Approximation Algorithms

Lecture 6:
k-CENTER via Parametric Pruning

Part I:
Metric k-CENTER

Alexander Wolff
Winter 2022/23
Metric k-Center

Given: A complete graph $G = (V, E)$ with edge costs $c: E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality and a natural number $k \leq |V|$.

For each vertex set $S \subseteq V$, $c(v, S)$ is the cost of the cheapest edge from v to a vertex in S.

Find: A k-element vertex set S such that $\text{cost}(S) := \max_{v \in V} c(v, S)$ is minimized.
Metric k-Center

Given: A complete graph $G = (V, E)$ with edge costs $c : E \rightarrow \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality and a natural number $k \leq |V|$. For each vertex set $S \subseteq V$, $c(v, S)$ is the cost of the cheapest edge from v to a vertex in S. Find: An k-element vertex set S such that $\text{cost}(S) := \max_{v \in V} c(v, S)$ is minimized.
Metric k-Center

Given: A complete graph $G = (V, E)$ with edge costs $c: E \rightarrow \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

Find: A k-element vertex set S such that $\text{cost}(S) := \max_{v \in V} c(v, S)$ is minimized.
Metric k-Center

Given: A complete graph $G = (V, E)$ with edge costs $c : E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

vertex set $S \subseteq V$.
Metric \(k \)-Center

Given: A complete graph \(G = (V, E) \) with edge costs \(c : E \rightarrow \mathbb{Q}_{\geq 0} \) satisfying the triangle inequality

vertex set \(S \subseteq V \).
Metric k-Center

Given: A complete graph $G = (V, E)$ with edge costs $c : E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

For each vertex set $S \subseteq V$, $c(v, S)$ is the cost of the cheapest edge from v to a vertex in S.
Metric k-Center

Given: A complete graph $G = (V, E)$ with edge costs $c : E \rightarrow \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

For each vertex set $S \subseteq V$, $c(v, S)$ is the cost of the cheapest edge from v to a vertex in S.
Metric k-Center

Given: A complete graph $G = (V, E)$ with edge costs $c : E \rightarrow \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality.

For each vertex set $S \subseteq V$, $c(v, S)$ is the cost of the cheapest edge from v to a vertex in S.

Find: A k-element vertex set S such that $\text{cost}(S) := \max_{v \in V} c(v, S)$ is minimized.
Metric \(k \)-Center

Given: A complete graph \(G = (V, E) \) with edge costs \(c : E \to \mathbb{Q}_{\geq 0} \) satisfying the triangle inequality.

For each vertex set \(S \subseteq V \), \(c(v, S) \) is the cost of the cheapest edge from \(v \) to a vertex in \(S \).

Find: An \(k \)-element vertex set \(S \) such that \(\text{cost}(S) := \max_{v \in V} c(v, S) \) is minimized.
Metric k-Center

Given: A complete graph $G = (V, E)$ with edge costs $c: E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality.

For each vertex set $S \subseteq V$, $c(v, S)$ is the cost of the cheapest edge from v to a vertex in S.

Find: A k-element vertex set S such that $\text{cost}(S) := \max_{v \in V} c(v, S)$ is minimized.
Metric k-Center

Given: A complete graph $G = (V, E)$ with edge costs $c : E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality.

For each vertex set $S \subseteq V$, $c(v, S)$ is the cost of the cheapest edge from v to a vertex in S.

Find: A k-element vertex set S such that $\text{cost}(S) := \max_{v \in V} c(v, S)$ is minimized.
Metric k-Center

Given: A complete graph $G = (V, E)$ with edge costs $c: E \rightarrow \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality.

For each vertex set $S \subseteq V$, $c(v, S)$ is the cost of the cheapest edge from v to a vertex in S.

Find: A k-element vertex set S such that $\text{cost}(S) := \max_{v \in V} c(v, S)$ is minimized.
Metric k-Center

Given: A complete graph $G = (V, E)$ with edge costs $c : E \rightarrow \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

For each vertex set $S \subseteq V$, $c(v, S)$ is the cost of the cheapest edge from v to a vertex in S.

Find: $A k$-element vertex set S such that $\text{cost}(S) := \max_{v \in V} c(v, S)$ is minimized.
Metric k-Center

Given: A complete graph $G = (V, E)$ with edge costs $c : E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality

For each vertex set $S \subseteq V$, $c(v, S)$ is the cost of the cheapest edge from v to a vertex in S.

![Diagram showing S_1, S_2, and S_3.]
Metric k-Center

Given: A complete graph $G = (V, E)$ with edge costs $c: E \rightarrow \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality.

For each vertex set $S \subseteq V$, $c(v, S)$ is the cost of the cheapest edge from v to a vertex in S.

Find: A k-element vertex set S such that $\text{cost}(S) := \max_{v \in V} c(v, S)$ is minimized.
Metric k-Center

Given: A complete graph $G = (V, E)$ with edge costs $c : E \rightarrow \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality.

For each vertex set $S \subseteq V$, $c(v, S)$ is the cost of the cheapest edge from v to a vertex in S.

Find: A k-element vertex set S such that $\text{cost}(S) := \max_{v \in V} c(v, S)$ is minimized.
Metric k-Center

Given: A complete graph $G = (V, E)$ with edge costs $c : E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality.

For each vertex set $S \subseteq V$, $c(v, S)$ is the cost of the cheapest edge from v to a vertex in S.

\[
\text{cost}(S) := \max_{v \in V} c(v, S)
\]
Metric k-Center

Given: A complete graph $G = (V, E)$ with edge costs $c : E \rightarrow \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality.

For each vertex set $S \subseteq V$, $c(v, S)$ is the cost of the cheapest edge from v to a vertex in S.

Find: A k-element vertex set S such that $\text{cost}(S) := \max_{v \in V} c(v, S)$ is minimized.
Metric k-Center

Given: A complete graph $G = (V, E)$ with edge costs $c : E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality and a natural number $k \leq |V|$. For each vertex set $S \subseteq V$, $c(v, S)$ is the cost of the cheapest edge from v to a vertex in S.

Find: A k-element vertex set S such that $\text{cost}(S) := \max_{v \in V} c(v, S)$ is minimized.
Metric k-Center

Given: A complete graph $G = (V, E)$ with edge costs $c : E \rightarrow \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality and a natural number $k \leq |V|$.

For each vertex set $S \subseteq V$, $c(v, S)$ is the cost of the cheapest edge from v to a vertex in S.

Find: A k-element vertex set S such that $\text{cost}(S) := \max_{v \in V} c(v, S)$ is minimized.
Metric k-Center

Given: A complete graph $G = (V, E)$ with edge costs $c: E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality and a natural number $k \leq |V|$. For each vertex set $S \subseteq V$, $c(v, S)$ is the cost of the cheapest edge from v to a vertex in S.

Find: A k-element vertex set S such that $\text{cost}(S) := \max_{v \in V} c(v, S)$ is minimized.
Metric k-Center

Given: A complete graph $G = (V, E)$ with edge costs $c: E \to \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality and a natural number $k \leq |V|$.

For each vertex set $S \subseteq V$, $c(v, S)$ is the cost of the cheapest edge from v to a vertex in S.

Find: A k-element vertex set S such that $\text{cost}(S) := \max_{v \in V} c(v, S)$ is minimized.
Metric k-Center

Given: A complete graph $G = (V, E)$ with edge costs $c : E \rightarrow \mathbb{Q}_{\geq 0}$ satisfying the triangle inequality and a natural number $k \leq |V|$. For each vertex set $S \subseteq V$, $c(v, S)$ is the cost of the cheapest edge from v to a vertex in S.

Find: A k-element vertex set S such that $\text{cost}(S) := \max_{v \in V} c(v, S)$ is minimized.
Approximation Algorithms

Lecture 6:
k-CENTER via Parametric Pruning

Part II:
Parametric Pruning
Parametric Pruning

Let \(E = \{e_1, \ldots, e_m\} \) with \(c(e_1) \leq \ldots \leq c(e_m) \).

Suppose we know that \(\text{OPT} = c(e_j) \).

\(G \)
Let $E = \{e_1, \ldots, e_m\}$ with $c(e_1) \leq \ldots \leq c(e_m)$.
Parametric Pruning

Let $E = \{e_1, \ldots, e_m\}$ with $c(e_1) \leq \ldots \leq c(e_m)$. Suppose we know that $\text{OPT} = c(e_j)$.
Let $E = \{e_1, \ldots, e_m\}$ with $c(e_1) \leq \ldots \leq c(e_m)$. Suppose we know that $\text{OPT} = c(e_j)$.

![Diagram of a graph G with vertices s_1, s_2, s_3 and edge e_j.]
Parametric Pruning

Let $E = \{e_1, \ldots, e_m\}$ with $c(e_1) \leq \ldots \leq c(e_m)$. Suppose we know that $\text{OPT} = c(e_j)$.

$$G := (V, \{e_1, \ldots, e_j\})$$

$$G_j := (V, \{e_1, \ldots, e_j\})$$
Parametric Pruning

Let $E = \{e_1, \ldots, e_m\}$ with $c(e_1) \leq \ldots \leq c(e_m)$. Suppose we know that $\text{OPT} = c(e_j)$.

\[G_j := (V, \{e_1, \ldots, e_j\}) \]

\[s_1 \quad s_2 \quad s_3 \]

\[e_j \]

\[G \]

\[\text{... try each } G_j. \]
... try each G_j.

Def.

$G_j := (V, \{e_1, \ldots, e_j\})$
...try each G_j.

Def. A vertex set D of a graph H is **dominating** if each vertex is either in D or adjacent to a vertex in D.

$$G_j := (V, \{e_1, \ldots, e_j\})$$
... try each G_j.

Def. A vertex set D of a graph H is **dominating** if each vertex is either in D or adjacent to a vertex in D. The cardinality of a smallest dominating set in H is denoted by $\text{dom}(H)$.

$$G_j := (V, \{e_1, \ldots, e_j\})$$
...try each G_j.

Def. A vertex set D of a graph H is **dominating** if each vertex is either in D or adjacent to a vertex in D. The cardinality of a smallest dominating set in H is denoted by $\text{dom}(H)$.

\[
G_j := (V, \{e_1, \ldots, e_j\})
\]

\[
\text{dom}(G_j) \leq k
\]
...try each G_j.

Def. A vertex set D of a graph H is **dominating** if each vertex is either in D or adjacent to a vertex in D. The cardinality of a smallest dominating set in H is denoted by $\text{dom}(H)$.

\[
\text{dom}(G_j) \leq k
\]

$$G_j := (V, \{e_1, \ldots, e_j\})$$

...but computing $\text{dom}(H)$ is NP-hard.
Approximation Algorithms

Lecture 6:
\(k\)-Center via Parametric Pruning

Part III:
Square of a Graph
Square of a Graph

Idea: Find a small dominating set in a "coarsened" G_j.

Square of a Graph

Idea: Find a small dominating set in a “coarsened” G_j.

Def. The square H^2 of a graph H has the same vertex set as H.
Square of a Graph

Idea: Find a small dominating set in a “coarsened” G_j.

Def. The square H^2 of a graph H has the same vertex set as H.
Square of a Graph

Idea: Find a small dominating set in a “coarsened” G_j.

Def. The square H^2 of a graph H has the same vertex set as H. Two vertices $u \neq v$ are adjacent in H^2 iff they are within distance at most two in H.
Square of a Graph

Idea: Find a small dominating set in a “coarsened” G_j.

Def. The square H^2 of a graph H has the same vertex set as H. Two vertices $u \neq v$ are adjacent in H^2 iff they are within distance at most two in H.
Square of a Graph

Idea: Find a small dominating set in a “coarsened” G_j.

Def. The **square** H^2 of a graph H has the same vertex set as H. Two vertices $u \neq v$ are adjacent in H^2 iff they are within distance at most **two** in H.

![Diagram showing a graph G_j and its square G_j^2.]
Square of a Graph

Idea: Find a small dominating set in a “coarsened” G_j.

Def. The **square** H^2 of a graph H has the same vertex set as H. Two vertices $u \neq v$ are adjacent in H^2 iff they are within distance at most two in H.

![Diagram of a graph and its square]
Square of a Graph

Idea: Find a small dominating set in a “coarsened” G_j.

Def. The **square** H^2 of a graph H has the same vertex set as H. Two vertices $u \neq v$ are adjacent in H^2 iff they are within distance at most **two** in H.

![Diagram](image)
Square of a Graph

Idea: Find a small dominating set in a “coarsened” G_j.

Def. The *square* H^2 of a graph H has the same vertex set as H. Two vertices $u \neq v$ are adjacent in H^2 iff they are within distance at most **two** in H.
Square of a Graph

Idea: Find a small dominating set in a “coarsened” G_j.

Def. The square H^2 of a graph H has the same vertex set as H. Two vertices $u \neq v$ are adjacent in H^2 iff they are within distance at most two in H.
Square of a Graph

Idea: Find a small dominating set in a “coarsened” G_j.

Def. The **square** H^2 of a graph H has the same vertex set as H. Two vertices $u \neq v$ are adjacent in H^2 iff they are within distance at most two in H.
Square of a Graph

Idea: Find a small dominating set in a “coarsened” G_j.

Def. The square H^2 of a graph H has the same vertex set as H. Two vertices $u \neq v$ are adjacent in H^2 iff they are within distance at most two in H.

![Diagram of the square of a graph H^2]
Square of a Graph

Idea: Find a small dominating set in a “coarsened” G_j.

Def. The square H^2 of a graph H has the same vertex set as H. Two vertices $u \neq v$ are adjacent in H^2 iff they are within distance at most two in H.

![Diagram of a graph G_j and its square G_j^2]
Square of a Graph

Idea: Find a small dominating set in a “coarsened” G_j.

Def. The square H^2 of a graph H has the same vertex set as H. Two vertices $u \neq v$ are adjacent in H^2 iff they are within distance at most two in H.

![Diagram of a graph and its square]

G_j G^2_j
Square of a Graph

Idea: Find a small dominating set in a “coarsened” G_j.

Def. The *square* H^2 of a graph H has the same vertex set as H. Two vertices $u \neq v$ are adjacent in H^2 iff they are within distance at most two in H.
Square of a Graph

Idea: Find a small dominating set in a “coarsened” G_j.

Def. The *square* H^2 of a graph H has the same vertex set as H. Two vertices $u \neq v$ are adjacent in H^2 iff they are within distance at most two in H.
Square of a Graph

Idea: Find a small dominating set in a “coarsened” G_j.

Def. The square H^2 of a graph H has the same vertex set as H. Two vertices $u \neq v$ are adjacent in H^2 iff they are within distance at most two in H.

Obs. A dominating set with at most k elements in G_j^2 is a 2-approximation for metric k-Center.
Square of a Graph

Idea: Find a small dominating set in a “coarsened” G_j.

Def. The square H^2 of a graph H has the same vertex set as H. Two vertices $u \neq v$ are adjacent in H^2 iff they are within distance at most two in H.

Obs. A dominating set with at most k elements in G_j^2 is a 2-approximation for metric k-Center.

Why?
Square of a Graph

Idea: Find a small dominating set in a “coarsened” G_j.

Def. The square H^2 of a graph H has the same vertex set as H. Two vertices $u \neq v$ are adjacent in H^2 iff they are within distance at most two in H.

Obs. A dominating set with at most k elements in G_j^2 is a 2-approximation for metric k-Center.

Why? $\max_{e \in E(G_j)} c(e) = \text{OPT}$!
Independent Sets

Def. A vertex set I in a graph is called \textbf{independent} (or \textbf{stable}) if no pair of vertices in I forms an edge.
Def. A vertex set I in a graph is called **independent** (or **stable**) if no pair of vertices in I forms an edge.
Independent Sets

Def. A vertex set I in a graph is called **independent** (or **stable**) if no pair of vertices in I forms an edge. An independent set is called **maximal** if no superset of it is independent.
Independent Sets

Def. A vertex set I in a graph is called \textbf{independent} (or \textit{stable}) if no pair of vertices in I forms an edge. An independent set is called \textbf{maximal} if no superset of it is independent.
Independent Sets

Def. A vertex set I in a graph is called **independent** (or **stable**) if no pair of vertices in I forms an edge. An independent set is called **maximal** if no superset of it is independent.
Independent Sets

Def. A vertex set I in a graph is called **independent** (or **stable**) if no pair of vertices in I forms an edge. An independent set is called **maximal** if no superset of it is independent.
Independent Sets

Def. A vertex set I in a graph is called independent (or stable) if no pair of vertices in I forms an edge. An independent set is called maximal if no superset of it is independent.
Independent Sets

Def. A vertex set I in a graph is called **independent** (or **stable**) if no pair of vertices in I forms an edge. An independent set is called **maximal** if no superset of it is independent.
Independent Sets

Def. A vertex set I in a graph is called **independent** (or **stable**) if no pair of vertices in I forms an edge. An independent set is called **maximal** if no superset of it is independent.
Independent Sets

Def. A vertex set I in a graph is called independent (or stable) if no pair of vertices in I forms an edge. An independent set is called maximal if no superset of it is independent.
Independent Sets

Def. A vertex set I in a graph is called independent \textit{(or stable)} if no pair of vertices in I forms an edge. An independent set is called maximal if no superset of it is independent.
Independent Sets

Def. A vertex set I in a graph is called independent (or stable) if no pair of vertices in I forms an edge. An independent set is called maximal if no superset of it is independent.
Independent Sets

Def. A vertex set I in a graph is called **independent** (or **stable**) if no pair of vertices in I forms an edge. An independent set is called **maximal** if no superset of it is independent.

Obs. Maximal independent sets are dominating sets :-)

I
Lemma. For a graph H and an independent set I in H^2, $|I| \leq \text{dom}(H)$.
Independent Sets in H^2

Lemma. For a graph H and an independent set I in H^2, $|I| \leq \text{dom}(H)$.

What does a dominating set of H look like in H^2?
Independent Sets in H^2

Lemma. For a graph H and an independent set I in H^2, $|I| \leq \text{dom}(H)$.

What does a dominating set of H look like in H^2?
Independent Sets in H^2

Lemma. For a graph H and an independent set I in H^2, $|I| \leq \text{dom}(H)$.

What does a dominating set of H look like in H^2?
Independent Sets in H^2

Lemma. For a graph H and an independent set I in H^2, $|I| \leq \text{dom}(H)$.

What does a dominating set of H look like in H^2?
Independent Sets in H^2

Lemma. For a graph H and an independent set I in H^2, $|I| \leq \text{dom}(H)$.

What does a dominating set of H look like in H^2?
Independent Sets in H^2

Lemma. For a graph H and an independent set I in H^2, $|I| \leq \text{dom}(H)$.

What does a dominating set of H look like in H^2?
Independent Sets in H^2

Lemma. For a graph H and an independent set I in H^2, $|I| \leq \text{dom}(H)$.

What does a dominating set of H look like in H^2?
Independent Sets in H^2

Lemma. For a graph H and an independent set I in H^2, $|I| \leq \text{dom}(H)$.

What does a dominating set of H look like in H^2?
Independent Sets in H^2

Lemma. For a graph H and an independent set I in H^2, $|I| \leq \text{dom}(H)$.

What does a dominating set of H look like in H^2?
Independent Sets in H^2

Lemma. For a graph H and an independent set I in H^2, $|I| \leq \text{dom}(H)$.

What does a dominating set of H look like in H^2?
Independent Sets in H^2

Lemma. For a graph H and an independent set I in H^2, $|I| \leq \text{dom}(H)$.

What does a dominating set of H look like in H^2?
Approximation Algorithms

Lecture 6:
k-CENTER via Parametric Pruning

Part IV:
Factor-2 Approximation for Metric-k-Center

Alexander Wolff
Winter 2022/23
Factor-2 Approx. for Metric k-CENTER

Metric-k-CENTER($G = (V, E; c), k$)
Sort the edges of G by cost: $c(e_1) \leq \ldots \leq c(e_m)$
Factor-2 Approx. for Metric k-Center

Metric-k-Center($G = (V, E; c), k$)

Sort the edges of G by cost: $c(e_1) \leq \ldots \leq c(e_m)$

for $j = 1$ to m do

...
Factor-2 Approx. for Metric k-Center

Metric-k-Center($G = (V, E; c), k$)

Sort the edges of G by cost: $c(e_1) \leq \ldots \leq c(e_m)$

for $j = 1$ to m do

 Construct G^2_j

 Find a maximal independent set I_j in G^2_j

 if $|I_j| \leq k$ then
 return I_j
Factor-2 Approx. for Metric k-Center

Metric-k-Center($G = (V, E; c), k$)

Sort the edges of G by cost: $c(e_1) \leq \ldots \leq c(e_m)$

for $j = 1$ to m do

Construct G_j^2

Find a maximal independent set I_j in G_j^2

return I_j
Metric-k-CENTER(G = (V, E; c), k)

Sort the edges of G by cost: \(c(e_1) \leq \ldots \leq c(e_m) \)

for \(j = 1 \) to \(m \) do
 Construct \(G^2_j \)
 Find a maximal independent set \(I_j \) in \(G^2_j \)
 if \(|I_j| \leq k \) then
 return \(I_j \)
Lemma. For j provided by the algorithm, it holds that $c(e_j) \leq \text{OPT}$.
Factor-2 Approx. for Metric k-Center

Metric-k-Center($G = (V, E; c), k$)

Sort the edges of G by cost: $c(e_1) \leq \ldots \leq c(e_m)$

for $j = 1$ to m do
 Construct G_j^2
 Find a maximal independent set I_j in G_j^2
 if $|I_j| \leq k$ then
 return I_j

Lemma. For j provided by the algorithm, it holds that $c(e_j) \leq \text{OPT}$.

Theorem. The above algorithm is a factor-2 approximation algorithm for the metric k-Center problem.
Can we do better ...?
Can we do better . . . ?

What about a tight example?
Can we do better . . .?

What about a tight example?
Can we do better . . . ?

What about a tight example?
Can we do better . . . ?

What about a tight example?

Theorem. Assuming \(P \neq NP \), there is no factor-\((2 - \varepsilon)\) approximation algorithm for the metric \(k \)-Center problem, for any \(\varepsilon > 0 \).
Can we do better . . .?

What about a tight example?

Theorem. Assuming $P \neq NP$, there is no factor-$(2 - \varepsilon)$ approximation algorithm for the metric k-Center problem, for any $\varepsilon > 0$.

Proof. Reduce from dominating set to metric k-Center.
Can we do better . . . ?

What about a tight example?

Theorem. Assuming P \neq NP, there is no factor-$(2 - \varepsilon)$ approximation algorithm for the metric k-Center problem, for any $\varepsilon > 0$.

Proof. Reduce from dominating set to metric k-Center. Given graph $G = (V, E)$ and integer k,
Can we do better . . .?

What about a tight example?

Theorem. Assuming P ≠ NP, there is no factor-\((2 - \varepsilon)\) approximation algorithm for the metric \(k\)-Center problem, for any \(\varepsilon > 0\).

Proof. Reduce from dominating set to metric \(k\)-Center. Given graph \(G = (V, E)\) and integer \(k\),
Can we do better . . . ?

What about a tight example?

Theorem. Assuming \(P \neq NP \), there is no factor-\((2 - \varepsilon)\) approximation algorithm for the metric \(k \)-Center problem, for any \(\varepsilon > 0 \).

Proof. Reduce from dominating set to metric \(k \)-Center. Given graph \(G = (V, E) \) and integer \(k \), construct complete graph \(G' = (V, E \cup E') \).
Can we do better . . . ?

What about a tight example?

Theorem. Assuming $P \neq NP$, there is no factor-$(2 - \varepsilon)$ approximation algorithm for the metric k-
Center problem, for any $\varepsilon > 0$.

Proof. Reduce from dominating set to metric k-
Center. Given graph $G = (V, E)$ and integer k, construct complete graph $G' = (V, E \cup E')$.
Can we do better . . . ?

What about a tight example?

Theorem. Assuming $P \neq NP$, there is no factor-$(2 - \varepsilon)$ approximation algorithm for the metric k-Center problem, for any $\varepsilon > 0$.

Proof. Reduce from dominating set to metric k-Center. Given graph $G = (V, E)$ and integer k, construct complete graph $G' = (V, E \cup E')$ with $c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \end{cases}$
Can we do better . . . ?

What about a tight example?

Theorem. Assuming $P \neq NP$, there is no factor-$(2 - \varepsilon)$ approximation algorithm for the metric k-CENTER problem, for any $\varepsilon > 0$.

Proof. Reduce from dominating set to metric k-CENTER. Given graph $G = (V, E)$ and integer k, construct complete graph $G' = (V, E \cup E')$ with $c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \end{cases}$

Let S be a metric k-center of G'.
Can we do better . . . ?

What about a tight example?

Theorem. Assuming P ≠ NP, there is no factor-\((2 - \varepsilon)\) approximation algorithm for the metric \(k\)-Center problem, for any \(\varepsilon > 0\).

Proof. Reduce from dominating set to metric \(k\)-Center. Given graph \(G = (V, E)\) and integer \(k\), construct complete graph \(G' = (V, E \cup E')\) with
\[
c(e) = \begin{cases}
1, & \text{if } e \in E \\
2, & \text{if } e \in E'
\end{cases}
\]

Let \(S\) be a metric \(k\)-center of \(G'\). If \(\text{dom}(G) \leq k\), then \(\text{cost}(S) = 1\).
Can we do better . . . ?

What about a tight example?

Theorem. Assuming \(P \neq NP \), there is no factor-\((2 - \varepsilon)\) approximation algorithm for the metric \(k \)-Center problem, for any \(\varepsilon > 0 \).

Proof. Reduce from dominating set to metric \(k \)-Center. Given graph \(G = (V, E) \) and integer \(k \), construct complete graph \(G' = (V, E \cup E') \) with \(c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \end{cases} \)

Let \(S \) be a metric \(k \)-center of \(G' \). If \(\text{dom}(G) \leq k \), then \(\text{cost}(S) = 1 \).
Can we do better . . . ?

What about a tight example?

Theorem. Assuming $P \neq NP$, there is no factor-$(2 - \varepsilon)$ approximation algorithm for the metric k-CENTER problem, for any $\varepsilon > 0$.

Proof. Reduce from dominating set to metric k-CENTER. Given graph $G = (V, E)$ and integer k, construct complete graph $G' = (V, E \cup E')$ with $c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \end{cases}$

Let S be a metric k-center of G'. If $\text{dom}(G) \leq k$, then $\text{cost}(S) = 1$. If $\text{dom}(G) > k$, then $\text{cost}(S) = 2$.
Can we do better . . . ?

What about a tight example?

Theorem. Assuming P ≠ NP, there is no factor-\((2 - \varepsilon)\) approximation algorithm for the metric \(k\)-Center problem, for any \(\varepsilon > 0\).

Proof. Reduce from dominating set to metric \(k\)-Center. Given graph \(G = (V, E)\) and integer \(k\), construct complete graph \(G' = (V, E \cup E')\)

with \(c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \end{cases}\)

Let \(S\) be a metric \(k\)-center of \(G'\). If \(\text{dom}(G) \leq k\), then \(\text{cost}(S) = 1\). If \(\text{dom}(G) > k\), then \(\text{cost}(S) = 2\).
Can we do better . . . ?

What about a tight example?

Theorem. Assuming $P \neq NP$, there is no factor-$(2 - \varepsilon)$ approximation algorithm for the metric k-CENTER problem, for any $\varepsilon > 0$.

Proof. Reduce from dominating set to metric k-CENTER. Given graph $G = (V, E)$ and integer k, construct complete graph $G' = (V, E \cup E')$ with $c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \end{cases}$

Let S be a metric k-center of G'. If $\text{dom}(G) \leq k$, then $\text{cost}(S) = 1$. If $\text{dom}(G) > k$, then $\text{cost}(S) = 2$.
Can we do better . . . ?

What about a tight example?

Theorem. Assuming $P \neq NP$, there is no factor-$(2 - \varepsilon)$ approximation algorithm for the metric k-CENTER problem, for any $\varepsilon > 0$.

Proof. Reduce from dominating set to metric k-CENTER. Given graph $G = (V, E)$ and integer k, construct complete graph $G' = (V, E \cup E')$

with $c(e) = \begin{cases} 1, & \text{if } e \in E \\ 2, & \text{if } e \in E' \end{cases}$

\[\triangle\text{-inequality holds}\]

Let S be a metric k-center of G'.

If $\text{dom}(G) \leq k$, then $\text{cost}(S) = 1$.

If $\text{dom}(G) > k$, then $\text{cost}(S) = 2$.
Approximation Algorithms

Lecture 6:
k-CENTER via Parametric Pruning

Part V:
Metric-Weighted-Center

Alexander Wolff
Winter 2022/23
Metric-k-Center

Given: A complete graph $G = (V, E)$ with metric edge costs $c: E \rightarrow \mathbb{Q}_{\geq 0}$ and a natural number $k \leq |V|$.

For $S \subseteq V$, $c(v, S)$ is the cost of the cheapest edge from v to a vertex in S.

Find: A k-element vertex set S such that $\text{cost}(S) := \max_{v \in V} c(v, S)$ is minimized.
Metric-k-Center

Weighted

Given: A complete graph $G = (V, E)$ with metric edge costs $c : E \to \mathbb{Q}_{\geq 0}$ and a natural number $k \leq |V|$.

For $S \subseteq V$, $c(v, S)$ is the cost of the cheapest edge from v to a vertex in S.

Find: A k-element vertex set S such that $\text{cost}(S) := \max_{v \in V} c(v, S)$ is minimized.
Metric-k-Center

Weighted

Given: A complete graph $G = (V, E)$ with metric edge costs $c: E \rightarrow \mathbb{Q}_{\geq 0}$ and a natural number $k \leq |V|$, vertex weights $w: V \rightarrow \mathbb{Q}_{\geq 0}$ and a budget $W \in \mathbb{Q}_+$.

For $S \subseteq V$, $c(v, S)$ is the cost of the cheapest edge from v to the vertex in S.

Find: A k-element vertex set S such that $\text{cost}(S) := \max_{v \in V} c(v, S)$ is minimized.
Metric-k-Center

Weighted

Given: A complete graph \(G = (V, E) \) with metric edge costs \(c : E \to \mathbb{Q}_{\geq 0} \) and a natural number \(k \leq |V| \), vertex weights \(w : V \to \mathbb{Q}_{\geq 0} \) and a budget \(W \in \mathbb{Q}_+ \).

For \(S \subseteq V \), \(c(v, S) \) is the cost of the cheapest edge from \(v \) to the vertex in \(S \).

Find: A \(k \)-element vertex set \(S \) such that the cost of \(S \) is minimized:

\[
\text{cost}(S) := \max_{v \in V} c(v, S)
\]
Algorithm for the Weighted Version

Algorithm Metric-Center

Sort the edges of G by cost: $c(e_1) \leq \ldots \leq c(e_m)$

for $j = 1, \ldots, m$ do

 Construct G^2_j

 Find a maximal independent set I_j in G^2_j

 if $|I_j| \leq k$ then
 return I_j
Algorithm for the Weighted Version

Algorithm Metric-\textbf{Weighted-Center}

Sort the edges of G by cost: $c(e_1) \leq \ldots \leq c(e_m)$

\textbf{for} $j = 1, \ldots, m$ \textbf{do}

\hspace{1em} Construct G_j^2

\hspace{2em} Find a maximal independent set I_j in G_j^2

\hspace{1em} \textbf{if} $|I_j| \leq k$ \textbf{then}

\hspace{2em} \textbf{return} I_j
Algorithm Metric-Weighted-Center

Sort the edges of G by cost: $c(e_1) \leq \ldots \leq c(e_m)$

for $j = 1, \ldots, m$ do
 Construct G_j^2
 Find a maximal independent set I_j in G_j^2
 if $|I_j| \leq k$ then
 return I_j

what about the weights?
Algorithm Metric-Weighted-Center

Sort the edges of G by cost: $c(e_1) \leq \ldots \leq c(e_m)$

for $j = 1, \ldots, m$ do

Construct G^2_j

Find a maximal independent set I_j in G^2_j

if $|I_j| \leq k$ then

return I_j

what about the weights?
Algorithm Metric-Weighted-Center

Sort the edges of G by cost: $c(e_1) \leq \ldots \leq c(e_m)$

for $j = 1, \ldots, m$ do

 Construct G^2_j

 Find a maximal independent set I_j in G^2_j

 if $|I_j| \leq k$ then
 return I_j

$s_j(u) := \text{lightest node in } N_{G_j}(u) \cup \{u\}$
Algorithm for the Weighted Version

Algorithm Metric-Weighted-Center

Sort the edges of G by cost: $c(e_1) \leq \ldots \leq c(e_m)$

for $j = 1, \ldots, m$ do

Construct G^2_j

Find a maximal independent set I_j in G^2_j

if $|I_j| \leq k$ then

return I_j

end if

$s_j(u) := \text{lightest node in } N_{G_j}(u) \cup \{u\}$
Algorithm for the Weighted Version

Algorithm Metric-Weighted-Center

Sort the edges of G by cost: $c(e_1) \leq \ldots \leq c(e_m)$

for $j = 1, \ldots, m$ do

- Construct G_j^2
- Find a maximal independent set I_j in G_j^2
- Compute $S_j := \{ s_j(u) \mid u \in I_j \}$

if $|I_j| \leq k$ then

- return I_j

$s_j(u) := \text{lightest node in } N_{G_j}(u) \cup \{u\}$
Algorithm Metric-Weighted-Center

Sort the edges of G by cost: $c(e_1) \leq \ldots \leq c(e_m)$

for $j = 1, \ldots, m$ do

 Construct G_j^2

 Find a maximal independent set I_j in G_j^2

 Compute $S_j := \{ s_j(u) | u \in I_j \}$

 if $|I_j| \leq k$ then

 $w(S_j) \leq W$

 return I_j

 end if

end for

$s_j(u) := \text{lightest node in } N_{G_j}(u) \cup \{u\}$
Algorithm for the Weighted Version

Algorithm Metric-Weighted-Center

Sort the edges of G by cost: $c(e_1) \leq \ldots \leq c(e_m)$

For $j = 1, \ldots, m$ do
- Construct G_j^2
- Find a maximal independent set I_j in G_j^2
- Compute $S_j := \{ s_j(u) \mid u \in I_j \}$
- If $|I_j| \leq k$ then
 - Return I_j

$s_j(u) := \text{lightest node in } N_{G_j}(u) \cup \{u\}$
Algorithm Metric-Weighted-Center

Sort the edges of G by cost: $c(e_1) \leq \ldots \leq c(e_m)$

for $j = 1, \ldots, m$ do

 Construct G_j^2

 Find a maximal independent set I_j in G_j^2

 Compute $S_j := \{ s_j(u) \mid u \in I_j \}$

 if $|I_j| \leq k$ then

 $w(S_j) \leq W$

 return I_j

 return S_j

$s_j(u) := \text{lightest node in } N_{G_j}(u) \cup \{u\}$
Algorithm Metric-Weighted-Center

Sort the edges of G by cost: $c(e_1) \leq \ldots \leq c(e_m)$

for $j = 1, \ldots, m$ do

Construct G^2_j

Find a maximal independent set I_j in G^2_j

Compute $S_j := \{ s_j(u) \mid u \in I_j \}$

if $|I_j| \leq k$ then

return I_j

$s_j(u) := \text{lightest node in } N_{G_j}(u) \cup \{u\}$

$w(S_j) \leq W$

$u \in I_j$

$S_j \leq 3c(e_j)$
Algorithm for the Weighted Version

Algorithm Metric-Weighted-Center

Sort the edges of G by cost: $c(e_1) \leq \ldots \leq c(e_m)$

for $j = 1, \ldots, m$ do

- Construct G_j^2
- Find a maximal independent set I_j in G_j^2
- Compute $S_j := \{ s_j(u) \mid u \in I_j \}$

if $|I_j| \leq k$ then

- return I_j

$s_j(u) := \text{lightest node in } N_{G_j}(u) \cup \{u\}$

$w(S_j) \leq W$

$u \in I_j$

$s_j(u) \leq 3c(e_j)$

Theorem. The above is a factor-3 approximation algorithm for Metric-Weighted-Center.
Tight Example...?

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.
Tight Example... ?

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

Consider $W = 3$.
Tight Example...?

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

Consider $W = 3$.
Tight Example... ?

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

Consider $W = 3$.

$w(a) = 1$
Tight Example...?

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

Consider $W = 3$.

$w(a) = 1$
Tight Example...?

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

Consider $W = 3$.

$w(a) = 1$

$w(\cdot) = 2$
Tight Example... ?

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

Consider $W = 3$.

\[w(a) = 1 \]

\[w(\cdot) = 2 \]
Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

Consider $W = 3$.

$w(\cdot) = 4$
Tight Example...?

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

Consider $W = 3$.

$w(\cdot) = 4$

$w(a) = 1$

$w(\cdot) = 2$
Tight Example...?

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

Consider $W = 3$.

Other edge costs?
Tight Example...?

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

Consider $W = 3$.

Other edge costs?

$w(\cdot) = 2$

$1 + \varepsilon$

$w(a) = 1$

$w(\cdot) = 4$
Tight Example...?

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

Consider $W = 3$. Other edge costs?

$w(\cdot) = 2$

$w(\cdot) = 4$

$w(a) = 1$

OPT?

ALG?
Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

Consider $W = 3$.

Other edge costs? \(\rightarrow \) metric completion!

$w(\cdot) = 2$

OPT? pick a and $c \Rightarrow$ cost $1 + \varepsilon$.

ALG?
Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

Consider $W = 3$.

Other edge costs? \rightarrow metric completion!

OPT? pick a and $c \Rightarrow$ cost $1 + \epsilon$.

ALG? since $N_{G^2}(b) = G$, $\{b\}$ is a maximal independent set in G^2
Tight Example...?

Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

Consider $W = 3$.

Other edge costs?
→ metric completion!

OPT?
pick a and c ⇒ cost $1 + \epsilon$.

ALG?
since $N_{G^2}(b) = G$, $\{b\}$ is a maximal independent set in G^2
Thus, alg. picks only a ⇒ cost 3.
Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

Consider $W = 3$.

Other edge costs? \to metric completion!

$w(\cdot) = 2$

OPT? pick a and $c \Rightarrow$ cost $1 + \varepsilon$.

ALG? since $N_{G^2}(b) = G$, $\{b\}$ is a maximal independent set in G^2

Thus, alg. picks only $a \Rightarrow$ cost 3.

How can we generalize this to larger W?
Here, we need to have a budget W, and edge costs satisfying the triangle inequality.

Consider $W = 3$. Other edge costs? → metric completion!

$w(\cdot) = W + 1$

OPT? pick a and $c \Rightarrow$ cost $1 + \varepsilon$.

ALG? since $N_{G^2}(b) = G$, $\{b\}$ is a maximal independent set in G^2.

Thus, alg. picks only $a \Rightarrow$ cost 3.

How can we generalize this to larger W?