Approximation Algorithms

Lecture 5:
LP-based Approximation Algorithms for SetCover

Part I:
SetCover as an ILP
SetCover as an ILP

\[
\begin{align*}
\text{minimize} & \quad \sum_{S \in \mathcal{S}} c_S x_S \\
\text{subject to} & \quad \sum_{S \ni u} x_S \geq 1 \quad u \in \mathcal{U} \\
& \quad x_S \in \{0, 1\} \quad S \in \mathcal{S}
\end{align*}
\]

Ground set \(\mathcal{U} \)
Family \(\mathcal{S} \subseteq 2^{\mathcal{U}} \) with \(\bigcup \mathcal{S} = \mathcal{U} \)
Costs \(c : \mathcal{S} \rightarrow \mathbb{Q}^+ \)

Find cover \(\mathcal{S}' \subseteq \mathcal{S} \) of \(\mathcal{U} \) with minimum cost.
Approximation Algorithms

Lecture 5:
LP-based Approximation Algorithms for SetCover

Part II:
LP-Rounding

Alexander Wolff
Winter 2022/23
Consider a minimization problem Π in ILP form.

Compute a solution for the LP-relaxation.

Round to obtain an integer solution for Π.

Difficulty: Ensure the feasibility of the solution.

Approximation factor: $\frac{\text{ALG}}{\text{OPT}_\Pi} \leq \frac{\text{ALG}}{\text{OPT}_{\text{relax}}}$.

Technique I) LP-Rounding
SetCover – LP-Relaxation

\[
\begin{align*}
\text{minimize} & \quad \sum_{S \in S} c_S x_S \\
\text{subject to} & \quad \sum_{S \ni u} x_S \geq 1 \quad u \in U \\
& \quad x_S \geq 0 \quad S \in S
\end{align*}
\]

Optimal?

integer: 2

fractional: \(\frac{3}{2} \)
LP-Rounding: Approach I

minimize $\sum_{S \in S} c_S x_S$

subject to $\sum_{S \ni u} x_S \geq 1 \quad u \in U$

$x_S \geq 0 \quad S \in S$

LP-Rounding-One(U, S, c)

Compute optimal solution x for LP-relaxation.
Round each x_S with $x_S > 0$ to 1.

– Generates a valid solution.
– Scaling factor arbitrarily large.

Use frequency f
LP-Rounding: Approach II

\[
\begin{align*}
\text{minimize} & \quad \sum_{S \in S} c_S x_S \\
\text{subject to} & \quad \sum_{S \ni u} x_S \geq 1 & u \in U \\
& \quad x_S \geq 0 & S \in S
\end{align*}
\]

LP-Rounding-Two\((U, S, c)\)
Compute optimal solution \(x\) for LP-Relaxation.
Round each \(x_S\) with \(x_S \geq 1/f\) to 1; remaining to 0.

Let \(f\) be the frequency of (i.e., the number of sets containing) the most frequent element.

Theorem. LP-Rounding-Two is a factor-\(f\) approximation algorithm for SetCover.
Approximation Algorithms

Lecture 5:
LP-based Approximation Algorithms for SetCover

Part III:
The Primal-Dual Schema
Consider a minimization problem Π in ILP form.

Start with (trivial) feasible dual solution and infeasible primal solution (e.g., all variables $= 0$).

Compute dual solution s_d and integral primal solution s_Π for Π iteratively:

increase s_d according to CS and make s_Π “more feasible”.

Approximation factor \(\leq \frac{\text{obj}(s_\Pi)}{\text{obj}(s_d)} \)

Advantage: don’t need LP-“machinery”; possibly faster, more flexible.
SetCover – Dual LP

minimize \[\sum_{S \in S} c_S x_S \]
subject to \[\sum_{S \ni u} x_S \geq 1 \quad u \in U \]
\[x_S \geq 0 \quad S \in S \]

maximize \[\sum_{u \in U} y_u \]
subject to \[\sum_{u \in S} y_u \leq c_S \quad S \in S \]
\[y_u \geq 0 \quad u \in U \]
Theorem. Let \(x = (x_1, \ldots, x_n) \) and \(y = (y_1, \ldots, y_m) \) be valid solutions for the primal and dual program (resp.). Then \(x \) and \(y \) are optimal if and only if the following conditions are met:

Primal CS:
For each \(j = 1, \ldots, n: \ x_j = 0 \) or \(\sum_{i=1}^{m} a_{ij} y_i = c_j \)

Dual CS:
For each \(i = 1, \ldots, m: \ y_i = 0 \) or \(\sum_{j=1}^{n} a_{ij} x_j = b_i \)
Relaxing Complementary Slackness

Primal CS:
For each \(j = 1, \ldots, n \):
\[
x_j = 0 \quad \text{or} \quad \sum_{i=1}^{m} a_{ij} y_i = c_j
\]
\[
c_j / \alpha \leq \sum_{i=1}^{m} a_{ij} y_i \leq c_j
\]

Dual CS:
For each \(i = 1, \ldots, m \):
\[
y_i = 0 \quad \text{or} \quad \sum_{j=1}^{n} a_{ij} x_j = b_i
\]
\[
b_i \leq \sum_{j=1}^{n} a_{ij} x_j \leq \beta \cdot b_i
\]

\[
\Leftrightarrow \sum_{j=1}^{n} c_j x_j = \sum_{i=1}^{m} b_i y_i
\]
\[
\Rightarrow \sum_{j=1}^{n} c_j x_j \leq \alpha \beta \sum_{i=1}^{m} b_i y_i \leq \alpha \beta \cdot \text{OPT}_\text{LP}
\]
Primal–Dual Schema

Start with a feasible **dual** and infeasible **primal** solution (often trivial).

“Improve” the feasibility of the **primal** solution...

...and simultaneously the obj. value of the **dual** solution.

Do so until the relaxed CS conditions are met.

Maintain that the **primal** solution is integer valued.

The feasibility of the **primal** solution and relaxed CS condition provide an approximation ratio.
Relaxed CS for SetCover

<table>
<thead>
<tr>
<th>Minimize</th>
<th>Maximize</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sum_{S \in S} c_S x_S)</td>
<td>(\sum_{u \in U} y_u)</td>
</tr>
<tr>
<td>subject to</td>
<td>subject to</td>
</tr>
<tr>
<td>(\sum_{S \ni u} x_S \geq 1)</td>
<td>(\sum_{u \in S} y_u \leq c_S)</td>
</tr>
<tr>
<td>(x_S \geq 0)</td>
<td>(y_u \geq 0)</td>
</tr>
<tr>
<td>(S \in S)</td>
<td>(u \in U)</td>
</tr>
</tbody>
</table>

Critical Set

Unrelaxed primal CS: \(x_S \neq 0 \) \(\Rightarrow \sum_{u \in S} y_u = c_S \)

Relaxed dual CS: \(y_u \neq 0 \) \(\Rightarrow 1 \leq \sum_{S \ni u} x_S \leq f \cdot 1 \)

Trivial for Binary \(x \)
Primal–Dual Schema for SetCover

PrimalDualSetCover(\(U, S, c\))

\[x \leftarrow 0,\ y \leftarrow 0 \]

repeat

Select an uncovered element \(u\).
Increase \(y_u\) until a set \(S\) is critical (\(\sum_{u' \in S} y_{u'} = c_S\)).
Select all critical sets and update \(x\).
Mark all elements in these sets as covered.

until all elements are covered.

return \(x\)
Primal–Dual Schema for SetCover

PrimalDualSetCover(U, S, c)

\[x \leftarrow 0, \ y \leftarrow 0 \]

repeat

Select an uncovered element \(u \).
Increase \(y_u \) until a set \(S \) is critical (\(\sum_{u' \in S} y_{u'} = c_S \)).
Select all critical sets and update \(x \).
Mark all elements in these sets as covered.

until all elements are covered.

return \(x \)

Theorem. PrimalDualSetCover is a factor-\(f \) approximation algorithm for SetCover. This bound is tight.
Tight Example

\[1 + \varepsilon \]
Consider a minimization problem Π in ILP form.

Dual methods (without outside help) are limited by the *integrality gap* of the LP-relaxation

$$\alpha \geq \gamma = \sup_{I} \frac{\text{OPT}_{\Pi}(I)}{\text{OPT}_{\text{primal}}(I)}$$
Approximation Algorithms

Lecture 5:
LP-based Approximation Algorithms for SetCover

Part IV:
Dual Fitting

Alexander Wolff
Winter 2022/23
Technique III) Dual Fitting

Consider a minimization problem Π in ILP form.

Combinatorial algorithm (e.g., greedy) computes feasible primal solution s_Π and infeasible dual solution s_d that completely “pays” for s_Π, i.e., $\text{obj}(s_\Pi) \leq \text{obj}(s_d)$.

Scale the dual variables \mapsto feasible dual solution \tilde{s}_d.

$$\Rightarrow \frac{\text{obj}(s_\Pi)}{\alpha} \leq \frac{\text{obj}(s_d)}{\alpha} = \frac{\text{obj}(\tilde{s}_d)}{\alpha} \leq \text{OPT}_{\text{dual}} \leq \text{OPT}_\Pi$$

\Rightarrow Scaling factor α is approximation factor.
Dual Fitting for SetCover

Combinatorial (greedy) algorithm (see Lecture #2):

GreedySetCover(\(U, S, c\))

\[
\begin{align*}
C &\leftarrow \emptyset \\
S' &\leftarrow \emptyset \\
\text{while } C \neq U &\text{ do} \\
S &\leftarrow \text{Set from } S \text{ that minimizes } \frac{c(S)}{|S\setminus C|} \\
\text{foreach } u \in S \setminus C &\text{ do} \\
\text{price}(u) &\leftarrow \frac{c(S)}{|S\setminus C|} \\
C &\leftarrow C \cup S \\
S' &\leftarrow S' \cup \{S\}
\end{align*}
\]

return \(S'\) // Cover of \(U\)

Reminder: \(\sum_{u \in U} \text{price}(u)\) completely pays for \(S'\).
New: LP-based Analysis

Observation. For each \(u \in U \), \(\text{price}(u) \) is a dual variable. But this dual solution is in general not feasible.

Homework exercise: Construct instance where some \(S \) are “overpacked” by factor \(\approx H |S| \).

Dual-fitting trick:
Scale dual variables such that no set is overpacked.
Take \(\bar{y}_u = \text{price}(u) / H_k \). \((k = \text{cardinality of largest set in } S.)\)
The greedy algorithm uses these dual variables as lower bound for OPT.

\[
\begin{align*}
\text{maximize} & \quad \sum_{u \in U} y_u \\
\text{subject to} & \quad \sum_{u \in S} y_u \leq c_S \quad S \in S \\
& \quad y_u \geq 0 \quad u \in U
\end{align*}
\]
Proof. To prove: No set is overpacked by \bar{y}.
Let $S \in S$ and $\ell = |S| \leq k$.
Let u_1, \ldots, u_ℓ be the elements of S – in the order in which they are covered by greedy.
Consider the iteration in which u_i is covered.
Before that, $\geq \ell - i + 1$ elem. of S are uncovered.
So $\text{price}(u_i) \leq \frac{c(S)}{(\ell - i + 1)}$.

\[\Rightarrow \bar{y}_{u_i} \leq \frac{c(S)}{\mathcal{H}_k} \cdot \frac{1}{\ell - i + 1} \Rightarrow \sum_{i=1}^{\ell} \bar{y}_{u_i} \leq \frac{c(S)}{\mathcal{H}_k} \cdot \left(\frac{1}{\ell} + \cdots + \frac{1}{1} \right) \leq c(S) \]

Lemma.
The vector $\bar{y} = (\bar{y}_u)_{u \in U}$ is a feasible solution for the dual LP.

\[
\begin{align*}
\text{maximize} & \quad \sum_{u \in U} y_u \\
\text{subject to} & \quad \sum_{u \in S} y_u \leq c_S \quad S \in S \\
& \quad y_u \geq 0 \quad u \in U
\end{align*}
\]
Result for Dual Fitting

Theorem. GreedySetCover is a factor-\mathcal{H}_k approximation algorithm for SetCover, where $k = \max_{S \in S} |S|$.

Proof. $\text{ALG} = c(S') \leq \sum_{u \in U} \text{price}(u) = \mathcal{H}_k \cdot \sum_{u \in U} \bar{y}_u \leq \mathcal{H}_k \cdot \text{OPT}_{\text{relax}} \leq \mathcal{H}_k \cdot \text{OPT} \quad \square$

Strengthened bound with respect to $\text{OPT}_{\text{relax}} \leq \text{OPT}$.

Dual solution allows a per-instance estimation

…which may be stronger than worst-case bound \mathcal{H}_k.