Advanced Algorithms

Exact algorithms for NP-hard problems

Traveling Salesman Problem and Maximal Independent Set

Diana Sieper · WS22
Examples of NP-hard problems

Many important (practical) problems are NP-hard, for example . . .
Examples of NP-hard problems

Many important (practical) problems are NP-hard, for example . . .
Examples of NP-hard problems

Many important (practical) problems are NP-hard, for example . . .

\[(x_1 \lor x_2 \lor \neg x_4) \land \\
(\neg x_2 \lor x_3 \lor \neg x_4) \land \\
(x_3 \lor x_7 \lor \neg x_8) \land \\
. . . \]

SAT

Graph Drawing

Games
Formal view on NP-hardness

But what does NP-hard/-complete actually mean?
Formal view on NP-hardness

But what does NP-hard/-complete actually mean?

- NP-hard = non-deterministic polynomial-time hard
Formal view on NP-hardness

But what does NP-hard/-complete actually mean?

- NP-hard = non-deterministic polynomial-time hard

- A decision problem H is NP-hard when it is “at least as hard as the hardest problems in NP”.
Formal view on NP-hardness

But what does NP-hard/-complete actually mean?

- NP-hard = non-deterministic polynomial-time hard

- A decision problem H is NP-hard when it is “at least as hard as the hardest problems in NP”.

- or: There is a polynomial-time many-one reduction from an NP-hard problem L to H.

Formal view on NP-hardness

But what does NP-hard/-complete actually mean?

- NP-hard = non-deterministic polynomial-time hard

- A decision problem H is NP-hard when it is “at least as hard as the hardest problems in NP”.

- or: There is a polynomial-time many-one reduction from an NP-hard problem L to H.

- If $P \neq NP$, then NP-hard problems cannot be solved in polynomial time.
Misconceptions about NP-hardness

Common misconceptions [Mann ’17]

- If similar problems are NP-hard, then the problem at hand is also NP-hard.
Misconceptions about NP-hardness

Common misconceptions [Mann ’17]

- If similar problems are NP-hard, then the problem at hand is also NP-hard.
- Problems that are hard to solve in practice by an engineer are NP-hard.
Misconceptions about NP-hardness

Common misconceptions [Mann ’17]

- If similar problems are NP-hard, then the problem at hand is also NP-hard.
- Problems that are hard to solve in practice by an engineer are NP-hard.
- NP-hard problems cannot be solved optimally.
Misconceptions about NP-hardness

Common misconceptions [Mann ’17]

- If similar problems are NP-hard, then the problem at hand is also NP-hard.
- Problems that are hard to solve in practice by an engineer are NP-hard.
- NP-hard problems cannot be solved optimally.
- NP-hard problems cannot be solved more efficiently than by exhaustive search.
Misconceptions about NP-hardness

Common misconceptions [Mann '17]

■ If similar problems are NP-hard, then the problem at hand is also NP-hard.

■ Problems that are hard to solve in practice by an engineer are NP-hard.

■ NP-hard problems cannot be solved optimally.

■ NP-hard problems cannot be solved more efficiently than by exhaustive search.

■ For solving NP-hard problems, the only practical possibility is the use of heuristics.
Dealing with NP-hard problems

What should we do?
Dealing with NP-hard problems

What should we do?

- Sacrifice optimality for speed
- Heuristics (Simulated Annealing, Tabu-Search)
- Approximation Algorithms (Christofides-Algorithm)
Dealing with NP-hard problems

What should we do?

- Sacrifice optimality for speed
 - Heuristics (Simulated Annealing, Tabu-Search)
 - Approximation Algorithms (Christofides-Algorithm)

- Optimal Solutions
 - Exact exponential-time algorithms
 - Fine-grained analysis – parameterized algorithms
Dealing with NP-hard problems

What should we do?

- Sacrifice optimality for speed
 - Heuristics (Simulated Annealing, Tabu-Search)
 - Approximation Algorithms (Christofides-Algorithm)

- Optimal Solutions
 - Exact exponential-time algorithms
 - Fine-grained analysis – parameterized algorithms

this lecture
Motivation

efficient (polynomial-time)

vs.

inefficient (super-pol.time)
Motivation

Exponential running time ... should we just give up?

efficient (polynomial-time)

vs.

inefficient (super-pol.time)
Motivation

Exponential running time . . . should we just give up?

. . . can be “fast” for medium-sized instances:

efficient (polynomial-time)

vs.

inefficient (super-pol.time)
Motivation

Exponential running time ... should we just give up?

- ... can be "fast" for medium-sized instances:
- "hidden" constants in polynomial-time algorithms:
 \[2^{100}n > 2^n \text{ for } n \leq 100\]

Efficient (polynomial-time) vs. inefficient (super-pol.time)
Motivation

Exponential runningtime . . . should we just give up?

- . . . can be “fast” for medium-sized instances:
 - “hidden” constants in polynomial-time algorithms:
 - $2^{100^n} > 2^n$ for $n \leq 100$
 - $n^4 > 1.2^n$ for $n \leq 100$

efficient (polynomial-time) vs. inefficient (super-pol.time)
Motivation

Exponential running time . . . should we just give up?

- . . . can be “fast” for medium-sized instances:
 - “hidden” constants in polynomial-time algorithms:
 - $2^{100n} > 2^n$ for $n \leq 100$
 - $n^4 > 1.2^n$ for $n \leq 100$
 - TSP solvable exactly for $n \leq 2000$ and specialized instances with $n \leq 85900$

Efficient (polynomial-time) vs. inefficient (super-pol.time)
Motivation

Exponential runningtime ... maybe we need better hardware?
Motivation

Exponential running time . . . maybe we need better hardware?

Suppose an algorithm uses a^n steps & can solve for a fixed amount of time t instances up to size n_0.
Motivation

Exponential running time . . . maybe we need better hardware?

Suppose an algorithm uses a^n steps & can solve for a fixed amount of time t instances up to size n_0.

Improving hardware by a constant factor c only adds a constant (relative to c) to n_0:

$$a^{n'_0} = c \cdot a^{n_0} \rightsquigarrow n'_0 = \log_a c + n_0$$
Motivation

Exponential runningtime . . . maybe we need better hardware?

- Suppose an algorithm uses a^n steps & can solve for a fixed amount of time t instances up to size n_0.

- Improving hardware by a constant factor c only adds a constant (relative to c) to n_0:

 $$a^{n_0'} = c \cdot a^{n_0} \implies n_0' = \log_a c + n_0$$

- Reducing the base of the runtime to $b < a$ results in a multiplicative increase:

 $$b^{n_0'} = a^{n_0} \implies n_0' = n_0 \cdot \log_b a$$
Motivation

Exponential running time ... but can we at least find exact algorithms that are faster than brute-force (trivial) approaches?
Motivation

Exponential runningtime . . . but can we at least find exact algorithms that are faster than \textbf{brute-force} (trivial) approaches?

- TSP: Bellman-Held-Karp algorithm has running time $O(2^n n^2)$ compared to an $O(n! \cdot n)$-time brute-force search.
Motivation

Exponential running time . . . but can we at least find exact algorithms that are faster than **brute-force** (trivial) approaches?

- **TSP**: Bellman-Held-Karp algorithm has running time \(O(2^n n^2) \) compared to an \(O(n! \cdot n) \)-time brute-force search.

- **MIS**: algorithm by Tarjan & Trojanowski runs in \(O(2^{n/3}) \) time compared to a trivial \(O(n2^n) \)-time approach.
Motivation

Exponential runningtime . . . but can we at least find exact algorithms that are faster than **brute-force** (trivial) approaches?

- **TSP**: Bellman-Held-Karp algorithm has running time $O(2^n n^2)$ compared to an $O(n! \cdot n)$-time brute-force search.

- **MIS**: algorithm by Tarjan & Trojanowski runs in $O(2^{n/3})$ time compared to a trivial $O(n2^n)$-time approach.

- **Coloring**: Lawler gaven an $O(n(1 + 3\sqrt{3})^n)$ algorithm compared to $O(n^{n+1})$-time brute-force.
Motivation

Exponential runningtime . . . but can we at least find exact algorithms that are faster than brute-force (trivial) approaches?

- **TSP**: Bellman-Held-Karp algorithm has running time $O(2^n n^2)$ compared to an $O(n! \cdot n)$-time brute-force search.

- **MIS**: algorithm by Tarjan & Trojanowski runs in $O(2^{n/3})$ time compared to a trivial $O(n2^n)$-time approach.

- **Coloring**: Lawler gaven an $O(n(1 + \sqrt[3]{3})^n)$ algorithm compared to $O(n^{n+1})$-time brute-force.

- **SAT**: No better algorithm than trivial brute-force search known.
\(O^*\)-notation

\[O(1.4^n \cdot n^2) \subsetneq O(1.5^n \cdot n) \subsetneq O(2^n)\]
\mathcal{O}^*-notation

\[
\mathcal{O}(1.4^n \cdot n^2) \subsetneq \mathcal{O}(1.5^n \cdot n) \subsetneq \mathcal{O}(2^n)
\]

- base of exponential part dominates $\sim\sim$ negligible polynomial factors
\(O^* \)-notation

\[
O(1.4^n \cdot n^2) \subsetneq O(1.5^n \cdot n) \subsetneq O(2^n)
\]

\(n \) base of exponential part dominates \(\sim \) negligible polynomial factors

\[
f(n) \in O^*(g(n)) \iff \exists \text{ polynomial } p(n) \text{ with } f(n) \in O(g(n)p(n))
\]
\(\Omega^\ast \)-notation

\[\Omega(1.4^n \cdot n^2) \subsetneq \Omega(1.5^n \cdot n) \subsetneq \Omega(2^n) \]

- base of exponential part dominates \(\leadsto \) negligible polynomial factors

\[f(n) \in \Omega^\ast(g(n)) \iff \exists \text{ polynomial } p(n) \text{ with } f(n) \in O(g(n)p(n)) \]

- typical result

<table>
<thead>
<tr>
<th>Approach</th>
<th>Runtime in (O)-Notation</th>
<th>(O^\ast)-Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brute-Force</td>
<td>(\Omega(2^n))</td>
<td>(\Omega^\ast(2^n))</td>
</tr>
<tr>
<td>Algorithm A</td>
<td>(\Omega(1.5^n \cdot n))</td>
<td>(\Omega^\ast(1.5^n))</td>
</tr>
<tr>
<td>Algorithm B</td>
<td>(\Omega(1.4^n \cdot n^2))</td>
<td>(\Omega^\ast(1.4^n))</td>
</tr>
</tbody>
</table>
Traveling Salesperson Problem (TSP)

Input. Distinct cities \(\{v_1, v_2, \ldots, v_n\}\) with distances \(d(c_i, c_j) \in \mathbb{Q}_{\geq 0}\); directed, complete graph \(G\) with edge weights \(d\).
Traveling Salesperson Problem (TSP)

Input. Distinct cities \(\{v_1, v_2, \ldots, v_n\}\) with distances \(d(c_i, c_j) \in Q_{\geq 0}\); directed, complete graph \(G\) with edge weights \(d\)

Output. Tour of the traveling salesperson of minimal total length that visits all the cities and returns to the starting point;
Traveling Salesperson Problem (TSP)

Input. Distinct cities \(\{v_1, v_2, \ldots, v_n\} \) with distances \(d(c_i, c_j) \in \mathbb{Q}_{\geq 0} \); directed, complete graph \(G \) with edge weights \(d \)

Output. Tour of the traveling salesperson of minimal total length that visits all the cities and returns to the starting point;

i.e. a Hamiltonian cycle \((v_{\pi(1)}, \ldots, v_{\pi(n)}, v_{\pi(1)}) \) of \(G \) of minimum weight

\[
\sum_{i=1}^{n-1} d(v_{\pi(i)}, v_{\pi(i+1)}) + d(v_{\pi(n)}, v_{\pi(1)})
\]
Traveling Salesperson Problem (TSP)

Input. Distinct cities \(\{v_1, v_2, \ldots, v_n\}\) with distances \(d(c_i, c_j) \in \mathbb{Q}_{\geq 0}\); directed, complete graph \(G\) with edge weights \(d\)

Output. Tour of the traveling salesperson of minimal total length that visits all the cities and returns to the starting point;

i.e. a Hamiltonian cycle \((v_{\pi(1)}, \ldots, v_{\pi(n)}, v_{\pi(1)})\) of \(G\) of minimum weight

\[
\sum_{i=1}^{n-1} d(v_{\pi(i)}, v_{\pi(i+1)}) + d(v_{\pi(n)}, v_{\pi(1)})
\]

Brute-force.

- Try all permutations and pick the one with smallest weight.
- Runtime: \(\Theta(n! \cdot n) = n \cdot 2^{\Theta(n \log n)}\)
TSP – Dynamic programming
Bellman-Held-Karp algorithm

Idea.
- Reuse optimal substructures with dynamic programming.
TSP – Dynamic programming

Bellman-Held-Karp algorithm

Idea.

■ Reuse optimal substructures with dynamic programming.
■ Select a starting vertex $s \in V$.
TSP – Dynamic programming
Bellman-Held-Karp algorithm

Idea.

- Reuse optimal substructures with dynamic programming.
- Select a starting vertex \(s \in V \).
- For each \(S \subseteq V - s \) and \(v \in S \), let:

\[
\text{OPT}[S,v] = \text{length of a shortest } s-v-\text{-path that visits precisely the vertices of } S \cup \{s\}.
\]

Richard M. Karp
Richard E. Bellman
TSP – Dynamic programming
Bellman-Held-Karp algorithm

Idea.

- Reuse optimal substructures with dynamic programming.
- Select a starting vertex $s \in V$.
- For each $S \subseteq V - s$ and $v \in S$, let:

 $$\text{OPT}[S, v] = \text{length of a shortest } s-v\text{-path that visits precisely the vertices of } S \cup \{s\}.$$

- Use $\text{OPT}[S - v, u]$ to compute $\text{OPT}[S, v]$.

Richard M. Karp

Richard E. Bellman
TSP – Dynamic programming

Details.

■ The base case $S = \{v\}$ is easy: $\text{OPT}[\{v\}, v] = \text{d}(s, v)$.

TSP – Dynamic programming

Details.

- The base case $S = \{v\}$ is easy: $\text{OPT}\{\{v\}, v\} = d(s, v)$.
TSP – Dynamic programming

Details.

- The base case $S = \{v\}$ is easy: $\text{OPT}[^1]S[^1], v[^1] = d(s, v)$.
- When $|S| \geq 2$, compute $\text{OPT}[S, v]$ recursively:

$$\text{OPT}[S, v] = \min_{u \in S - v} \{\text{OPT}[^1]S[^1] - v[^1], u[^1] + d(u, v)\}$$
Details.

■ The base case \(S = \{v\} \) is easy: \(\text{OPT}[\{v\}, v] = d(s, v) \).

■ When \(|S| \geq 2 \), compute \(\text{OPT}[S, v] \) recursively:

\[
\text{OPT}[S, v] = \min \{ \text{OPT}[S - v, u] + d(u, v) \mid u \in S - v \}
\]
TSP – Dynamic programming

Details.

■ The base case $S = \{v\}$ is easy: $\text{OPT}[\{v\}, v] = d(s, v)$.

■ When $|S| \geq 2$, compute $\text{OPT}[S, v]$ recursively:

$$\text{OPT}[S, v] = \min \{\text{OPT}[S - v, u] + d(u, v) \mid u \in S - v\}$$

■ After computing $\text{OPT}[S, v]$ for each $S \subseteq V - s$ and each $v \in V - s$, the optimal solution is easily obtained as follows:

$$\text{OPT} =$$
TSP – Dynamic programming

Details.

- The base case \(S = \{v\} \) is easy: \(\text{OPT}[\{v\}, v] = d(s, v) \).
- When \(|S| \geq 2 \), compute \(\text{OPT}[S, v] \) recursively:

\[
\text{OPT}[S, v] = \min \{ \text{OPT}[S - v, u] + d(u, v) \mid u \in S - v \}
\]

After computing \(\text{OPT}[S, v] \) for each \(S \subseteq V - s \) and each \(v \in V - s \), the optimal solution is easily obtained as follows:

\[
\text{OPT} = \min \{ \text{OPT}[V - s, v] \} + d(v, s) \mid v \in V - s \}
\]
TSP – Dynamic programming

Pseudocode.
Algorithm Bellmann-Held-Karp(G, c)

```plaintext
foreach $v \in V - s$ do
   \hspace{1em} OPT[$\{v\}, v] = c(s, v)$

for $j \leftarrow 2$ to $n - 1$ do
   foreach $S \subseteq V - s$ with $|S| = j$ do
      foreach $v \in S$ do
         \hspace{1em} OPT[$S, v]$ \leftarrow min\{ OPT[$S - v, u]$
         \hspace{2em} + c(u, v) \mid u \in S - v \}$

return min\{ OPT[$V - s, v] + c(v, s) \mid v \in V - s \}$
```


TSP – Dynamic programming

Pseudocode.
Algorithm Bellmann-Held-Karp\((G, c)\)

\[
\text{foreach } v \in V - s \text{ do} \\
\quad \text{OPT}\left[\{v\}, v\right] = c(s, v) \\
\text{for } j \leftarrow 2 \text{ to } n - 1 \text{ do} \\
\quad \text{foreach } S \subseteq V - s \text{ with } |S| = j \text{ do} \\
\quad \quad \text{foreach } v \in S \text{ do} \\
\quad \quad \quad \text{OPT}[S, v] \leftarrow \min \left\{ \text{OPT}[S - v, u] + c(u, v) \mid u \in S - v \right\} \\
\text{return } \min \left\{ \text{OPT}[V - s, v] + c(v, s) \mid v \in V - s \right\}
\]

- A shortest tour can be produced by back-tracking the DP table (as usual).
TSP – Dynamic programming

Pseudocode.
Algorithm Bellmann-Held-Karp(\(G, c\))

\[
\begin{align*}
\text{foreach } v \in V - s \text{ do} \\
& \quad \text{OPT}[\{v\}, v] = c(s, v) \\
\text{for } j \leftarrow 2 \text{ to } n - 1 \text{ do} \\
& \quad \text{foreach } S \subseteq V - s \text{ with } |S| = j \text{ do} \\
& \quad \quad \text{foreach } v \in S \text{ do} \\
& \quad \quad \quad \text{OPT}[S, v] \leftarrow \min \{ \text{OPT}[S - v, u] + c(u, v) | u \in S - v \} \\
\text{return } \min \{ \text{OPT}[V - s, v] + c(v, s) | v \in V - s \}
\end{align*}
\]

- A shortest tour can be produced by backtracking the DP table (as usual).

Analysis.

■ A shortest tour can be produced by backtracking the DP table (as usual).
TSP – Dynamic programming

Pseudocode.

Algorithm Bellmann-Held-Karp(G, c)

foreach $v \in V - s$ do
 \[\text{OPT}\{\{v\}, v\} = c(s, v) \]

for $j \leftarrow 2$ to $n - 1$ do
 foreach $S \subseteq V - s$ with $|S| = j$ do
 foreach $v \in S$ do
 \[\text{OPT}\{S, v\} \leftarrow \min\{ \text{OPT}\{S - v, u\} + c(u, v) \mid u \in S - v \} \]

return $\min\{ \text{OPT}\{V - s, v\} + c(v, s) \mid v \in V - s \}$

- A shortest tour can be produced by backtracking the DP table (as usual).

Analysis.

$\mathcal{O}(n)$
TSP – Dynamic programming

Pseudocode.

Algorithm Bellmann-Held-Karp \((G, c)\)

\[
\text{foreach } v \in V - s \text{ do} \\
\quad \text{OPT}\[\{v\}, v\] = c(s, v)
\]

\[
\begin{aligned}
\text{for } j \leftarrow 2 \text{ to } n - 1 \text{ do} \\
\quad \text{foreach } S \subseteq V - s \text{ with } |S| = j \text{ do} \\
\qquad \text{foreach } v \in S \text{ do} \\
\qquad \quad \text{OPT}\[S, v\] \leftarrow \min \{ \text{OPT}\[S - v, u\] + c(u, v) \mid u \in S - v \}
\end{aligned}
\]

\[
\text{return } \min \{ \text{OPT}\[V - s, v\] + c(v, s) \mid v \in V - s \}
\]

- A shortest tour can be produced by backtracking the DP table (as usual).

Analysis.

\[O(2^n)\]
TSP – Dynamic programming

Pseudocode.

Algorithm Bellmann-Held-Karp(G, c)

\[
\text{foreach } v \in V - s \text{ do} \\
\quad \text{OPT}[\{v\}, v] = c(s, v)
\]

\[
\text{for } j \leftarrow 2 \text{ to } n - 1 \text{ do} \\
\quad \text{foreach } S \subseteq V - s \text{ with } |S| = j \text{ do} \\
\quad \quad \text{foreach } v \in S \text{ do} \\
\quad \quad \quad \quad \text{OPT}[S, v] \leftarrow \min \{ \text{OPT}[S - v, u] + c(u, v) \mid u \in S - v \} \\
\]

\[
\text{return } \min \{ \text{OPT}[V - s, v] + c(v, s) \mid v \in V - s \}
\]

- A shortest tour can be produced by backtracking the DP table (as usual).

Analysis.

- innermost loop executes $O(2^n \cdot n)$ iterations
- each takes $O(n)$ time
- total of $O(2^n n^2) = O^*(2^n)$

\[
\begin{align*}
\text{innermost loop executes} & \quad O(2^n \cdot n) \text{ iterations} \\
\text{each takes} & \quad O(n) \text{ time} \\
\text{total of} & \quad O(2^n n^2) = O^*(2^n)
\end{align*}
\]
TSP – Dynamic programming

Pseudocode.

Algorithm Bellmann-Held-Karp(G, c)

1. **foreach** $v \in V - s$ do

 $OPT[\{v\}, v] = c(s, v)$

2. **for** $j \leftarrow 2$ to $n - 1$ do

 foreach $S \subseteq V - s$ with $|S| = j$ do

 foreach $v \in S$ do

 $OPT[S, v] \leftarrow \min \{ OPT[S - v, u] + c(u, v) \mid u \in S - v \}$

3. **return** $\min \{ OPT[V - s, v] + c(v, s) \mid v \in V - s \}$

- A shortest tour can be produced by backtracking the DP table (as usual).

Analysis.

- innermost loop executes $O(2^n \cdot n)$ iterations
- each takes $O(n)$ time
- total of $O(2^n n^2) = O^*(2^n)$
- Space usage in $\Theta(2^n \cdot n)$
TSP – Dynamic programming

Pseudocode.

Algorithm Bellmann-Held-Karp\((G, c)\)

\[
\text{foreach } v \in V - s \text{ do} \quad \text{OPT}[^\{v\}, v] = c(s, v)
\]

\[
\text{for } j \leftarrow 2 \text{ to } n - 1 \text{ do} \quad \{O(2^n)\}
\]

\[
\text{foreach } S \subseteq V - s \text{ with } |S| = j \text{ do} \quad \{O(n)\}
\]

\[
\text{foreach } v \in S \text{ do} \quad \text{OPT}[^S, v] \leftarrow \min \{ \text{OPT}[^{S - v}, u] + c(u, v) \mid u \in S - v \}
\]

\[
\text{return } \min \{ \text{OPT}[^{V - s}, v] + c(v, s) \mid v \in V - s \}
\]

- A shortest tour can be produced by backtracking the DP table (as usual).

Analysis.

- innermost loop executes \(O(2^n \cdot n)\) iterations
- each takes \(O(n)\) time
- total of \(O(2^n n^2) = O^*(2^n)\)
- Space usage in \(\Theta(2^n \cdot n)\)
- Or actually better? What table values do we need to store?
TSP – Discussion

- DP algorithm that runs in $O^*(2^n)$ time and $O(2^n \cdot n)$ space
- Brute-force runs in $2^{O(n \log n)}$ time
 ⇒ Sacrifice space for speedup
TSP – Discussion

- DP algorithm that runs in $\mathcal{O}^*(2^n)$ time and $\mathcal{O}(2^n \cdot n)$ space
- Brute-force runs in $2^{\mathcal{O}(n \log n)}$ time
 ⇒ Sacrifice space for speedup
- Many variants of TSP: symmetric, asymmetric, metric, vehicle routing problems, . . .
TSP – Discussion

- DP algorithm that runs in $O^*(2^n)$ time and $O(2^n \cdot n)$ space
- Brute-force runs in $2^{O(n \log n)}$ time
 \[\Rightarrow\text{ Sacrifice space for speedup}\]
- Many variants of TSP: symmetric, asymmetric, metric, vehicle routing problems, . . .
- Metric TSP can easily be 2-approximated. (Do you remember how?)
- Eucledian TSP is considered in the course Approximation Algorithms.
TSP – Discussion

- DP algorithm that runs in $\mathcal{O}^*(2^n)$ time and $\mathcal{O}(2^n \cdot n)$ space
- Brute-force runs in $2^{\mathcal{O}(n \log n)}$ time
 \[\Rightarrow \text{Sacrifice space for speedup} \]
- Many variants of TSP: symmetric, asymmetric, metric, vehicle routing problems, . . .
- Metric TSP can easily be 2-approximated. (Do you remember how?)
- Euclidean TSP is considered in the course Approximation Algorithms.
- In practice, one successful approach is to start with a greedily computed Hamiltonian cycle and then use 2-OPT and 3-OPT swaps to improve it.
Maximum Independent Set (MIS)

Input. Graph $G = (V, E)$ with n vertices.
Maximum Independent Set (MIS)

Input. Graph $G = (V, E)$ with n vertices.

Output. Maximum size independent set, i.e., a largest set $U \subseteq V$, such that no pair of vertices in U are adjacent in G.
Maximum Independent Set (MIS)

Input. Graph $G = (V, E)$ with n vertices.

Output. Maximum size *independent* set, i.e., a largest set $U \subseteq V$, such that no pair of vertices in U are adjacent in G.

Brute-force.
- Try all subsets of V.
- Runtime: $O(2^n \cdot n)$
Maximum Independent Set (MIS)

Input. Graph $G = (V, E)$ with n vertices.

Output. Maximum size independent set, i.e., a largest set $U \subseteq V$, such that no pair of vertices in U are adjacent in G.

Naive MIS branching.
- Take a vertex v or don’t take it.

Brute-force.
- Try all subets of V.
- Runtime: $O(2^n \cdot n)$
Maximum Independent Set (MIS)

Input. Graph $G = (V, E)$ with n vertices.

Output. Maximum size independent set, i.e., a largest set $U \subseteq V$, such that no pair of vertices in U are adjacent in G.

Brute-force.
- Try all subsets of V.
- Runtime: $O(2^n \cdot n)$

Naive MIS branching.
- Take a vertex v or don’t take it.

Algorithm NaiveMIS(G)

```plaintext
if $V = \emptyset$ then
    return 0

$v \leftarrow$ arbitrary vertex in $V(G)$

return max\{1 + NaiveMIS($G - N(v) - \{v\}$),
            NaiveMIS($G - \{v\}$)\}
```
3 + 1 = 4
3 + 2 = 5
3 + 3 = 6
1 + 1 = 2
1 + 0 = 1
2 + 1 = 3
1 + 2 = 3
MIS – Smarter branching

Lemma.
Let U be a maximum independent set in G. Then for each $v \in V$:
1. $v \in U \Rightarrow N(v) \cap U = \emptyset$
2. $v \notin U \Rightarrow |N(v) \cap U| \geq 1$
Thus, $N[v] := N(v) \cup \{v\}$ contains some $y \in U$ and no other vertex of $N[y]$ is in U.
MIS – Smarter branching

Lemma.
Let U be a maximum independent set in G. Then for each $v \in V$:
1. $v \in U \implies N(v) \cap U = \emptyset$
2. $v \notin U \implies |N(v) \cap U| \geq 1$
Thus, $N[v] := N(v) \cup \{v\}$ contains some $y \in U$ and no other vertex of $N[y]$ is in U.

Smarter MIS branching.
- For some vertex v, branch on vertices in $N[v]$.
MIS – Smarter branching

Lemma.
Let \(U \) be a maximum independent set in \(G \). Then for each \(v \in V \):
1. \(v \in U \Rightarrow N(v) \cap U = \emptyset \)
2. \(v \notin U \Rightarrow |N(v) \cap U| \geq 1 \)
Thus, \(N[v] := N(v) \cup \{v\} \) contains some \(y \in U \) and no other vertex of \(N[y] \) is in \(U \).

Smarter MIS branching.

- For some vertex \(v \), branch on vertices in \(N[v] \).

Algorithm MIS\((G)\)

\[
\text{if } V = \emptyset \text{ then return } 0 \\
\text{return } 1 + \max\{\text{MIS}(G - N[y]) | y \in N[v]\}
\]
MIS – Smarter branching

Lemma.
Let U be a maximum independent set in G. Then for each $v \in V$:
1. $v \in U \Rightarrow N(v) \cap U = \emptyset$
2. $v \notin U \Rightarrow |N(v) \cap U| \geq 1$
Thus, $N[v] := N(v) \cup \{v\}$ contains some $y \in U$ and no other vertex of $N[y]$ is in U.

Smarter MIS branching.

- For some vertex v, branch on vertices in $N[v]$.

Algorithm MIS(G)

```
if $V = \emptyset$ then
    return 0
$v \leftarrow$ vertex of minimum degree in $V(G)$
return $1 + \max\{\operatorname{MIS}(G - N[y]) \mid y \in N[v]\}$
```

- Correctness follows from Lemma.
- We prove a runtime of $\mathcal{O}^*(3^{n/3}) = \mathcal{O}^*(1.4423^n)$.
MIS – Branching analysis

Execution corresponds to a **search tree** whose vertices are labeled with the input of the respective recursive call.
MIS – Branching analysis

Execution corresponds to a search tree whose vertices are labeled with the input of the respective recursive call.

Let $B(n)$ be the maximum number of leaves of a search tree for a graph with n vertices.
MIS – Branching analysis

Execution corresponds to a search tree whose vertices are labeled with the input of the respective recursive call.

- Let $B(n)$ be the maximum number of leaves of a search tree for a graph with n vertices.
- Search-tree has height $\leq n$.
MIS – Branching analysis

Execution corresponds to a search tree whose vertices are labeled with the input of the respective recursive call.

- Let $B(n)$ be the maximum number of leaves of a search tree for a graph with n vertices.
- Search-tree has height $\leq n$.

\Rightarrow The algorithm’s runtime is

$$T(n) \in O^*(nB(n)) = O^*(B(n)).$$
MIS – Branching analysis

Execution corresponds to a search tree whose vertices are labeled with the input of the respective recursive call.

- Let $B(n)$ be the maximum number of leaves of a search tree for a graph with n vertices.
- Search-tree has height $\leq n$.
- The algorithm’s runtime is

 $$T(n) \in O^*(nB(n)) = O^*(B(n)).$$

- Let’s consider an example run.
1 + ?

1 + 1
1 + 2

1 + 1

1 + 1

1 + 1

1 + ?
1 + 2

2

A

B

C

1 + 1

1 + 1

1 + 1

1 + 1

1 + 1

A

B

C

1 + ?

1 + 0

1 + 1

A

B
MIS – Runtime analysis

For a worst-case n-vertex graph G ($n \geq 1$):

$$B(n) \leq \sum_{y \in N[v]} B(n - (\deg(y) + 1))$$

where v is a minimum degree vertex of G, and we note that $B(n') \leq B(n)$ for any $n' \leq n$.
MIS – Runtime analysis

For a worst-case \(n \)-vertex graph \(G \) (\(n \geq 1 \)):

\[
B(n) \leq \sum_{y \in N[v]} B(n - (\deg(y) + 1))
\]

where \(v \) is a minimum degree vertex of \(G \), and we note that \(B(n') \leq B(n) \) for any \(n' \leq n \).
MIS – Runtime analysis

For a worst-case n-vertex graph G ($n \geq 1$):

$$B(n) \leq \sum_{y \in N[v]} B(n - (\deg(y) + 1)) \leq (\deg(v) + 1) \cdot B(n - (\deg(v) + 1))$$

where v is a minimum degree vertex of G, and we note that $B(n') \leq B(n)$ for any $n' \leq n$.
MIS – Runtime analysis

For a worst-case n-vertex graph G ($n \geq 1$):

$$B(n) \leq \sum_{y \in N[v]} B(n - (\deg(y) + 1)) \leq (\deg(v) + 1) \cdot B(n - (\deg(v) + 1))$$

where v is a minimum degree vertex of G, and we note that $B(n') \leq B(n)$ for any $n' \leq n$.

We prove by induction that $B(n) \leq 3^{n/3}$.
MIS – Runtime analysis

For a worst-case n-vertex graph G ($n \geq 1$):

$$B(n) \leq \sum_{y \in N[v]} B(n - (\deg(y) + 1)) \leq (\deg(v) + 1) \cdot B(n - (\deg(v) + 1))$$

where v is a minimum degree vertex of G, and we note that $B(n') \leq B(n)$ for any $n' \leq n$.

We prove by induction that $B(n) \leq 3^{n/3}$.

- Base case: $B(0) = 1 \leq 3^{0/3}$
MIS – Runtime analysis

For a worst-case \(n \)-vertex graph \(G \) \((n \geq 1)\):

\[
B(n) \leq \sum_{y \in N[v]} B(n - (\text{deg}(y) + 1)) \leq (\text{deg}(v) + 1) \cdot B(n - (\text{deg}(v) + 1))
\]

where \(v \) is a minimum degree vertex of \(G \), and we note that \(B(n') \leq B(n) \) for any \(n' \leq n \).

We prove by induction that \(B(n) \leq 3^{n/3} \).

- **Base case:** \(B(0) = 1 \leq 3^{0/3} \)
- **Hypothesis:** for \(n \geq 1 \), set \(s = \text{deg}(v) + 1 \) in the above inequality

\[
B(n) \leq s \cdot B(n - s)
\]
MIS – Runtime analysis

For a worst-case n-vertex graph G ($n \geq 1$):

$$B(n) \leq \sum_{y \in N[v]} B(n - (\text{deg}(y) + 1)) \leq (\text{deg}(v) + 1) \cdot B(n - (\text{deg}(v) + 1))$$

where v is a minimum degree vertex of G, and we note that $B(n') \leq B(n)$ for any $n' \leq n$.

We prove by induction that $B(n) \leq 3^{n/3}$.

- **Base case:** $B(0) = 1 \leq 3^{0/3}$
- **Hypothesis:** for $n \geq 1$, set $s = \text{deg}(v) + 1$
 in the above inequality

$$B(n) \leq s \cdot B(n - s) \leq s \cdot 3^{(n-s)/3}$$
MIS – Runtime analysis

For a worst-case n-vertex graph G ($n \geq 1$):

$$B(n) \leq \sum_{y \in N[v]} B(n - (\deg(y) + 1)) \leq (\deg(v) + 1) \cdot B(n - (\deg(v) + 1))$$

where v is a minimum degree vertex of G, and we note that $B(n') \leq B(n)$ for any $n' \leq n$.

We prove by induction that $B(n) \leq 3^{n/3}$.

- **Base case:** $B(0) = 1 \leq 3^{0/3}$
- **Hypothesis:** for $n \geq 1$, set $s = \deg(v) + 1$ in the above inequality

$$B(n) \leq s \cdot B(n - s) \leq s \cdot 3^{(n-s)/3} = \frac{s}{3^{s/3}} \cdot 3^{n/3}$$
MIS – Runtime analysis

For a worst-case n-vertex graph G ($n \geq 1$):

$$B(n) \leq \sum_{y \in N[v]} B(n - (\deg(y) + 1)) \leq (\deg(v) + 1) \cdot B(n - (\deg(v) + 1))$$

where v is a minimum degree vertex of G, and we note that $B(n') \leq B(n)$ for any $n' \leq n$.

We prove by induction that $B(n) \leq 3^{n/3}$.

- **Base case:** $B(0) = 1 \leq 3^{0/3}$
- **Hypothesis:** for $n \geq 1$, set $s = \deg(v) + 1$
 in the above inequality

$$B(n) \leq s \cdot B(n - s) \leq s \cdot 3^{(n-s)/3} = \frac{s}{3^{s/3}} \cdot 3^{n/3} \leq 3^{n/3}$$
MIS – Runtime analysis

For a worst-case n-vertex graph G ($n \geq 1$):

$$B(n) \leq \sum_{y \in N[v]} B(n - (\deg(y) + 1)) \leq (\deg(v) + 1) \cdot B(n - (\deg(v) + 1))$$

where v is a minimum degree vertex of G, and we note that $B(n') \leq B(n)$ for any $n' \leq n$.

We prove by induction that $B(n) \leq 3^{n/3}$.

- **Base case:** $B(0) = 1 \leq 3^{0/3}$
- **Hypothesis:** for $n \geq 1$, set $s = \deg(v) + 1$ in the above inequality

$$B(n) \leq s \cdot B(n - s) \leq s \cdot 3^{(n-s)/3} = \frac{s}{3^{s/3}} \cdot 3^{n/3} \leq 3^{n/3}$$
MIS – Runtime analysis

For a worst-case n-vertex graph G ($n \geq 1$):

$$B(n) \leq \sum_{y \in N[v]} B(n - (\deg(y) + 1)) \leq (\deg(v) + 1) \cdot B(n - (\deg(v) + 1))$$

where v is a minimum degree vertex of G, and we note that $B(n') \leq B(n)$ for any $n' \leq n$.

We prove by induction that $B(n) \leq 3^{n/3}$.

- **Base case:** $B(0) = 1 \leq 3^{0/3}$
- **Hypothesis:** for $n \geq 1$, set $s = \deg(v) + 1$ in the above inequality

$$B(n) \leq s \cdot B(n - s) \leq s \cdot 3^{(n-s)/3} = \frac{s}{3^{s/3}} \cdot 3^{n/3} \leq 3^{n/3}$$

$$B(n) \in O^*(\sqrt[3]{3^n}) \subset O^*(1.44225^n)$$
MIS – Discussion

- Smarter branching leads to $O^*(1.44225^n)$-time algorithm,
- compared to brute-force, which runs in $O^*(2^n)$ time.
MIS – Discussion

- Smarter branching leads to $O^*(1.44225^n)$-time algorithm,
- compared to brute-force, which runs in $O^*(2^n)$ time.
- Algorithms for MIS known that run in $O^*(1.2202^n)$ time and polynomial space,
- and in $O^*(1.2109^n)$ time and exponential space.
MIS – Discussion

- Smarter branching leads to $O^*(1.44225^n)$-time algorithm,
- compared to brute-force, which runs in $O^*(2^n)$ time.
- Algorithms for MIS known that run in $O^*(1.2202^n)$ time and polynomial space,
- and in $O^*(1.2109^n)$ time and exponential space.
- What vertices are always in a MIS?
- What vertices can we safely assume are in a MIS?
- Advanced case analysis in [Fomin, Kratsch Ch 2.3] leading to a $O^*(1.2786^n)$-time algorithm.
MIS – Discussion

- Smarter branching leads to $\mathcal{O}^*(1.44225^n)$-time algorithm,
- compared to brute-force, which runs in $\mathcal{O}^*(2^n)$ time.
- Algorithms for MIS known that run in $\mathcal{O}^*(1.2202^n)$ time and polynomial space,
- and in $\mathcal{O}^*(1.2109^n)$ time and exponential space.
- What vertices are always in a MIS?
- What vertices can we safely assume are in a MIS?
- Advanced case analysis in [Fomin, Kratsch Ch 2.3] leading to a $\mathcal{O}^*(1.2786^n)$-time algorithm.

Exercise: Edge-branching for MIS
Literature

Main source:
- [Fomin, Kratsch Ch1] “Exact Exponential Algorithms”

Referenced papers:
- [ADMV ’15] Classic Nintendo Games are (Computationally) Hard
- [Mann ’17] The Top Eight Misconceptions about NP-Hardness