apply the following algorithm:

VizingRecoloring(G, c, u, α_1)

\[
i \leftarrow 1
\]
while $\exists w \in N(u): c(uw) = \alpha_i \land w \notin \{v_1, \ldots, v_{i-1}\}$ do

\[
\begin{align*}
vi & \leftarrow w \\
\alpha_{i+1} & \leftarrow \text{min color missing at } w \\
i & \leftarrow i + 1
\end{align*}
\]
return $v_1, \ldots, v_i; \alpha_1, \ldots, \alpha_{i+1}$
Minimum Edge Coloring – Recoloring

Lemma 2.
Let G be a graph with a $(\Delta + 1)$-edge coloring c, let u, v be non-adjacent vertices with $\text{deg}(u), \text{deg}(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

Proof. Note that every vertex is **missing** a color.

Let u miss β and v miss α_1; apply the following algorithm:

\[
\text{VizingRecoloring}(G, c, u, \alpha_1)\\
i \leftarrow 1\\\text{while } \exists w \in N(u) : c(uw) = \alpha_i \land w \notin \{v_1, \ldots, v_{i-1}\} \text{ do}\\\quad v_i \leftarrow w\\\quad \alpha_{i+1} \leftarrow \text{min color missing at } w\\\quad i \leftarrow i + 1\\\text{return } v_1, \ldots, v_i; \alpha_1, \ldots, \alpha_{i+1}
\]
Minimum Edge Coloring – Recoloring

Lemma 2.
Let G be a graph with a $(\Delta + 1)$-edge coloring c, let u, v be non-adjacent vertices with $\deg(u), \deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

Proof. Note that every vertex is **missing** a color. Let u miss β and v miss α_1; apply the following algorithm:

\begin{align*}
\text{VizingRecoloring}(G, c, u, \alpha_1) \quad &i \leftarrow 1 \\
\textbf{while} \; \exists w \in N(u): c(uw) = \alpha_i \land w \notin \{v_1, \ldots, v_{i-1}\} \; \textbf{do} \\
&v_i \leftarrow w \\
&\alpha_{i+1} \leftarrow \text{min color missing at } w \\
&i \leftarrow i + 1 \\
\textbf{return} \; v_1, \ldots, v_i; \alpha_1, \ldots, \alpha_{i+1}
\end{align*}
Minimum Edge Coloring – Recoloring

Lemma 2.
Let G be a graph with a $(\Delta + 1)$-edge coloring c, let u, v be non-adjacent vertices with $\deg(u), \deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

Proof. Note that every vertex is *missing* a color. Let u miss β and v miss α_1; apply the following algorithm:

\[
\text{VizingRecoloring}(G, c, u, \alpha_1) \\
i \leftarrow 1 \\
\text{while } \exists w \in N(u): c(uw) = \alpha_i \land w \notin \{v_1, \ldots, v_{i-1}\} \text{ do} \\
\quad v_i \leftarrow w \\
\quad \alpha_{i+1} \leftarrow \min \text{ color missing at } w \\
\quad i \leftarrow i + 1 \\
\text{return } v_1, \ldots, v_i; \alpha_1, \ldots, \alpha_{i+1}
\]
Minimum Edge Coloring – Recoloring

Lemma 2.
Let G be a graph with a $(\Delta + 1)$-edge coloring c, let u, v be non-adjacent vertices with $\deg(u), \deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

Proof. Note that every vertex is missing a color. Let u miss β and v miss α_1; apply the following algorithm:

\[
\text{VizingRecoloring}(G, c, u, \alpha_1)
\]

\[
i ← 1
\]
\[
\text{while } \exists w ∈ N(u): c(uw) = \alpha_i ∧ w \notin \{v_1, \ldots, v_{i-1}\} \text{ do}
\]
\[
\begin{align*}
v_i & ← w \\
\alpha_{i+1} & ← \text{min color missing at } w \\
i & ← i + 1
\end{align*}
\]
\[
\text{return } v_1, \ldots, v_i; \alpha_1, \ldots, \alpha_{i+1}
\]
Minimum Edge Coloring – Recoloring

Lemma 2.
Let G be a graph with a $(\Delta + 1)$-edge coloring c, let u, v be non-adjacent vertices with $\text{deg}(u), \text{deg}(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

Proof. Note that every vertex is **missing** a color.
Let u miss β and v miss α_1; apply the following algorithm:

```
\text{VizingRecoloring}(G, c, u, \alpha_1)
```

```plaintext
i ← 1
while \( \exists w \in N(u) : c(uw) = \alpha_i \land w \notin \{v_1, \ldots, v_{i-1}\} \) do
    \[ v_i \leftarrow w \]
    \[ \alpha_{i+1} \leftarrow \text{min color missing at } w \]
    \[ i \leftarrow i + 1 \]
return \( v_1, \ldots, v_i; \alpha_1, \ldots, \alpha_{i+1} \)
```

Case 1: u misses α_{h+1}.
Minimum Edge Coloring – Recoloring

Lemma 2.
Let \(G \) be a graph with a \((\Delta + 1) \)-edge coloring \(c \), let \(u, v \) be non-adjacent vertices with \(\text{deg}(u), \text{deg}(v) < \Delta \). Then \(c \) can be changed s.t. \(u \) and \(v \) miss the same color.

Proof. Note that every vertex is missing a color.
Let \(u \) miss \(\beta \) and \(v \) miss \(\alpha_1 \); apply the following algorithm:

\[
\text{VizingRecoloring}(G, c, u, \alpha_1) \\
i \leftarrow 1 \\
\text{while } \exists w \in N(u): c(uw) = \alpha_i \land w \notin \{v_1, \ldots, v_{i-1}\} \text{ do} \\
\quad v_i \leftarrow w \\
\quad \alpha_{i+1} \leftarrow \text{min color missing at } w \\
\quad i \leftarrow i + 1 \\
\text{return } v_1, \ldots, v_i; \alpha_1, \ldots, \alpha_{i+1}
\]

Case 1: \(u \) misses \(\alpha_{h+1} \).

Lemma 2. Let \(G \) be a graph with a \((\Delta + 1) \)-edge coloring \(c \), let \(u, v \) be non-adjacent vertices with \(\text{deg}(u), \text{deg}(v) < \Delta \). Then \(c \) can be changed s.t. \(u \) and \(v \) miss the same color.
Minimum Edge Coloring – Recoloring

Lemma 2.
Let \(G \) be a graph with a \((\Delta + 1)\)-edge coloring \(c \), let \(u, v \) be non-adjacent vertices with \(\deg(u), \deg(v) < \Delta \). Then \(c \) can be changed s.t. \(u \) and \(v \) miss the same color.

Proof. Note that every vertex is missing a color.
Let \(u \) miss \(\beta \) and \(v \) miss \(\alpha_1 \); apply the following algorithm:

\[
VizingRecoloring(G, c, u, \alpha_1) \\
i \leftarrow 1 \\
\text{while } \exists w \in N(u): c(uw) = \alpha_i \land w \notin \{v_1, \ldots, v_{i-1}\} \text{ do} \\
\quad v_i \leftarrow w \\
\quad \alpha_{i+1} \leftarrow \text{min color missing at } w \\
\quad i \leftarrow i + 1 \\
\text{return } v_1, \ldots, v_i; \alpha_1, \ldots, \alpha_{i+1}
\]

Lemma 2.
Let \(G \) be a graph with a \((\Delta + 1)\)-edge coloring \(c \), let \(u, v \) be non-adjacent vertices with \(\deg(u), \deg(v) < \Delta \). Then \(c \) can be changed s.t. \(u \) and \(v \) miss the same color.
Minimum Edge Coloring – Recoloring

Lemma 2.
Let G be a graph with a $(\Delta + 1)$-edge coloring c, let u, v be non-adjacent vertices with $\text{deg}(u), \text{deg}(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

Proof. Note that every vertex is **missing** a color. Let u miss β and v miss α_1; apply the following algorithm:

\[
\text{VizingRecoloring}(G, c, u, \alpha_1)
\]

\[
i \leftarrow 1
\]

\[
\text{while } \exists w \in N(u): c(uw) = \alpha_i \land w \notin \{v_1, \ldots, v_{i-1}\} \text{ do}
\]

\[
\begin{align*}
& v_i \leftarrow w \\
& \alpha_{i+1} \leftarrow \text{min color missing at } w \\
& i \leftarrow i + 1
\end{align*}
\]

\[
\text{return } v_1, \ldots, v_i; \alpha_1, \ldots, \alpha_{i+1}
\]

Case 1: u misses α_{h+1}.
Minimum Edge Coloring – Recoloring

Lemma 2.
Let G be a graph with a $(\Delta + 1)$-edge coloring c, let u, v be non-adjacent vertices with $\deg(u), \deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

Proof. Note that every vertex is missing a color. Let u miss β and v miss α_1; apply the following algorithm:

\[
\text{VizingRecoloring}(G, c, u, \alpha_1) \quad \begin{align*}
i & \leftarrow 1 \\
\text{while } & \exists w \in N(u) : c(uw) = \alpha_i \land w \notin \{v_1, \ldots, v_{i-1}\} \text{ do} \\
& v_i \leftarrow w \\
& \alpha_{i+1} \leftarrow \text{min color missing at } w \\
& i \leftarrow i + 1 \\
\text{return } & v_1, \ldots, v_i; \alpha_1, \ldots, \alpha_{i+1}
\end{align*}
\]
Lemma 2.
Let G be a graph with a $(\Delta + 1)$-edge coloring c, let u, v be non-adjacent vertices with $\text{deg}(u), \text{deg}(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

Proof. Note that every vertex is missing a color.
Let u miss β and v miss α_1; apply the following algorithm:

$\text{VizingRecoloring}(G, c, u, \alpha_1)$

$$i \leftarrow 1$$
$$\text{while } \exists w \in N(u): c(uw) = \alpha_i \land w \notin \{v_1, \ldots, v_{i-1}\} \text{ do}$$
$$v_i \leftarrow w$$
$$\alpha_{i+1} \leftarrow \text{min color missing at } w$$
$$i \leftarrow i + 1$$
$$\text{return } v_1, \ldots, v_i; \alpha_1, \ldots, \alpha_{i+1}$$

Case 1: u misses α_{h+1}.

Lemma 2.
Let G be a graph with a $(\Delta + 1)$-edge coloring c, let u, v be non-adjacent vertices with $\text{deg}(u), \text{deg}(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.
Minimum Edge Coloring – Recoloring

Lemma 2.
Let G be a graph with a $(\Delta + 1)$-edge coloring c, let u, v be non-adjacent vertices with $\deg(u), \deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

Proof. Note that every vertex is missing a color.
Let u miss β and v miss α_1; apply the following algorithm:

```
VizingRecoloring(G, c, u, \alpha_1)
```

\[
i \leftarrow 1
\]
\[
\text{while } \exists w \in N(u) : c(uw) = \alpha_i \land w \notin \{v_1, \ldots, v_i-1\} \text{ do}
\]
\[
\begin{align*}
 v_i & \leftarrow w \\
 \alpha_{i+1} & \leftarrow \min \text{ color missing at } w \\
 i & \leftarrow i + 1
\end{align*}
\]
\[
\text{return } v_1, \ldots, v_i; \alpha_1, \ldots, \alpha_{i+1}
\]
Minimum Edge Coloring – Recoloring

Lemma 2.
Let G be a graph with a $(\Delta + 1)$-edge coloring c, let u, v be non-adjacent vertices with $\text{deg}(u), \text{deg}(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

Proof. Note that every vertex is **missing** a color. Let u miss β and v miss α_1; apply the following algorithm:

\begin{algorithm}
\begin{align*}
i & \leftarrow 1 \\
\text{while } & \exists w \in N(u) : c(uw) = \alpha_i \text{ and } w \not\in \{v_1, \ldots, v_{i-1}\} \text{ do} \\
& \quad v_i \leftarrow w \\
& \quad \alpha_{i+1} \leftarrow \text{min color missing at } w \\
& \quad i \leftarrow i + 1 \\
\text{return } & v_1, \ldots, v_i, \alpha_1, \ldots, \alpha_{i+1}
\end{align*}
\end{algorithm}

Case 2: $\alpha_{h+1} = \alpha_j$, $j < h$.

Proof. Note that every vertex is **missing** a color.
Minimum Edge Coloring – Recoloring

Lemma 2.
Let G be a graph with a $(\Delta + 1)$-edge coloring c, let u, v be non-adjacent vertices with $\deg(u), \deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

Proof. Note that every vertex is missing a color. Let u miss β and v miss α_1; apply the following algorithm:

\[
\text{VizingRecoloring}(G, c, u, \alpha_1)
\]
\[
i \leftarrow 1
\]
\[
\text{while } \exists w \in N(u) : c(uw) = \alpha_i \land w \not\in \{v_1, \ldots, v_{i-1}\} \text{ do}
\]
\[
\begin{align*}
&v_i \leftarrow w \\
&\alpha_{i+1} \leftarrow \text{min color missing at } w \\
&i \leftarrow i + 1
\end{align*}
\]
\[
\text{return } v_1, \ldots, v_i; \alpha_1, \ldots, \alpha_{i+1}
\]
Minimum Edge Coloring – Recoloring

Lemma 2.
Let G be a graph with a $(\Delta + 1)$-edge coloring c, let u, v be non-adjacent vertices with $\deg(u), \deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

Proof. Note that every vertex is missing a color. Let u miss β and v miss α_1; apply the following algorithm:

\[
\text{VizingRecoloring}(G, c, u, \alpha_1) \rightarrow
\begin{array}{l}
i \leftarrow 1 \\
\text{while} \ \exists w \in N(u): c(uw) = \alpha_i \land w \notin \{v_1, \ldots, v_{i-1}\} \text{ do} \\
\quad v_i \leftarrow w \\
\quad \alpha_{i+1} \leftarrow \text{min color missing at } w \\
\quad i \leftarrow i + 1 \\
\text{return } v_1, \ldots, v_i; \alpha_1, \ldots, \alpha_{i+1}
\end{array}
\]

Case 2: $\alpha_{h+1} = \alpha_j, j < h$.

Proof.
Minimum Edge Coloring – Recoloring

Lemma 2.
Let G be a graph with a $(\Delta + 1)$-edge coloring c, let u, v be non-adjacent vertices with $\deg(u), \deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

Proof. Note that every vertex is **missing** a color. Let u miss β and v miss α_1; apply the following algorithm:

VizingRecoloring(G, c, u, α_1)

1. $i \leftarrow 1$
2. while $\exists w \in N(u): c(uw) = \alpha_i \land w \notin \{v_1, \ldots, v_{i-1}\}$ do
 1. $v_i \leftarrow w$
 2. $\alpha_{i+1} \leftarrow \text{min color missing at } w$
 3. $i \leftarrow i + 1$
3. return $v_1, \ldots, v_i, \alpha_1, \ldots, \alpha_{i+1}$
Minimum Edge Coloring – Recoloring

Lemma 2.
Let G be a graph with a $(\Delta + 1)$-edge coloring c, let u, v be non-adjacent vertices with $\text{deg}(u), \text{deg}(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

Proof. Note that every vertex is missing a color. Let u miss β and v miss α_1; apply the following algorithm:

$$\text{VizingRecoloring}(G, c, u, \alpha_1)$$

\[
i \leftarrow 1 \\
\text{while } \exists w \in N(u): c(uw) = \alpha_i \wedge w \notin \{v_1, \ldots, v_{i-1}\} \text{ do} \\
\quad v_i \leftarrow w \\
\quad \alpha_{i+1} \leftarrow \text{min color missing at } w \\
\quad i \leftarrow i + 1 \\
\text{return } v_1, \ldots, v_i; \alpha_1, \ldots, \alpha_{i+1}
\]

Lemma 2.
Let G be a graph with a $(\Delta + 1)$-edge coloring c, let u, v be non-adjacent vertices with $\text{deg}(u), \text{deg}(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.
Minimum Edge Coloring – Recoloring

Lemma 2.
Let G be a graph with a $(\Delta + 1)$-edge coloring c, let u, v be non-adjacent vertices with $\deg(u), \deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

Proof. Note that every vertex is missing a color.

Let u miss β and v miss α_1; apply the following algorithm:

VizingRecoloring(G, c, u, α_1)

$$i \leftarrow 1$$

while $\exists w \in N(u): c(uw) = \alpha_i \land w \notin \{v_1, \ldots, v_{i-1}\}$ do

$$v_i \leftarrow w$$
$$\alpha_{i+1} \leftarrow \text{min color missing at } w$$
$$i \leftarrow i + 1$$

return $v_1, \ldots, v_i; \alpha_1, \ldots, \alpha_{i+1}$

Case 2: $\alpha_{h+1} = \alpha_j, j < h$.

Lemma 2.
Let G be a graph with a $(\Delta + 1)$-edge coloring c, let u, v be non-adjacent vertices with $\deg(u), \deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.
Minimum Edge Coloring – Recoloring

Lemma 2.
Let G be a graph with a $(\Delta + 1)$-edge coloring c, let u, v be non-adjacent vertices with $\deg(u), \deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

Proof. Note that every vertex is missing a color.
Let u miss β and v miss α_1; apply the following algorithm:

\[
VizingRecoloring(G, c, u, \alpha_1)
\]

\[
i \leftarrow 1
\]

\[
\text{while } \exists w \in N(u) : c(uw) = \alpha_i \land w \notin \{v_1, \ldots, v_{i-1}\} \text{ do}
\]

\[
\begin{align*}
 v_i &\leftarrow w \\
 \alpha_{i+1} &\leftarrow \text{min color missing at } w \\
 i &\leftarrow i + 1
\end{align*}
\]

\[
\text{return } v_1, \ldots, v_i, \alpha_1, \ldots, \alpha_{i+1}
\]
Minimum Edge Coloring – Recoloring

Lemma 2.
Let G be a graph with a $(\Delta + 1)$-edge coloring c, let u, v be non-adjacent vertices with $\text{deg}(u), \text{deg}(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

Proof. Note that every vertex is missing a color. Let u miss β and v miss α_1; apply the following algorithm:

\begin{align*}
\text{VizingRecoloring}(G, c, u, \alpha_1) & \\
i & \leftarrow 1 \\
\text{while } \exists w \in N(u) : c(uw) = \alpha_i \land w \not\in \{v_1, \ldots, v_{i-1}\} \text{ do} & \\
& \quad v_i \leftarrow w \\
& \quad \alpha_{i+1} \leftarrow \text{min color missing at } w \\
& \quad i \leftarrow i + 1 \\
\text{return } v_1, \ldots, v_i; \alpha_1, \ldots, \alpha_{i+1}
\end{align*}
Lemma 2.
Let G be a graph with a $(\Delta + 1)$-edge coloring c, let u, v be non-adjacent vertices with $\deg(u), \deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

Proof. Note that every vertex is missing a color. Let u miss β and v miss α_1; apply the following algorithm:

$$\text{VizingRecoloring}(G, c, u, \alpha_1)$$

$$i \leftarrow 1$$

$$\text{while } \exists w \in N(u): c(uw) = \alpha_i \land w \notin \{v_1, \ldots, v_{i-1}\} \text{ do}$$

$$v_i \leftarrow w$$

$$\alpha_{i+1} \leftarrow \text{min color missing at } w$$

$$i \leftarrow i + 1$$

$$\text{return } v_1, \ldots, v_i; \alpha_1, \ldots, \alpha_{i+1}$$

Case 2: $\alpha_{h+1} = \alpha_j, j < h$.

Lemma 2.
Let G be a graph with a $(\Delta + 1)$-edge coloring c, let u, v be non-adjacent vertices with $\deg(u), \deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.
Minimum Edge Coloring – Recoloring

Lemma 2.
Let G be a graph with a $(\Delta + 1)$-edge coloring c, let u, v be non-adjacent vertices with $\deg(u), \deg(v) < \Delta$. Then c can be changed s.t. u and v miss the same color.

Proof. Note that every vertex is **missing** a color. Let u miss β and v miss α_1; apply the following algorithm:

\[\text{VizingRecoloring}(G, c, u, \alpha_1) \]

\[
i \leftarrow 1
\]

while $\exists w \in N(u): c(uw) = \alpha_i \land w \notin \{v_1, \ldots, v_{i-1}\}$ **do**

\[
v_i \leftarrow w
\]

\[
\alpha_{i+1} \leftarrow \text{min color missing at } w
\]

\[
i \leftarrow i + 1
\]

return $v_1, \ldots, v_i; \alpha_1, \ldots, \alpha_{i+1}$

Case 2: $\alpha_{h+1} = \alpha_j$, $j < h$.
Minimum Edge Coloring – Recoloring

Proof continued for Case 2: \(\alpha_{h+1} = \alpha_j, \ j < h, \)
and we need to find a color for edge \(uv_j. \)
Minimum Edge Coloring – Recoloring

Proof continued for Case 2: $\alpha_{h+1} = \alpha_j$, $j < h$, and we need to find a color for edge uv_j.

Consider subgraph G' of G induced by the edges of colors β and α_j.

\Box
Minimum Edge Coloring – Recoloring

Proof continued for Case 2: $\alpha_{h+1} = \alpha_j$, $j < h$, and we need to find a color for edge uv_j.

- Consider subgraph G' of G induced by the edges of colors β and α_j.
- Since $\Delta(G') \leq 2$, we can recolor components.
Minimum Edge Coloring – Recoloring

Proof continued for Case 2: $\alpha_{h+1} = \alpha_j$, $j < h$, and we need to find a color for edge uv_j.

- Consider subgraph G' of G induced by the edges of colors β and α_j.

- Since $\Delta(G') \leq 2$, we can recolor components.
Minimum Edge Coloring – Recoloring

Proof continued for Case 2: \(\alpha_{h+1} = \alpha_j, j < h \), and we need to find a color for edge \(uv_j \).

- Consider subgraph \(G' \) of \(G \) induced by the edges of colors \(\beta \) and \(\alpha_j \).
- Since \(\Delta(G') \leq 2 \), we can recolor components.
- Nodes \(u, v_j, v_h \) are all leaves in \(G' \).
 \[\implies \] They are not all in the same component of \(G' \).
Minimum Edge Coloring – Recoloring

Proof continued for Case 2: \(\alpha_{h+1} = \alpha_j, j < h \), and we need to find a color for edge \(uv_j \).

- Consider subgraph \(G' \) of \(G \) induced by the edges of colors \(\beta \) and \(\alpha_j \).

- Since \(\Delta(G') \leq 2 \), we can recolor components.

- Nodes \(u, v_j, v_h \) are all leaves in \(G' \).
 \(\Rightarrow \) They are not all in the same component of \(G' \).

- If \(u \) and \(v_j \) are not in the same component:
 - recolor component ending at \(v_j \),

\[\]
Minimum Edge Coloring – Recoloring

Proof continued for Case 2: \(\alpha_{h+1} = \alpha_j, j < h \), and we need to find a color for edge \(uv_j \).

- Consider subgraph \(G' \) of \(G \) induced by the edges of colors \(\beta \) and \(\alpha_j \).
- Since \(\Delta(G') \leq 2 \), we can recolor components.
- Nodes \(u, v_j, v_h \) are all leaves in \(G' \).
 \(\Rightarrow \) They are not all in the same component of \(G' \).
- If \(u \) and \(v_j \) are not in the same component:
 - recolor component ending at \(v_j \),
 - \(v_j \) now misses \(\beta \);
Minimum Edge Coloring – Recoloring

Proof continued for Case 2: \(\alpha_{h+1} = \alpha_j, j < h, \)
and we need to find a color for edge \(uv_j. \)

- Consider subgraph \(G' \) of \(G \) induced by
 the edges of colors \(\beta \) and \(\alpha_j. \)

- Since \(\Delta(G') \leq 2, \) we can recolor components.

- Nodes \(u, v_j, v_h \) are all leaves in \(G'. \)
 \(\Rightarrow \) They are not all in the same component of \(G'. \)

- If \(u \) and \(v_j \) are not in the same component:
 - recolor component ending at \(v_j, \)
 - \(v_j \) now misses \(\beta; \)
 - color \(uv_j \) with \(\beta. \)
Minimum Edge Coloring – Recoloring

Proof continued for Case 2: \(\alpha_{h+1} = \alpha_j, \ j < h \), and we need to find a color for edge \(uv_j \).

- Consider subgraph \(G' \) of \(G \) induced by the edges of colors \(\beta \) and \(\alpha_j \).
- Since \(\Delta(G') \leq 2 \), we can recolor components.
- Nodes \(u, v_j, v_h \) are all leaves in \(G' \).
 \(\Rightarrow \) They are not all in the same component of \(G' \).
- If \(u \) and \(v_j \) are not in the same component:
 - recolor component ending at \(v_j \),
 - \(v_j \) now misses \(\beta \);
 - color \(uv_j \) with \(\beta \).
- What if \(u \) and \(v_j \) are in the same component?
Minimum Edge Coloring – Algorithm

VizingEdgeColoring(graph G, coloring c ≡ 0)

if $E(G) \neq \emptyset$ then
 Let $e = uv$ be an arbitrary edge of G.
 $G_e \leftarrow G - e$
 VizingEdgeColoring(G_e, c)
 if $\Delta(G_e) < \Delta(G)$ then
 Color e with lowest free color.
 else
 Recolor G_e as in Lemma 2.
 Color e with color now missing at u and v.

Minimum Edge Coloring – Algorithm

VizingEdgeColoring(graph \(G \), coloring \(c \equiv 0 \))

\[
\text{if } E(G) \neq \emptyset \text{ then} \\
\quad \text{Let } e = uv \text{ be an arbitrary edge of } G. \\
\quad G_e \leftarrow G - e \\
\quad \text{VizingEdgeColoring}(G_e, c) \\
\text{if } \Delta(G_e) < \Delta(G) \text{ then} \\
\quad \quad \text{Color } e \text{ with lowest free color.} \\
\text{else} \\
\quad \quad \text{Recolor } G_e \text{ as in Lemma 2.} \\
\quad \quad \text{Color } e \text{ with color now missing at } u \text{ and } v.
\]

Theorem 4.

VizingEdgeColoring is an approximation algorithm with additive approximation guarantee

\[\text{ALG}(G) - \text{OPT}(G) \leq 1. \]
Approximation with Relative Factor

- An additive approximation guarantee can rarely be achieved; but sometimes, there is a multiplicative approximation!
Approximation with Relative Factor

- An additive approximation guarantee can rarely be achieved; but sometimes, there is a multiplicative approximation!

Definition.
Let \(\Pi \) be a minimization problem, and let \(\alpha \in \mathbb{Q}^+ \).
A **factor-\(\alpha \)** approximation algorithm for \(\Pi \) is a polynomial-time algorithm \(\mathcal{A} \) that computes, for every instance \(I \) of \(\Pi \), a solution of value \(\text{ALG}(I) \) such that

\[
\frac{\text{ALG}(I)}{\text{OPT}(I)} \leq \alpha.
\]

We call \(\alpha \) the **approximation factor** of \(\mathcal{A} \).
Approximation with Relative Factor

An additive approximation guarantee can rarely be achieved; but sometimes, there is a multiplicative approximation!

Definition. maximization

Let Π be a minimization problem, and let $\alpha \in \mathbb{Q}^+$. A **factor-α approximation algorithm** for Π is a polynomial-time algorithm A that computes, for every instance I of Π, a solution of value $\text{ALG}(I)$ such that

$$\frac{\text{ALG}(I)}{\text{OPT}(I)} \leq \alpha.$$

We call α the **approximation factor** of A.

Definition.
2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G = (V, E)$ and a distance function $d: E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V : d(u, w) \leq d(u, v) + d(v, w)$.

![Graph](image)
2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G = (V, E)$ and a distance function $d : E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V : d(u, w) \leq d(u, v) + d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

![Diagram of a complete graph with vertices u, v, and w connected by edges]
2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G = (V, E)$ and a distance function $d : E \rightarrow \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V : d(u, w) \leq d(u, v) + d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Algorithm.

- Compute MST.
- Double edges.
- Walk along tree, skipping visited vertices and adding shortcuts.
2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G = (V, E)$ and a distance function $d : E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V : d(u, w) \leq d(u, v) + d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Algorithm.

- Compute MST.
- Double edges.
- Walk along tree, skipping visited vertices and adding shortcuts.
2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G = (V, E)$ and a distance function $d : E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V : d(u, w) \leq d(u, v) + d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Algorithm.
- Compute MST.
- Double edges.
- Walk along tree, skipping visited vertices and adding shortcuts.
2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G = (V, E)$ and a distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Algorithm.
- Compute MST.
- Double edges.
- Walk along tree, skipping visited vertices and adding shortcuts.
2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G = (V, E)$ and a distance function $d : E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V : d(u, w) \leq d(u, v) + d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Algorithm.
- Compute MST.
- Double edges.
- Walk along tree, skipping visited vertices and adding shortcuts.
2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G = (V, E)$ and a distance function $d : E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V : d(u, w) \leq d(u, v) + d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Algorithm.
- Compute MST.
- Double edges.
- Walk along tree,
2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G = (V, E)$ and a distance function
$d : E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality,
i.e., $\forall u, v, w \in V : d(u, w) \leq d(u, v) + d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Algorithm.
- Compute MST.
- Double edges.
- Walk along tree,
2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G = (V, E)$ and a distance function $d : E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V : d(u, w) \leq d(u, v) + d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Algorithm.
- Compute MST.
- Double edges.
- Walk along tree,
2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G = (V, E)$ and a distance function $d : E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V : d(u, w) \leq d(u, v) + d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Algorithm.
- Compute MST.
- Double edges.
- Walk along tree,
2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G = (V, E)$ and a distance function $d : E \rightarrow \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V : d(u, w) \leq d(u, v) + d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Algorithm.
- Compute MST.
- Double edges.
- Walk along tree, skipping visited vertices
- skpping visited vertices
2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G = (V, E)$ and a distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Algorithm.
- Compute MST.
- Double edges.
- Walk along tree, skipping visited vertices
- skipping visited vertices
2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G = (V, E)$ and a distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V : d(u, w) \leq d(u, v) + d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Algorithm.
- Compute MST.
- Double edges.
- Walk along tree, skipping visited vertices and adding shortcuts.
2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G = (V, E)$ and a distance function $d : E \rightarrow \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V : d(u, w) \leq d(u, v) + d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Algorithm.
- Compute MST.
- Double edges.
- Walk along tree,
- skipping visited vertices
- and adding shortcuts.
2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G = (V, E)$ and a distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Algorithm.
- Compute MST.
- Double edges.
- Walk along tree,
 - skipping visited vertices
- and adding shortcuts.
2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G = (V, E)$ and a distance function $d: E \rightarrow \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V : d(u, w) \leq d(u, v) + d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Algorithm.
- Compute MST.
- Double edges.
- Walk along tree, skipping visited vertices and adding shortcuts.
2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G = (V, E)$ and a distance function $d : E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V : d(u, w) \leq d(u, v) + d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Algorithm.
- Compute MST.
- Double edges.
- Walk along tree, skipping visited vertices and adding shortcuts.
2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G = (V, E)$ and a distance function $d : E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V : d(u, w) \leq d(u, v) + d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Algorithm.
- Compute MST.
- Double edges.
- Walk along tree,
 - skipping visited vertices
- and adding shortcuts.
2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G = (V, E)$ and a distance function $d: E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Algorithm.
- Compute MST.
- Double edges.
- Walk along tree, skipping visited vertices and adding shortcuts.

Theorem 5. The MST edge doubling algorithm is a 2-approximation algorithm for metric TSP.
2-Approximation for Metric TSP (from AGT)

Input. Complete graph $G = (V, E)$ and a distance function $d: E \to \mathbb{R}_{\geq 0}$ that satisfies the triangle inequality, i.e., $\forall u, v, w \in V: d(u, w) \leq d(u, v) + d(v, w)$.

Output. A shortest Hamiltonian cycle in G.

Algorithm.
- Compute MST.
- Double edges.
- Walk along tree, skipping visited vertices and adding shortcuts.

Proof. The MST edge doubling algorithm is a 2-approximation algorithm for metric TSP.

$\text{ALG} \leq d(\text{cycle}) = 2d(\text{MST}) \leq 2\text{OPT}$.

Theorem 5.

The MST edge doubling algorithm is a 2-approximation algorithm for metric TSP.
Nearest Addition Algorithm for Metric TSP

NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and k.
Set tour T to go from i to k to i (clockwise).

while $T \subsetneq V$ do
 Find pair $(i, j) \in T \times (V \setminus T)$ minimizing $d(i, j)$.
 Let k be vertex after i in T.
 Add j between i and k.
Nearest Addition Algorithm for Metric TSP

NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say \(i \) and \(k \).
Set tour \(T \) to go from \(i \) to \(k \) to \(i \) (clockwise).

\[
\text{while } T \subseteq V \text{ do}
\]

Find pair \((i, j) \in T \times (V \setminus T)\) minimizing \(d(i, j) \).
Let \(k \) be vertex after \(i \) in \(T \).
Add \(j \) between \(i \) and \(k \).
Nearest Addition Algorithm for Metric TSP

NearestAdditionAlgorithm\((G = (V, E), d)\)

Find closest pair, say \(i\) and \(k\).
Set tour \(T\) to go from \(i\) to \(k\) to \(i\) (clockwise).

\[
\text{while } T \subsetneq V \text{ do}
\]

Find pair \((i, j) \in T \times (V \setminus T)\) minimizing \(d(i, j)\).
Let \(k\) be vertex after \(i\) in \(T\).
Add \(j\) between \(i\) and \(k\).
Nearest Addition Algorithm for Metric TSP

```
NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and k.
Set tour T to go from i to k to i (clockwise).
while T ⊊ V do
  Find pair (i, j) ∈ T × (V \ T) minimizing d(i, j).
  Let k be vertex after i in T.
  Add j between i and k.
```
Nearest Addition Algorithm for Metric TSP

\[
\text{NearestAdditionAlgorithm}(G = (V, E), d)
\]

Find closest pair, say \(i \) and \(k \).
Set tour \(T \) to go from \(i \) to \(k \) to \(i \) (clockwise).
while \(T \subset V \) do

- Find pair \((i, j) \in T \times (V \setminus T)\) minimizing \(d(i, j) \).
- Let \(k \) be vertex after \(i \) in \(T \).
- Add \(j \) between \(i \) and \(k \).
Nearest Addition Algorithm for Metric TSP

\[\text{NearestAdditionAlgorithm}(G = (V, E), d) \]

Find closest pair, say \(i \) and \(k \).
Set tour \(T \) to go from \(i \) to \(k \) to \(i \) (clockwise).

\[\text{while } T \subseteq V \text{ do} \]

Find pair \((i, j) \in T \times (V \setminus T)\) minimizing \(d(i, j) \).
Let \(k \) be vertex after \(i \) in \(T \).
Add \(j \) between \(i \) and \(k \).
Nearest Addition Algorithm for Metric TSP

NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and k.
Set tour T to go from i to k to i (clockwise).
while T ⊊ V do
 Find pair (i, j) ∈ T × (V \ T) minimizing d(i, j).
 Let k be vertex after i in T.
 Add j between i and k.
Nearest Addition Algorithm for Metric TSP

NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and k.
Set tour T to go from i to k to i (clockwise).

while T ⊊ V do
 Find pair (i, j) ∈ T × (V \ T) minimizing d(i, j).
 Let k be vertex after i in T.
 Add j between i and k.
Nearest Addition Algorithm for Metric TSP

NearestAdditionAlgorithm(G = (V, E), d)

Find closest pair, say i and k.
Set tour T to go from i to k to i (clockwise).

while T ⊊ V do
 Find pair (i, j) ∈ T × (V \ T) minimizing d(i, j).
 Let k be vertex after i in T.
 Add j between i and k.
Nearest Addition Algorithm for Metric TSP

\[
\text{NearestAdditionAlgorithm}(G = (V, E), d)
\]

Find closest pair, say \(i\) and \(k\).
Set tour \(T\) to go from \(i\) to \(k\) to \(i\) (clockwise).

\[
\text{while } T \subsetneq V \text{ do}
\]

- Find pair \((i, j) \in T \times (V \setminus T)\) minimizing \(d(i, j)\).
- Let \(k\) be vertex after \(i\) in \(T\).
- Add \(j\) between \(i\) and \(k\).
Nearest Addition Algorithm for Metric TSP

NearestAdditionAlgorithm\((G = (V, E), d)\)

Find closest pair, say \(i\) and \(k\).
Set tour \(T\) to go from \(i\) to \(k\) to \(i\) (clockwise).

\[
\text{while } T \subsetneq V \text{ do}
\]

Find pair \((i, j) \in T \times (V \setminus T)\) minimizing \(d(i, j)\).
Let \(k\) be vertex after \(i\) in \(T\).
Add \(j\) between \(i\) and \(k\).

Theorem 6.
NearestAdditionAlgorithm is a 2-approximation algorithm for metric TSP.
Nearest Addition Algorithm for Metric TSP

NearestAdditionAlgorithm\((G = (V, E), d)\)

Find closest pair, say \(i\) and \(k\).
Set tour \(T\) to go from \(i\) to \(k\) to \(i\) (clockwise).

while \(T \subseteq V\) do
 Find pair \((i, j) \in T \times (V \setminus T)\) minimizing \(d(i, j)\).
 Let \(k\) be vertex after \(i\) in \(T\).
 Add \(j\) between \(i\) and \(k\).

Theorem 6.
NearestAdditionAlgorithm is a 2-approximation algorithm for metric TSP.

Proof.
- Exercise.
- Hints: MST and Prim’s algorithm.
Approximation Schemes

- In some cases, we can get arbitrarily good approximations.
Approximation Schemes

- In some cases, we can get arbitrarily good approximations.

Definition.
Let \(\Pi \) be a minimization problem. An algorithm \(\mathcal{A} \) is called a **polynomial-time approximation scheme (PTAS)** if \(\mathcal{A} \) computes, for every input \((I, \varepsilon)\) (consisting of an instance \(I\) of \(\Pi \) and a real \(\varepsilon > 0 \)), a value \(\text{ALG}(I) \) such that:

- \(\text{ALG}(I) \leq (1 + \varepsilon) \cdot \text{OPT}(I) \), and
- the runtime of \(\mathcal{A} \) is polynomial in \(|I|\) for every \(\varepsilon > 0 \).
Approximation Schemes

- In some cases, we can get arbitrarily good approximations.

Definition. Let Π be a minimization problem. An algorithm \mathcal{A} is called a **polynomial-time approximation scheme (PTAS)** if \mathcal{A} computes, for every input (I, ε) (consisting of an instance I of Π and a real $\varepsilon > 0$), a value $\text{ALG}(I)$ such that:

- $\text{ALG}(I) \leq (1 + \varepsilon) \cdot \text{OPT}(I)$, and
- the runtime of \mathcal{A} is polynomial in $|I|$ for every $\varepsilon > 0$.

maximization

Let Π be a minimization problem. An algorithm \mathcal{A} is called a polynomial-time approximation scheme (PTAS) if \mathcal{A} computes, for every input (I, ε) (consisting of an instance I of Π and a real $\varepsilon > 0$), a value $\text{ALG}(I)$ such that:

$\text{ALG}(I) \geq (1 - \varepsilon)$

- $\text{ALG}(I) \leq (1 + \varepsilon) \cdot \text{OPT}(I)$, and
- the runtime of \mathcal{A} is polynomial in $|I|$ for every $\varepsilon > 0$.

Approximation Schemes

- In some cases, we can get arbitrarily good approximations.

Definition. Let Π be a minimization problem. An algorithm A is called a polynomial-time approximation scheme (PTAS) if A computes, for every input (I, ε) (consisting of an instance I of Π and a real ε > 0), a value ALG(I) such that:

\[ALG(I) \leq (1 + \varepsilon) \cdot OPT(I), \]

- the runtime of A is polynomial in |I| for every ε > 0.

A is called a fully polynomial-time approximation scheme (FPTAS) if it runs in time polynomial in |I| and 1/ε.
Approximation Schemes

- In some cases, we can get arbitrarily good approximations.

Definition. A minimization problem Π is called a polynomial-time approximation scheme (PTAS) if A computes, for every input (I, ε) (consisting of an instance I of Π and a real $\varepsilon > 0$), a value $\text{ALG}(I)$ such that:

$$\text{ALG}(I) \leq (1 + \varepsilon) \cdot \text{OPT}(I),$$

- the runtime of A is polynomial in $|I|$ for every $\varepsilon > 0$.

A is called a fully polynomial-time approximation scheme (FPTAS) if it runs in time polynomial in $|I|$ and $1/\varepsilon$.

Examples.

- $O\left(n^2 + n^{\frac{1}{\varepsilon}}\right)$
- $O\left(n^2 \cdot 3^{\frac{1}{\varepsilon}}\right)$
- $O\left(n^4 \cdot \left(\frac{1}{\varepsilon}\right)^2\right)$
Approximation Schemes

- In some cases, we can get arbitrarily good approximations.

Definition. maximization

Let \(\Pi \) be a minimization problem. An algorithm \(\mathcal{A} \) is called a **polynomial-time approximation scheme (PTAS)** if \(\mathcal{A} \) computes, for every input \((I, \varepsilon)\) (consisting of an instance \(I\) of \(\Pi \) and a real \(\varepsilon > 0 \)), a value \(\text{ALG}(I) \) such that:

\[
\geq (1 - \varepsilon)
\]

- \(\text{ALG}(I) \leq (1 + \varepsilon) \cdot \text{OPT}(I) \), and
- the runtime of \(\mathcal{A} \) is polynomial in \(|I|\) for every \(\varepsilon > 0 \).

\(\mathcal{A} \) is called a **fully polynomial-time approximation scheme (FPTAS)** if it runs in time polynomial in \(|I|\) and \(1/\varepsilon\).

Examples.

- \(\mathcal{O}(n^2 + \frac{n}{\varepsilon}) \) ⇒ PTAS but not FPTAS
- \(\mathcal{O}\left(n^2 \cdot \frac{3}{\varepsilon}\right) \) ⇒ PTAS but not FPTAS
- \(\mathcal{O}\left(n^4 \cdot \left(\frac{1}{\varepsilon}\right)^2\right) \) ⇒ FPTAS
Multiprocessor Scheduling

Input.

- n jobs J_1, \ldots, J_n with durations p_1, \ldots, p_n.

- m identical machines ($m < n$)
Multiprocessor Scheduling

Input.
- n jobs J_1, \ldots, J_n with durations p_1, \ldots, p_n.
- m identical machines ($m < n$)

Output.
Assignment of jobs to machines such that the time when all jobs have been processed is minimum. This is called the **makespan** of the assignment.
Multiprocessor Scheduling

Input.
- n jobs J_1, \ldots, J_n with durations p_1, \ldots, p_n.

Output.
Assignment of jobs to machines such that the time when all jobs have been processed is minimum. This is called the **makespan** of the assignment.

Input.
- m identical machines ($m < n$)

Output.
- makespan
Multiprocessor Scheduling

Input.
- n jobs J_1, \ldots, J_n with durations p_1, \ldots, p_n.

Output.
- Assignment of jobs to machines such that the time when all jobs have been processed is minimum. This is called the **makespan** of the assignment.

Example Diagram:
- $n = 7$ jobs $J_1, J_2, J_3, J_4, J_5, J_6, J_7$ with durations $p_1, p_2, p_3, p_4, p_5, p_6, p_7$.
- $m = 3$ identical machines.

Makespan Diagram:
- The makespan is the maximum completion time of any job.

Equation:
- Makespan = Maximum completion time of any job.
Multiprocessor Scheduling

Input.
- *n* jobs J_1, \ldots, J_n with durations p_1, \ldots, p_n.

Output.
Assignment of jobs to machines such that the time when all jobs have been processed is minimum. This is called the makespan of the assignment.

- *m* identical machines ($m < n$)

- Multiprocessor scheduling is NP-hard.
Multiprocessor Scheduling – List Scheduling

LISTSCHEDULING(J_1, \ldots, J_n, m)

- Put the first m jobs on the m machines.
- Put the next job on the first free machine.

Example.

```
\begin{align*}
&\text{p}_1 [ J_1 ] \quad \text{p}_2 [ J_2 ] \quad \text{p}_3 [ J_3 ] \\
&\text{p}_4 [ J_4 ] \quad \text{p}_5 [ J_5 ] \quad \text{p}_6 [ J_6 ] \\
&\text{p}_7 [ J_7 ]
\end{align*}
```
Multiprocessor Scheduling – List Scheduling

LISTSCHEDULING(J_1, \ldots, J_n, m)

- Put the first m jobs on the m machines.
- Put the next job on the first free machine.

Example.

```
J_1 \rightarrow p_1
J_2 \rightarrow p_2
J_3 \rightarrow p_3
J_4 \rightarrow p_4
J_5 \rightarrow p_5
J_6 \rightarrow p_6
J_7 \rightarrow p_7
```
Multiprocessor Scheduling – List Scheduling

LISTSCHEDULING(*J_1*, ..., *J_n*, *m*)

Put the first *m* jobs on the *m* machines.

Put the next job on the first free machine.

Example.
Multiprocessor Scheduling – List Scheduling

\textbf{LISTSCHEDULING}(J_1, \ldots, J_n, m)

- Put the first m jobs on the m machines.
- Put the next job on the first free machine.

Example.
Multiprocessor Scheduling – List Scheduling

\textsc{ListScheduling}(J_1, \ldots, J_n, m)

Put the first \(m\) jobs on the \(m\) machines.

\textbf{Put the next job on the first free machine.}

Example.

\begin{itemize}
 \item \(J_1\) on \(p_1\)
 \item \(J_2\) on \(p_2\)
 \item \(J_3\) on \(p_3\)
 \item \(J_4\) on \(p_4\)
 \item \(J_5\) on \(p_5\)
 \item \(J_6\) on \(p_6\)
 \item \(J_7\) on \(p_7\)
\end{itemize}
Multiprocessor Scheduling – List Scheduling

LISTSCHEDULING (J_1, \ldots, J_n, m)

Put the first m jobs on the m machines.
Put the next job on the first free machine.

Example.

- **LISTSCHEDULING runs in** $O(n \log m)$ time.
Multiprocessor Scheduling – List Scheduling

LISTSCHEDULING(J_1, \ldots, J_n, m)

Put the first m jobs on the m machines.
Put the next job on the first free machine.

Example.

- **LISTSCHEDULING** runs in $O(n \log m)$ time.
Multiprocessor Scheduling – List Scheduling

LISTSCHEDULING(J_1, \ldots, J_n, m)

Put the first m jobs on the m machines. Put the next job on the first free machine.

Example.

![Diagram of jobs and machines](image)

- **LISTSCHEDULING** runs in $O(n \log m)$ time.

Theorem 7.

LISTSCHEDULING is a factor-($2 - \frac{1}{m}$) approximation algorithm.
Multiprocessor Scheduling – List Scheduling

ListScheduling(J_1, \ldots, J_n, m)

Put the first m jobs on the m machines.
Put the next job on the first free machine.

Example.

```
\[ \begin{array}{c}
J_1 & J_2 & J_3 & J_4 \\
p_1 & p_2 & p_3 & p_4 \\
J_5 & J_6 & J_7 \\
p_5 & p_6 & p_7 \\
\end{array} \]
```

- **ListScheduling** runs in $O(n \log m)$ time.
- **Theorem 7.**
 ListScheduling is a factor-$(2 - \frac{1}{m})$ approximation algorithm.
Multiprocessor Scheduling – List scheduling (proof)

Proof. Let \(J_k = (S_k, T_k) \) be the last job, that is, \(T_k \) determines the makespan.

Theorem 7. ListScheduling is a \((2 - \frac{1}{m})\)-approximation alg.
Multiprocessor Scheduling – List scheduling (proof)

Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.

- No machine idles at time S_k.

$$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$$

weight of all jobs but J_k

evenly distributed on m machines

\[T_k = \text{Makespan} \]
Multiprocessor Scheduling – List scheduling (proof)

Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.

- No machine idles at time S_k.

\[S_k \leq \frac{1}{m} \sum_{i \neq k} p_i \]

- For the optimal makespan T_{OPT}, we have:

\[T_{\text{OPT}} \geq p_k \]

Theorem 7. ListScheduling is a $(2 - \frac{1}{m})$-approximation alg.
Multiprocessor Scheduling – List scheduling (proof)

Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.

- No machine idles at time S_k.

 \[
 S_k \leq \frac{1}{m} \sum_{i \neq k} p_i \quad \text{weight of all jobs but } J_k \quad \text{evenly distributed on } m \text{ machines}
 \]

- For the optimal makespan T_{OPT}, we have:

 \[
 T_{OPT} \geq p_k
 \]
 \[
 T_{OPT} \geq \frac{1}{m} \sum_{i=1}^{n} p_i \quad \text{weight of all jobs} \quad \text{evenly distributed}
 \]

Theorem 7. ListScheduling is a $(2 - \frac{1}{m})$-approximation alg.
Multiprocessor Scheduling – List scheduling (proof)

ListScheduling(J_1, \ldots, J_n, m)

- Put the first m jobs on the m machines.
- Put the next job on the first free machine.

Theorem 7. ListScheduling is a $(2 - \frac{1}{m})$-approximation alg.

Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.

- No machine idles at time S_k.

 $S_k \leq \frac{1}{m} \sum_{i \neq k} p_i \text{ weight of all jobs but } J_k \text{ evenly distributed on } m \text{ machines}$

- For the optimal makespan T_{OPT}, we have:

 - $T_{OPT} \geq p_k$

 - $T_{OPT} \geq \frac{1}{m} \sum_{i=1}^{n} p_i \text{ weight of all jobs evenly distributed}$

- Hence:

 $T_k = S_k + p_k$

- For the optimal makespan T_{OPT}, we have:

 - $T_{OPT} \geq \frac{1}{m} \sum_{i=1}^{n} p_i \text{ weight of all jobs evenly distributed}$
Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.

- No machine idles at time S_k.

$$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i \quad \text{weight of all jobs but } J_k \quad \text{evenly distributed on } m \text{ machines}$$

- For the optimal makespan T_{OPT}, we have:

$$T_{OPT} \geq p_k$$

$$T_{OPT} \geq \frac{1}{m} \sum_{i=1}^{n} p_i \quad \text{weight of all jobs} \quad \text{evenly distributed}$$

- Hence:

$$T_k = S_k + p_k \\ \leq \frac{1}{m} \cdot \sum_{i \neq k} p_i + p_k$$

Theorem 7. ListScheduling is a $(2 - \frac{1}{m})$-approximation alg.
Multiprocessor Scheduling – List scheduling (proof)

Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.

- No machine idles at time S_k.

 $$ S_k \leq \frac{1}{m} \sum_{i \neq k} p_i \text{ weight of all jobs but } J_k \text{ evenly distributed on } m \text{ machines} $$

- For the optimal makespan T_{OPT}, we have:

 $$ T_{OPT} \geq p_k $$

 $$ T_{OPT} \geq \frac{1}{m} \sum_{i=1}^{n} p_i \text{ weight of all jobs evenly distributed} $$

- Hence:

 $$ T_k = S_k + p_k $$

 $$ \leq \frac{1}{m} \sum_{i \neq k} p_i + p_k $$

 $$ = \frac{1}{m} \sum_{i=1}^{n} p_i + \left(1 - \frac{1}{m}\right) \cdot p_k $$

Theorem 7.

ListScheduling is a $(2 - \frac{1}{m})$-approximation alg.
Multiprocessor Scheduling – List scheduling (proof)

Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.

- No machine idles at time S_k.

$$S_k \leq \frac{1}{m} \sum_{i \neq k} p_i \text{ weight of all jobs but } J_k$$

- For the optimal makespan T_{OPT}, we have:

 - $T_{OPT} \geq p_k$
 - $T_{OPT} \geq \frac{1}{m} \sum_{i=1}^{n} p_i \text{ weight of all jobs evenly distributed}$

- Hence:

 $$T_k = S_k + p_k \leq \frac{1}{m} \cdot \sum_{i \neq k} p_i + p_k$$

 $$= \frac{1}{m} \cdot \sum_{i=1}^{n} p_i + \left(1 - \frac{1}{m}\right) \cdot p_k$$

 $$\leq T_{OPT} + \left(1 - \frac{1}{m}\right) \cdot T_{OPT}$$

Theorem 7. ListScheduling is a $(2 - \frac{1}{m})$-approximation alg.
Multiprocessor Scheduling – List scheduling (proof)

Theorem 7. ListScheduling is a \((2 - \frac{1}{m})\)-approximation alg.

Proof. Let \(J_k = (S_k, T_k)\) be the last job, that is, \(T_k\) determines the makespan.

- No machine idles at time \(S_k\).
 \[
 S_k \leq \frac{1}{m} \sum_{i \neq k} p_i \quad \text{weight of all jobs but } J_k \text{ evenly distributed on } m \text{ machines}
 \]

- For the optimal makespan \(T_{OPT}\), we have:

 \[
 T_{OPT} \geq \frac{1}{m} \sum_{i=1}^{n} p_i \quad \text{weight of all jobs evenly distributed}
 \]

- Hence:

 \[
 T_k = S_k + p_k \\
 \leq \frac{1}{m} \cdot \sum_{i \neq k} p_i + p_k \\
 = \frac{1}{m} \cdot \sum_{i=1}^{n} p_i + \left(1 - \frac{1}{m}\right) \cdot p_k \\
 \leq T_{OPT} + \left(1 - \frac{1}{m}\right) \cdot T_{OPT} \\
 = \left(2 - \frac{1}{m}\right) \cdot T_{OPT}
 \]

ListScheduling

- Put the first \(m\) jobs on the \(m\) machines.
- Put the next job on the first free machine.
Multiprocessor Scheduling – PTAS

For a constant ℓ ($1 \leq \ell \leq n$) define the algorithm A_ℓ as follows.

$A_\ell(J_1, \ldots, J_n, m)$

Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally.
Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.
Multiprocessor Scheduling – PTAS

For a constant ℓ (1 \leq ℓ \leq n) define the algorithm A_{ℓ} as follows.

$A_{\ell}(J_1, \ldots, J_n, m)$

Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally.
Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

Example.

$\ell = 6$

jobs

Example.

$\ell = 6$
For a constant ℓ ($1 \leq \ell \leq n$) define the algorithm A_ℓ as follows.

$A_\ell(J_1, \ldots, J_n, m)$

Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally.
Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

Example.
$\ell = 6$

sorted jobs
Multiprocessor Scheduling – PTAS

For a constant \(1 \leq \ell \leq n\) define the algorithm \(A_\ell\) as follows.

\[
A_\ell(J_1, \ldots, J_n, m)
\]

Sort jobs in descending order of runtime.

Schedule the \(\ell\) longest jobs \(J_1, \ldots, J_\ell\) optimally.

Use ListScheduling for the remaining jobs \(J_{\ell+1}, \ldots, J_n\).

Example.

\(\ell = 6\)

sorted jobs
Multiprocessor Scheduling – PTAS

For a constant ℓ ($1 \leq \ell \leq n$) define the algorithm A_ℓ as follows.

$A_\ell(J_1, \ldots, J_n, m)$
- Sort jobs in descending order of runtime.
- Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally.
- Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

Example.

$\ell = 6$

sorted jobs

Example.
Multiprocessor Scheduling – PTAS

For a constant ℓ ($1 \leq \ell \leq n$) define the algorithm A_ℓ as follows.

$A_\ell(J_1, \ldots, J_n, m)$
Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally.
Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

Example.

$\ell = 6$

sorted jobs

Example.

$\ell = 6$

sorted jobs
Multiprocessor Scheduling – PTAS

For a constant ℓ \((1 \leq \ell \leq n)\) define the algorithm A_ℓ as follows.

$$A_\ell(J_1, \ldots, J_n, m)$$

Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally.
Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

Example.

$\ell = 6$

sorted jobs

![Job Scheduling Diagram](image)
Multiprocessor Scheduling – PTAS

For a constant $\ell \ (1 \leq \ell \leq n)$ define the algorithm A_ℓ as follows.

$A_\ell(J_1, \ldots, J_n, m)$
- Sort jobs in descending order of runtime.
- Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally.
- Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

Example.

$\ell = 6$

Sorted jobs

M_4 M_3 M_2 M_1

J_1 J_2 J_3 J_4 J_5 J_6
For a constant \(\ell \) (1 \(\leq \) \(\ell \) \(\leq \) \(n \)) define the algorithm \(A_\ell \) as follows.

\[
A_\ell(J_1, \ldots, J_n, m)
\]

Sort jobs in descending order of runtime.
Schedule the \(\ell \) longest jobs \(J_1, \ldots, J_\ell \) optimally.
Use \textsc{ListScheduling} for the remaining jobs \(J_{\ell+1}, \ldots, J_n \).

Example.
\(\ell = 6 \)

sorted jobs

\[
\begin{array}{cccccccc}
M_4 & j_1 & & & & & & \\
M_3 & j_2 & & j_5 & & & & \\
M_2 & j_3 & & & & & & \\
M_1 & j_4 & j_6 & & & & & \\
\end{array}
\]
Multiprocessor Scheduling – PTAS

For a constant ℓ ($1 \leq \ell \leq n$) define the algorithm A_ℓ as follows.

$A_\ell(J_1, \ldots, J_n, m)$

Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally.
Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

Example. $\ell = 6$

sorted jobs
For a constant ℓ ($1 \leq \ell \leq n$) define the algorithm A_ℓ as follows.

$A_\ell(J_1, \ldots, J_n, m)$

Sort jobs in descending order of runtime.

Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally.

Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

Example.

$\ell = 6$

sorted jobs
Multiprocessor Scheduling – PTAS

For a constant ℓ ($1 \leq \ell \leq n$) define the algorithm A_ℓ as follows.

$A_\ell(J_1, \ldots, J_n, m)$

Sort jobs in descending order of runtime.

Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally.

Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

Example.

$\ell = 6$

sorted jobs

Polynomial time for constant ℓ:

$O(n \log n)$
$O(m^\ell)$
$O(n \log m)$
Multiprocessor Scheduling – PTAS

For a constant ℓ ($1 \leq \ell \leq n$) define the algorithm A_ℓ as follows.

$A_\ell(J_1, \ldots, J_n, m)$

Sort jobs in descending order of runtime.

Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally.

Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

Theorem 8.
For constant $1 \leq \ell \leq n$, the algorithm A_ℓ is a $1 + \frac{1 - \frac{1}{m}}{1 + \left\lfloor \frac{\ell}{m} \right\rfloor}$-approximation algorithm.

Polynomial time for constant ℓ:
$O(m^\ell + n \log n)$
Multiprocessor Scheduling – PTAS

For a constant \(\ell \) \((1 \leq \ell \leq n)\) define the algorithm \(A_\ell \) as follows.

\[
A_\ell(J_1, \ldots, J_n, m)
\]

- Sort jobs in descending order of runtime.
- Schedule the \(\ell \) longest jobs \(J_1, \ldots, J_\ell \) optimally.
- Use \textsc{ListScheduling} for the remaining jobs \(J_{\ell+1}, \ldots, J_n \).

\[
\mathcal{O}(n \log n)
\]
\[
\mathcal{O}(m^\ell)
\]
\[
\mathcal{O}(n \log m)
\]

\[\Box\]

\begin{itemize}
 \item Polynomial time for constant \(\ell \):
 \[\mathcal{O}(m^\ell + n \log n)\]
\end{itemize}

\[\Box\]

\textbf{Theorem 8.}

For constant \(1 \leq \ell \leq n \), the algorithm \(A_\ell \)
is a \(1 + \frac{1 - \frac{1}{m}}{1 + \left\lfloor \frac{\ell}{m} \right\rfloor} \)-approximation algorithm.

\[\Box\]

For \(\epsilon > 0 \), choose \(\ell \) such that \(A_\epsilon = A_\ell(\epsilon) \)
is a \((1 + \epsilon)\)-approximation algorithm.

\[\Box\]

\textbf{Corollary 9.}

For a constant number of machines, \(\{A_\epsilon \mid \epsilon > 0\} \) is a PTAS.
Multiprocessor Scheduling – PTAS

For a constant \(\ell \) (\(1 \leq \ell \leq n \)) define the algorithm \(A_\ell \) as follows.

\[
A_\ell(J_1, \ldots, J_n, m) =
\begin{align*}
&\text{Sort jobs in descending order of runtime.} \\
&\text{Schedule the } \ell \text{ longest jobs } J_1, \ldots, J_\ell \text{ optimally.} \\
&\text{Use ListScheduling for the remaining jobs } J_{\ell+1}, \ldots, J_n.
\end{align*}
\]

\(\mathcal{O}(m^{\ell}) \)

\(\mathcal{O}(n \log m) \)

\(\mathcal{O}(n \log n) \)

\(\mathcal{O}(m^{\ell} + n \log n) \)

For \(\varepsilon > 0 \), choose \(\ell \) such that \(A_{\varepsilon} = A_\ell(\varepsilon) \) is a \((1 + \varepsilon) \)-approximation algorithm.

\(\{A_{\varepsilon} \mid \varepsilon > 0\} \) is not an FPTAS since the running time is not polynomial in \(\frac{1}{\varepsilon} \).
Theorem 8.
For constant $1 \leq \ell \leq n$, the algorithm A_ℓ is a $1 + \frac{1 - \frac{1}{m}}{1 + \frac{\ell}{m}}$-approximation algorithm.

Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.
Theorem 8. For constant $1 \leq \ell \leq n$, the algorithm A_ℓ is a $1 + \frac{1}{1+\left\lfloor \frac{n}{m} \right\rfloor}$-approximation algorithm.

Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.

Case 1. J_k is one of the longest ℓ jobs J_1, \ldots, J_ℓ.

$A_\ell(J_1, \ldots, J_n, m)$

Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally.
Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.
Multiprocessor Scheduling – PTAS (proof)

Theorem 8.
For constant $1 \leq \ell \leq n$, the algorithm A_ℓ is a $1 + \frac{1 - \frac{1}{m}}{1 + \left\lfloor \frac{\ell}{m} \right\rfloor}$-approximation algorithm.

Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.

Case 1. J_k is one of the longest ℓ jobs J_1, \ldots, J_ℓ.

- Solution is optimal for J_1, \ldots, J_k
- Hence, solution is optimal for J_1, \ldots, J_n
Theorem 8. For constant $1 \leq \ell \leq n$, the algorithm A_ℓ is a
$1 + \frac{1 - \frac{1}{m}}{1 + \left\lfloor \frac{\ell}{m} \right\rfloor}$-approximation algorithm.

Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.

Case 1. J_k is one of the longest ℓ jobs J_1, \ldots, J_ℓ.
- Solution is optimal for J_1, \ldots, J_k
- Hence, solution is optimal for J_1, \ldots, J_n

Case 2. J_k is not one of the longest ℓ jobs J_1, \ldots, J_ℓ.

$A_\ell(J_1, \ldots, J_n, m)$
Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally.
Use LISTSCHEDULING for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.
Multiprocessor Scheduling – PTAS (proof)

Theorem 8.
For constant $1 \leq \ell \leq n$, the algorithm A_ℓ is a $1 + \frac{1 - \frac{1}{m}}{1 + \left\lfloor \frac{\ell}{m} \right\rfloor}$-approximation algorithm.

Proof.

Case 1. J_k is one of the longest ℓ jobs J_1, \ldots, J_ℓ.
- Solution is optimal for J_1, \ldots, J_k
- Hence, solution is optimal for J_1, \ldots, J_n

Case 2. J_k is not one of the longest ℓ jobs J_1, \ldots, J_ℓ.
- Similar analysis to ListScheduling
- Use that there are $\ell + 1$ jobs that are at least as long as J_k (including J_k).

Proof. Let $J_k = (S_k, T_k)$ be the last job, that is, T_k determines the makespan.

$A_\ell(J_1, \ldots, J_n, m)$
Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally.
Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

\[M_1 \]
\[\begin{array}{c}
M_2 \\
M_3 \\
M_4
\end{array}
\]

\[S_k \]
\[T_k = \text{Makespan } A_\ell \]
Multiprocessor Scheduling – PTAS (proof)

Theorem 8.
For constant $1 \leq \ell \leq n$, the algorithm A_{ℓ} is a
$1 + \frac{1 - \frac{1}{m}}{1 + \left\lfloor \frac{\ell}{m} \right\rfloor}$-approximation algorithm.

Proof of Case 2.

- $S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$
- $T_{OPT} \geq \frac{1}{m} \sum_{i=1}^{n} p_i$
- $T_{OPT} \geq p_k$

$A_{\ell}(J_1, \ldots, J_n, m)$
Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally.
Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

$T_k = S_k + p_k$
Multiprocessor Scheduling – PTAS (proof)

Theorem 8.
For constant $1 \leq \ell \leq n$, the algorithm A_ℓ is a
$1 + \frac{1 - \frac{1}{m}}{1 + \left\lfloor \frac{\ell}{m} \right\rfloor}$-approximation algorithm.

Proof of Case 2.

- $S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$
- $T_{OPT} \geq \frac{1}{m} \sum_{i=1}^{n} p_i$
- $T_{OPT} \geq p_k$

$A_\ell(J_1, \ldots, J_n, m)$
Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_1, \ldots, J_{ℓ} optimally.
Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

$T_k = S_k + p_k$
$\leq \frac{1}{m} \cdot \sum_{i \neq k} p_i + p_k$
Theorem 8.
For constant $1 \leq \ell \leq n$, the algorithm A_ℓ is a
$1 + \frac{1 - \frac{1}{m}}{1 + \left\lfloor \frac{\ell}{m} \right\rfloor}$-approximation algorithm.

Proof of Case 2.

- $S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$
- $T_{\text{OPT}} \geq \frac{1}{m} \sum_{i=1}^{n} p_i$
- $T_{\text{OPT}} \geq p_k$

$A_\ell(J_1, \ldots, J_n, m)$
Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally.
Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

$T_k = S_k + p_k$

\[
\begin{align*}
T_k &\leq \frac{1}{m} \cdot \sum_{i \neq k} p_i + p_k \\
&= \frac{1}{m} \cdot \sum_{i=1}^{m} p_i + \left(1 - \frac{1}{m}\right) \cdot p_k
\end{align*}
\]
Multiprocessor Scheduling – PTAS (proof)

Theorem 8.
For constant $1 \leq \ell \leq n$, the algorithm A_ℓ is a $1 + \frac{1 - \frac{1}{m}}{1 + \left\lceil \frac{\ell}{m} \right\rceil}$-approximation algorithm.

Proof of Case 2.

- $S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$
- $T_{OPT} \geq \frac{1}{m} \sum_{i=1}^{n} p_i$
- $T_{OPT} \geq p_k$

$A_\ell(J_1, \ldots, J_n, m)$

Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally.
Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

\[
T_k = S_k + p_k \\
\leq \frac{1}{m} \cdot \sum_{i \neq k} p_i + p_k \\
= \frac{1}{m} \cdot \sum_{i=1}^{m} p_i + \left(1 - \frac{1}{m}\right) \cdot p_k \\
\leq T_{OPT} + \left(1 - \frac{1}{m}\right) \cdot T_{OPT}
\]
Theorem 8. For constant $1 \leq \ell \leq n$, the algorithm A_ℓ is a
$1 + \frac{1 - \frac{1}{m}}{1 + \left\lfloor \frac{\ell}{m} \right\rfloor}$-approximation algorithm.

Proof of Case 2.

- $S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$
- $T_{\text{OPT}} \geq \frac{1}{m} \sum_{i=1}^{n} p_i$
- $T_{\text{OPT}} \geq p_k$

$A_\ell(J_1, \ldots, J_n, m)$
Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally.
Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

$T_k = S_k + p_k$
\[
\leq \frac{1}{m} \sum_{i \neq k} p_i + p_k
\]
\[
= \frac{1}{m} \sum_{i=1}^{m} p_i + \left(1 - \frac{1}{m}\right) \cdot p_k
\]
\[
\leq T_{\text{OPT}} + \left(1 - \frac{1}{m}\right) \cdot T_{\text{OPT}}
\]

can we do better?
Multiprocessor Scheduling – PTAS (proof)

Theorem 8.
For constant \(1 \leq \ell \leq n\), the algorithm \(A_\ell\) is a \(1 + \frac{1 - \frac{1}{m}}{1 + \frac{\ell}{m}}\)-approximation algorithm.

Proof of Case 2.

- \(S_k \leq \frac{1}{m} \sum_{i \neq k} p_i\)
- \(T_{OPT} \geq \frac{1}{m} \sum_{i=1}^{n} p_i\)
- Consider only \(J_1, \ldots, J_\ell, J_k\):

\[
T_{OPT} \geq p_k .
\]

\(A_\ell(J_1, \ldots, J_n, m)\)

Sort jobs in descending order of runtime.
Schedule the \(\ell\) longest jobs \(J_1, \ldots, J_\ell\) optimally.
Use ListScheduling for the remaining jobs \(J_{\ell+1}, \ldots, J_n\).

\[
T_k = S_k + p_k \leq \frac{1}{m} \sum_{i \neq k} p_i + p_k = \frac{1}{m} \sum_{i=1}^{m} p_i + \left(1 - \frac{1}{m}\right) \cdot p_k \leq T_{OPT} + \left(1 - \frac{1}{m}\right) \cdot T_{OPT}
\]

can we do better?
Multiprocessor Scheduling – PTAS (proof)

Theorem 8.
For constant $1 \leq \ell \leq n$, the algorithm A_{ℓ} is a $1 + \frac{1 - \frac{1}{m}}{1 + \left\lfloor \frac{\ell}{m} \right\rfloor}$-approximation algorithm.

Proof of Case 2.

- $S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$
- $T_{OPT} \geq \frac{1}{m} \sum_{i=1}^{n} p_i$

Consider only $J_1, \ldots, J_{\ell}, J_k$:

$$T_{OPT} \geq p_k \cdot \left(1 + \left\lfloor \frac{\ell}{m} \right\rfloor\right)$$

$A_{\ell}(J_1, \ldots, J_n, m)$
Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_1, \ldots, J_{ℓ} optimally.
Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

$$T_k = S_k + p_k \leq \frac{1}{m} \cdot \sum_{i \neq k} p_i + p_k$$
$$= \frac{1}{m} \cdot \sum_{i=1}^{m} p_i + \left(1 - \frac{1}{m}\right) \cdot p_k$$
$$\leq T_{OPT} + \left(1 - \frac{1}{m}\right) \cdot T_{OPT}$$

Can we do better?
Multiprocessor Scheduling – PTAS (proof)

Theorem 8.
For constant $1 \leq \ell \leq n$, the algorithm A_ℓ is a $1 + \frac{1 - \frac{1}{m}}{1 + \left\lfloor \frac{\ell}{m} \right\rfloor}$-approximation algorithm.

Proof of Case 2.

- $S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$
- $T_{OPT} \geq \frac{1}{m} \sum_{i=1}^{n} p_i$
- Consider only J_1, \ldots, J_ℓ, J_k:

 $T_{OPT} \geq p_k \cdot \left(1 + \left\lfloor \frac{\ell}{m} \right\rfloor\right)$ one machine has this many jobs*

where $T_k = S_k + p_k$

\[
T_k = \frac{1}{m} \cdot \left(1 - \frac{1}{m}\right) \cdot p_k
\leq T_{OPT} + \left(1 - \frac{1}{m}\right) \cdot T_{OPT}
\]

- $A_\ell(J_1, \ldots, J_n, m)$
 - Sort jobs in descending order of runtime.
 - Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally.
 - Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

- Consider only J_1, \ldots, J_ℓ, J_k:

 one machine has
 this many jobs

- Can we do better?
Multiprocessor Scheduling – PTAS (proof)

Theorem 8.
For constant $1 \leq \ell \leq n$, the algorithm A_ℓ is a $1 + \frac{1 - \frac{1}{m}}{1 + \left\lfloor \frac{\ell}{m} \right\rfloor}$-approximation algorithm.

Proof of Case 2.
- $S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$
- $T_{OPT} \geq \frac{1}{m} \sum_{i=1}^{n} p_i$

Consider only J_1, \ldots, J_ℓ, J_k:

$T_{OPT} \geq p_k \cdot \left(1 + \left\lfloor \frac{\ell}{m} \right\rfloor \right)$ one machine has this many jobs*

* on average, each machine has more than $\frac{\ell}{m}$ of the $\ell + 1$ jobs
at least one machine achieves the average

$A_\ell(J_1, \ldots, J_n, m)$

Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally.
Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

$T_k = S_k + p_k$
\[
\leq \frac{1}{m} \sum_{i \neq k} p_i + p_k
\]
\[
= \frac{1}{m} \sum_{i=1}^{m} p_i + \left(1 - \frac{1}{m}\right) p_k
\]
\[
\leq T_{OPT} + \left(1 - \frac{1}{m}\right) T_{OPT}
\]
can we do better?
Theorem 8. For constant $1 \leq \ell \leq n$, the algorithm A_ℓ is a $1 + \frac{1 - \frac{1}{m}}{1 + \left\lfloor \frac{\ell}{m} \right\rfloor}$-approximation algorithm.

Proof of Case 2.

- $S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$
- $T_{OPT} \geq \frac{1}{m} \sum_{i=1}^{n} p_i$

Consider only J_1, \ldots, J_ℓ, J_k:

- $T_{OPT} \geq p_k \cdot \left(1 + \left\lfloor \frac{\ell}{m} \right\rfloor\right)$ one machine has this many jobs\(^*\)
 each has length $\geq p_k$

- \(^*\) on average, each machine has more than $\frac{\ell}{m}$ of the $\ell + 1$ jobs
- at least one machine achieves the average

$T_k = S_k + p_k$

\[\leq \frac{1}{m} \cdot \sum_{i \neq k} p_i + p_k \]

\[= \frac{1}{m} \cdot \sum_{i=1}^{m} p_i + \left(1 - \frac{1}{m}\right) \cdot p_k \]

\[\leq T_{OPT} + \left(1 - \frac{1}{m}\right) \cdot T_{OPT} \]

Can we do better?

$A_\ell(J_1, \ldots, J_n, m)$

Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally.
Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

M_4

M_3

M_2

M_1

\[S_k \quad T_k = \text{Makespan}_{A_\ell} \]
Multiprocessor Scheduling – PTAS (proof)

Theorem 8.
For constant $1 \leq \ell \leq n$, the algorithm A_ℓ is a $1 + \frac{1 - \frac{1}{m}}{1 + \left\lfloor \frac{\ell}{m} \right\rfloor}$-approximation algorithm.

Proof of Case 2.

- $S_k \leq \frac{1}{m} \sum_{i \neq k} p_i$
- $T_{OPT} \geq \frac{1}{m} \sum_{i=1}^{n} p_i$
- Consider only J_1, \ldots, J_ℓ, J_k:
 - $T_{OPT} \geq p_k \cdot \left(1 + \left\lfloor \frac{\ell}{m} \right\rfloor\right)$ one machine has this many jobs* each has length $\geq p_k$
- * on average, each machine has more than $\frac{\ell}{m}$ of the $\ell + 1$ jobs
- at least one machine achieves the average

$\mathcal{A}_\ell(J_1, \ldots, J_n, m)$
Sort jobs in descending order of runtime.
Schedule the ℓ longest jobs J_1, \ldots, J_ℓ optimally.
Use ListScheduling for the remaining jobs $J_{\ell+1}, \ldots, J_n$.

$T_k = S_k + p_k$
$\leq \frac{1}{m} \cdot \sum_{i \neq k} p_i + p_k$
$= \frac{1}{m} \cdot \sum_{i=1}^{m} p_i + \left(1 - \frac{1}{m}\right) \cdot p_k$
$\leq T_{OPT} + \left(1 - \frac{1}{m}\right) \cdot T_{OPT}$

\[Tk = \text{Makespan} \mathcal{A}_\ell \]
Theorem 8.
For constant \(1 \leq \ell \leq n\), the algorithm \(A_\ell\) is a \(1 + \frac{1 - \frac{1}{m}}{1 + \left\lfloor \frac{\ell}{m} \right\rfloor}\)-approximation algorithm.

Proof of Case 2.

- \(S_k \leq \frac{1}{m} \sum_{i \neq k} p_i\)
- \(T_{OPT} \geq \frac{1}{m} \sum_{i=1}^{n} p_i\)
- Consider only \(J_1, \ldots, J_\ell, J_k\):
 \(T_{OPT} \geq p_k \cdot \left(1 + \left\lfloor \frac{\ell}{m} \right\rfloor\right)\) one machine has this many jobs*: each has length \(\geq p_k\)
- * on average, each machine has more than \(\frac{\ell}{m}\) of the \(\ell + 1\) jobs
- at least one machine achieves the average

\[
T_k = S_k + p_k \\
\leq \frac{1}{m} \cdot \sum_{i \neq k} p_i + p_k \\
= \frac{1}{m} \cdot \sum_{i=1}^{m} p_i + \left(1 - \frac{1}{m}\right) \cdot p_k \\
\leq T_{OPT} + \frac{1 - \frac{1}{m}}{1 + \left\lfloor \frac{\ell}{m} \right\rfloor} \cdot T_{OPT}
\]
Discussion

- Only “easy” NP-hard problems admit FPTAS (PTAS).
- Some problems cannot be approximated very well (e.g., Maximum Clique).
- Study of approximability of NP-hard problems yields a more fine-grained classification of the difficulty.
Discussion

- Only “easy” NP-hard problems admit FPTAS (PTAS).
- Some problems cannot be approximated very well (e.g., Maximum Clique).
- Study of approximability of NP-hard problems yields a more fine-grained classification of the difficulty.
- Approximation algorithms exist also for non-NP-hard problems.
- Approximation algorithms can be of various types: greedy, local search, geometric, DP, . . .
- One important technique is LP-relaxation (next lecture).
Discussion

- Only “easy” NP-hard problems admit FPTAS (PTAS).
- Some problems cannot be approximated very well (e.g., Maximum Clique).
- Study of approximability of NP-hard problems yields a more fine-grained classification of the difficulty.

- Approximation algorithms exist also for non-NP-hard problems
- Approximation algorithms can be of various types: greedy, local search, geometric, DP, ...

- One important technique is LP-relaxation (next lecture).

- Minimum Vertex Coloring on planar graphs can be approximated with an additive approximation guarantee of 2.

- Christofides’ approximation algorithm for Metric TSP has approximation factor 1.5.
Literature

Main references

Another book recommendation:

- [Vazirani, 2013] “Approximation Algorithms”