Visualization of Graphs

Lecture 11: The Crossing Lemma and Its Applications

Part I: Definition and Hanani–Tutte

Alexander Wolff
Crossing Number and Topological Graphs

For a graph G, the **crossing number** $\text{cr}(G)$ is the smallest number of edge crossings in a drawing of G (in the plane).
For a graph G, the **crossing number** $\text{cr}(G)$ is the smallest number of edge crossings in a drawing of G (in the plane).

Example.

$\text{cr}(K_{3,3}) = 9$?
For a graph G, the **crossing number** $cr(G)$ is the smallest number of edge crossings in a drawing of G (in the plane).

Example.

$cr(K_{3,3}) = 5$?
Crossing Number and Topological Graphs

For a graph G, the **crossing number** $\text{cr}(G)$ is the smallest number of edge crossings in a drawing of G (in the plane).

Example.

$\text{cr}(K_{3,3}) = 1$
Crossing Number and Topological Graphs

For a graph G, the **crossing number** $cr(G)$ is the smallest number of edge crossings in a drawing of G (in the plane).

Example.
$cr(K_{3,3}) = 1$

In a crossing-minimal drawing of G
Crossing Number and Topological Graphs

For a graph G, the **crossing number** $cr(G)$ is the smallest number of edge crossings in a drawing of G (in the plane).

Example.
$cr(K_{3,3}) = 1$

In a crossing-minimal drawing of G

- no edge is self-intersecting,
Crossing Number and Topological Graphs

For a graph G, the **crossing number** $cr(G)$ is the smallest number of edge crossings in a drawing of G (in the plane).

Example. $cr(K_{3,3}) = 1$

In a crossing-minimal drawing of G

- no edge is self-intersecting,
Crossing Number and Topological Graphs

For a graph G, the **crossing number** $cr(G)$ is the smallest number of edge crossings in a drawing of G (in the plane).

In a crossing-minimal drawing of G
- no edge is self-intersecting,

Example.
$cr(K_{3,3}) = 1$
Crossing Number and Topological Graphs

For a graph G, the **crossing number** $\text{cr}(G)$ is the smallest number of edge crossings in a drawing of G (in the plane).

In a crossing-minimal drawing of G

- no edge is self-intersecting,
- edges with common endpoints do not intersect,

Example.
$\text{cr}(K_{3,3}) = 1$
Crossing Number and Topological Graphs

For a graph G, the **crossing number** $cr(G)$ is the smallest number of edge crossings in a drawing of G (in the plane).

In a crossing-minimal drawing of G

- no edge is self-intersecting,
- edges with common endpoints do not intersect,

Example.

$cr(K_{3,3}) = 1$
Crossing Number and Topological Graphs

For a graph G, the **crossing number** $cr(G)$ is the smallest number of edge crossings in a drawing of G (in the plane).

Example. $cr(K_{3,3}) = 1$

In a crossing-minimal drawing of G

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
Crossing Number and Topological Graphs

For a graph G, the **crossing number** $cr(G)$ is the smallest number of edge crossings in a drawing of G (in the plane).

In a crossing-minimal drawing of G

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once,

Example.
$cr(K_{3,3}) = 1$
Crossing Number and Topological Graphs

For a graph G, the **crossing number** $\text{cr}(G)$ is the smallest number of edge crossings in a drawing of G (in the plane).

In a crossing-minimal drawing of G

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once,

Example.

$\text{cr}(K_{3,3}) = 1$
Crossing Number and Topological Graphs

For a graph G, the **crossing number** $\text{cr}(G)$ is the smallest number of edge crossings in a drawing of G (in the plane).

In a crossing-minimal drawing of G

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once,

Example.

$\text{cr}(K_{3,3}) = 1$

For a graph G, the crossing number $\text{cr}(G)$ is the smallest number of edge crossings in a drawing of G (in the plane).
Crossing Number and Topological Graphs

For a graph G, the **crossing number** $\text{cr}(G)$ is the smallest number of edge crossings in a drawing of G (in the plane).

In a crossing-minimal drawing of G

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once,
- and, w.l.o.g., at most two edges intersect at the same point.

Example.
\[
\text{cr}(K_{3,3}) = 1
\]
Crossing Number and Topological Graphs

For a graph G, the **crossing number** $\text{cr}(G)$ is the smallest number of edge crossings in a drawing of G (in the plane).

In a crossing-minimal drawing of G

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once,
- and, w.l.o.g., at most two edges intersect at the same point.

Such a drawing is called a **topological drawing** of G.

Example.

$\text{cr}(K_{3,3}) = 1$
Crossing Number and Topological Graphs

For a graph G, the **crossing number** $\text{cr}(G)$ is the smallest number of edge crossings in a drawing of G (in the plane).

In a crossing-minimal drawing of G

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once,
- and, w.l.o.g., at most two edges intersect at the same point.

Such a drawing is called a **topological drawing** of G.

Example.
$\text{cr}(K_{3,3}) = 1$
Crossing Number and Topological Graphs

For a graph G, the crossing number $\text{cr}(G)$ is the smallest number of edge crossings in a drawing of G (in the plane).

In a crossing-minimal drawing of G

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once,
- and, w.l.o.g., at most two edges intersect at the same point.

Such a drawing is called a topological drawing of G.

Example.

$\text{cr}(K_{3,3}) = 1$
Crossing Number and Topological Graphs

For a graph G, the **crossing number** $\text{cr}(G)$ is the smallest number of edge crossings in a drawing of G (in the plane).

In a crossing-minimal drawing of G

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once,
- and, w.l.o.g., at most two edges intersect at the same point.

Such a drawing is called a **topological drawing** of G.

Example.

$$\text{cr}(K_{3,3}) = 1$$
Crossing Number and Topological Graphs

For a graph G, the **crossing number** $cr(G)$ is the smallest number of edge crossings in a drawing of G (in the plane).

In a crossing-minimal drawing of G

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once,
- and, w.l.o.g., at most two edges intersect at the same point.

Such a drawing is called a **topological drawing** of G.

Example.

$cr(K_{3,3}) = 1$

[Diagram showing edge crossings reduced, so terminates]
Hanani–Tutte Theorem

Theorem. [Hanani ’43, Tutte ’70]

A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.
Hanani–Tutte Theorem

Theorem. [Hanani ’43, Tutte ’70]
A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

Proof sketch.
Hanani showed that every drawing of K_5 and $K_{3,3}$ must have a pair of edges that crosses an odd number of times.
Hanani–Tutte Theorem

Theorem. [Hanani ’43, Tutte ’70]
A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

Proof sketch.
Hanani showed that every drawing of K_5 and $K_{3,3}$ must have a pair of edges that crosses an odd number of times.
Every non-planar graph has K_5 or $K_{3,3}$ as a minor, so there are two paths that cross an odd number of times.
Hanani–Tutte Theorem

Theorem. [Hanani ’43, Tutte ’70]
A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

Proof sketch.
Hanani showed that every drawing of K_5 and $K_{3,3}$ must have a pair of edges that crosses an odd number of times.

Every non-planar graph has K_5 or $K_{3,3}$ as a minor, so there are two paths that cross an odd number of times.

Hence, there must be two edges on these paths that cross an odd number of times. □
Hanani–Tutte Theorem

Theorem. \[\text{[Hanani '43, Tutte '70]}\]
A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The odd crossing number $\text{ocr}(G)$ of G is the smallest number of pairs of edges that cross oddly in a drawing of G.
Hanani–Tutte Theorem

Theorem. [Hanani ’43, Tutte ’70]
A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The **odd crossing number** $ocr(G)$ of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary. $ocr(G') = 0 \Rightarrow cr(G') = 0$
Hanani–Tutte Theorem

Theorem. [Hanani '43, Tutte '70]
A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The **odd crossing number** $\text{ocr}(G)$ of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary. $\text{ocr}(G') = 0 \Rightarrow \text{cr}(G') = 0$

Is $\text{ocr}(G) = \text{cr}(G')$?
Hanani–Tutte Theorem

Theorem. [Hanani ’43, Tutte ’70]
A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The **odd crossing number** $ocr(G)$ of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary. $ocr(G) = 0 \Rightarrow cr(G) = 0$

Is $ocr(G) = cr(G)$? **No!**
Hanani–Tutte Theorem

Theorem. [Hanani ’43, Tutte ’70]
A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The odd crossing number $\text{ocr}(G)$ of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary. $\text{ocr}(G') = 0 \Rightarrow \text{cr}(G') = 0$

Is $\text{ocr}(G) = \text{cr}(G)$? No!

Theorem. [Pelsmajer, Schaefer & Štefankovič ’08, Tóth ’08]
There is a graph G' with $\text{ocr}(G') < \text{cr}(G') \leq 10$
Hanani–Tutte Theorem

Theorem. [Hanani '43, Tutte '70]
A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The *odd crossing number* $ocr(G)$ of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary. $ocr(G') = 0 \Rightarrow cr(G') = 0$

Is $ocr(G) = cr(G)$? No!

Theorem. [Pelsmajer, Schaefer & Štefankovič '08, Tóth '08]
There is a graph G with $ocr(G) < cr(G) \leq 10$

Theorem. [Pach & Tóth '00]
If Γ is a drawing of G and E_0 is the set of edges with only even numbers of crossings in Γ, then G can be drawn such that no edge in E_0 is involved in any crossings.
Hanani–Tutte Theorem

Theorem. [Hanani ’43, Tutte ’70]
A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The **odd crossing number** $ocr(G)$ of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary. $ocr(G) = 0 \Rightarrow cr(G) = 0$

Is $ocr(G) = cr(G)$? **No!**

Theorem. [Pelsmajer, Schaefer & Štefankovič ’08, Tóth ’08]
There is a graph G with $ocr(G) < cr(G) \leq 10$

Theorem. [Pelsmajer, Schaefer & Štefankovič ’08] [Pach & Tóth ’00]
If $Γ$ is a drawing of G and E_0 is the set of edges with only even numbers of crossings in $Γ$, then G can be drawn such that no edge in E_0 is involved in any crossings and no new pairs of edges cross.
Hanani–Tutte Theorem

Theorem. [Hanani ’43, Tutte ’70]
A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The odd crossing number $\text{ocr}(G)$ of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary. $\text{ocr}(G') = 0 \Rightarrow \text{cr}(G') = 0$

Is $\text{ocr}(G) = \text{cr}(G)$? No!

Theorem. [Pelsmajer, Schaefer & Štefankovič ’08, Tóth ’08]
There is a graph G with $\text{ocr}(G) < \text{cr}(G) \leq 10$

The pairwise crossing number $\text{pcr}(G)$ of G is the smallest number of pairs of edges that cross in a drawing of G.

Hanani–Tutte Theorem

Theorem. [Hanani ’43, Tutte ’70]
A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The *odd crossing number* $\text{ocr}(G)$ of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary. $\text{ocr}(G') = 0 \Rightarrow \text{cr}(G') = 0$

Is $\text{ocr}(G) = \text{cr}(G)$? No!

Theorem. [Pelsmajer, Schaefer & Štefankovič ’08, Tóth ’08]
There is a graph G with $\text{ocr}(G') < \text{cr}(G') \leq 10$

The *pairwise crossing number* $\text{pcr}(G)$ of G is the smallest number of pairs of edges that cross in a drawing of G.

By definition $\text{ocr}(G) \leq \text{pcr}(G) \leq \text{cr}(G)$
Hanani–Tutte Theorem

Theorem. \([\text{Hanani '43, Tutte '70}]\)

A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The **odd crossing number** \(\text{ocr}(G)\) of \(G\) is the smallest number of pairs of edges that cross oddly in a drawing of \(G\).

Corollary. \(\text{ocr}(G') = 0 \Rightarrow \text{cr}(G') = 0\)

Is \(\text{ocr}(G) = \text{cr}(G)\)? No!

Theorem. \([\text{Pelsmajer, Schaefer & Štefankovič '08, Tóth '08}]\)

There is a graph \(G\) with \(\text{ocr}(G') < \text{cr}(G') \leq 10\)

The **pairwise crossing number** \(\text{pcr}(G)\) of \(G\) is the smallest number of pairs of edges that cross in a drawing of \(G\).

By definition \(\text{ocr}(G) \leq \text{pcr}(G) \leq \text{cr}(G)\)

Is \(\text{pcr}(G) = \text{cr}(G)\)?
Hanani–Tutte Theorem

Theorem. [Hanani ’43, Tutte ’70]
A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The **odd crossing number** $ocr(G)$ of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary. $ocr(G') = 0 \Rightarrow cr(G') = 0$

Is $ocr(G') = cr(G')$? No!

Theorem. [Pelsmajer, Schaefer & Štefankovič ’08, Tóth ’08]
There is a graph G with $ocr(G') < cr(G') \leq 10$

The **pairwise crossing number** $pcr(G)$ of G is the smallest number of pairs of edges that cross in a drawing of G.

By definition $ocr(G) \leq pcr(G) \leq cr(G)$

Is $pcr(G) = cr(G)$? Open!
Visualization of Graphs

Lecture 11:
The Crossing Lemma
and its Applications

Part II:
Computation & Variations

Alexander Wolff
Computing the Crossing Number

- Computing $\text{cr}(G)$ is NP-hard. [Garey & Johnson '83]

... even if G is a planar graph plus one edge! [Cabello & Mohar '08]
Computing the Crossing Number

- Computing $\text{cr}(G)$ is NP-hard.
 ... even if G is a planar graph plus one edge!

[Garey & Johnson '83]
[Cabello & Mohar '08]
Computing the Crossing Number

- Computing \(\text{cr}(G) \) is NP-hard.
 ... even if \(G \) is a planar graph plus one edge!

- \(\text{cr}(G) \) often unknown, only conjectures exist
 - for \(K_n \) it is only known for up to \(\sim 12 \) vertices

[Garey & Johnson '83]
[Cabello & Mohar '08]
Computing the Crossing Number

- Computing $\text{cr}(G)$ is NP-hard.
 ... even if G is a planar graph plus one edge!

 [Garey & Johnson '83]
 [Cabello & Mohar '08]

- $\text{cr}(G)$ often unknown, only conjectures exist
 - for K_n it is only known for up to ~ 12 vertices

- In practice, $\text{cr}(G)$ is often not computed directly but rather drawings of G are optimized with

...
Computing the Crossing Number

- Computing $\text{cr}(G)$ is NP-hard. ... even if G is a planar graph plus one edge! [Garey & Johnson '83] [Cabello & Mohar '08]

- $\text{cr}(G)$ often unknown, only conjectures exist
 - for K_n it is only known for up to ~ 12 vertices

- In practice, $\text{cr}(G)$ is often not computed directly but rather drawings of G are optimized with
 - force-based methods,
Computing the Crossing Number

- Computing $\text{cr}(G)$ is NP-hard.
 ... even if G is a planar graph plus one edge!

- $\text{cr}(G)$ often unknown, only conjectures exist
 - for K_n it is only known for up to ~ 12 vertices

- In practice, $\text{cr}(G)$ is often not computed directly but rather drawings of G are optimized with
 - force-based methods,
 - multidimensional scaling,
Computing the Crossing Number

- Computing $\text{cr}(G)$ is NP-hard.
 ... even if G is a planar graph plus one edge!

- $\text{cr}(G)$ often unknown, only conjectures exist
 - for K_n it is only known for up to ~ 12 vertices

- In practice, $\text{cr}(G)$ is often not computed directly but rather drawings of G are optimized with
 - force-based methods,
 - multidimensional scaling,
 - heuristics, ...
Computing the Crossing Number

- Computing $cr(G)$ is NP-hard.
 ... even if G is a planar graph plus one edge!

- $cr(G)$ often unknown, only conjectures exist
 - for K_n it is only known for up to ~ 12 vertices

- In practice, $cr(G)$ is often not computed directly but rather drawings of G are optimized with
 - force-based methods,
 - multidimensional scaling,
 - heuristics, ...

For exact computations, check out http://crossings.uos.de!
Computing the Crossing Number

- Computing $\text{cr}(G)$ is NP-hard.
 ... even if G is a planar graph plus one edge!
 \cite{Garey83} \cite{Cabello08}

- $\text{cr}(G)$ often unknown, only conjectures exist
 - for K_n it is only known for up to ~ 12 vertices

- In practice, $\text{cr}(G)$ is often not computed directly but rather drawings of G are optimized with
 - force-based methods,
 - multidimensional scaling,
 - heuristics, ...

- $\text{cr}(G)$ is a measure of how far G is from being planar.

For exact computations, check out http://crossings.uos.de!
Computing the Crossing Number

- Computing \(\text{cr}(G) \) is NP-hard.

 ... even if \(G \) is a planar graph plus one edge! \[Garey & Johnson '83\]
 \[Cabello & Mohar '08\]

- \(\text{cr}(G) \) often unknown, only conjectures exist

 - for \(K_n \) it is only known for up to \(\sim 12 \) vertices

- In practice, \(\text{cr}(G) \) is often not computed directly but rather drawings of \(G \) are optimized with

 - force-based methods,
 - multidimensional scaling,
 - heuristics, ...

- \(\text{cr}(G) \) is a measure of how far \(G \) is from being planar.

- Planarization, where we replace crossings with dummy vertices, also uses only heuristics.

For exact computations, check out http://crossings.uos.de!
Other Crossing Numbers

- Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)
Other Crossing Numbers

- Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)

- One-sided crossing minimization . . .
Other Crossing Numbers

- Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)
- One-sided crossing minimization . . .
- Fixed Linear Crossing Number
Other Crossing Numbers

- Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)
- One-sided crossing minimization . . .
- Fixed Linear Crossing Number
Other Crossing Numbers

- Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)
- One-sided crossing minimization . . .
- Fixed Linear Crossing Number
Other Crossing Numbers

- Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)
- One-sided crossing minimization . . .
- Fixed Linear Crossing Number
- In book embeddings
Other Crossing Numbers

- Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)
- One-sided crossing minimization . . .
- Fixed Linear Crossing Number
- In book embeddings
- Crossings of edge bundles
Other Crossing Numbers

- Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)
- One-sided crossing minimization . . .
- Fixed Linear Crossing Number
- In book embeddings
- Crossings of edge bundles
- On other surfaces, such as donuts
Other Crossing Numbers

- Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)
- One-sided crossing minimization . . .
- Fixed Linear Crossing Number
- In book embeddings
- Crossings of edge bundles
- On other surfaces, such as donuts
- Weighted crossings
Other Crossing Numbers

- Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)

- One-sided crossing minimization . . .

- Fixed Linear Crossing Number

- In book embeddings

- Crossings of edge bundles

- On other surfaces, such as donuts

- Weighted crossings

- Crossing minimization is NP-hard for most variants.
Definition.
For a graph G, the **rectilinear (straight-line) crossing number** $\overline{cr}(G)$ is the smallest number of crossings in a straight-line drawing of G.
Rectilinear Crossing Number

Definition.
For a graph G, the **rectilinear (straight-line) crossing number** $\overline{cr}(G)$ is the smallest number of crossings in a straight-line drawing of G.

Separation.
$cr(K_8) = 18$, but $\overline{cr}(K_8) = 19$.
Rectilinear Crossing Number

Definition. For a graph G, the **rectilinear (straight-line) crossing number** $\overline{cr}(G)$ is the smallest number of crossings in a straight-line drawing of G.

Separation. $cr(K_8) = 18$, but $\overline{cr}(K_8) = 19$.

Even more . . .

Lemma 1. [Bienstock, Dean ’93] For $k \geq 4$, there exists a graph G_k with $cr(G_k) = 4$ and $\overline{cr}(G_k) \geq k$.

Rectilinear Crossing Number

Definition. For a graph G, the **rectilinear (straight-line) crossing number** $\overline{cr}(G)$ is the smallest number of crossings in a straight-line drawing of G.

Separation. $cr(K_8) = 18$, but $\overline{cr}(K_8) = 19$.

Even more . . .

Lemma 1. [Bienstock, Dean '93] For $k \geq 4$, there exists a graph G_k with $cr(G_k) = 4$ and $\overline{cr}(G_k) \geq k$.
Rectilinear Crossing Number

Definition.
For a graph G, the **rectilinear (straight-line) crossing number** $\overline{cr}(G)$ is the smallest number of crossings in a straight-line drawing of G.

Separation.
$cr(K_8) = 18$, but $\overline{cr}(K_8) = 19$.

Even more . . .

Lemma 1. [Bienstock, Dean ’93]
For $k \geq 4$, there exists a graph G_k with $cr(G_k) = 4$ and $\overline{cr}(G_k) \geq k$.

- Each straight-line drawing of G_1 has at least one crossing of the following types:
Rectilinear Crossing Number

Definition. For a graph G, the **rectilinear (straight-line) crossing number** $\overline{cr}(G)$ is the smallest number of crossings in a straight-line drawing of G.

Separation. $cr(K_8) = 18$, but $\overline{cr}(K_8) = 19$.

Even more . . .

Lemma 1. [Bienstock, Dean '93]
For $k \geq 4$, there exists a graph G_k with $cr(G_k) = 4$ and $\overline{cr}(G_k) \geq k$.

- Each straight-line drawing of G_1 has at least one crossing of the following types:
- From G_1 to G_k do
Bounds for Complete Graphs

Theorem. \([\text{Guy '60}]\)

\[
\text{cr}(K_n) \leq \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n - 1}{2} \right\rfloor \left\lfloor \frac{n - 2}{2} \right\rfloor \left\lfloor \frac{n - 3}{2} \right\rfloor = \frac{3}{8} \binom{n}{4} + O(n^3)
\]
Bounds for Complete Graphs

Theorem. \[\text{cr}(K_n) \leq \frac{1}{4} \left[\frac{n}{2} \right] \left[\frac{n - 1}{2} \right] \left[\frac{n - 2}{2} \right] \left[\frac{n - 3}{2} \right] = \frac{3}{8} \binom{n}{4} + O(n^3) \] [Guy ’60]
Bounds for Complete Graphs

Theorem. [Guy ’60]

\[
\text{cr}(K_n) \leq \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor = \frac{3}{8} \binom{n}{4} + O(n^3)
\]
Bounds for Complete Graphs

Theorem. \[cr(K_n) \leq \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor = \frac{3}{8} \binom{n}{4} + O(n^3)\] [Guy ’60]
Bounds for Complete Graphs

Theorem. [Guy '60]

\[cr(K_n) \leq \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor = \frac{3}{8} \binom{n}{4} + O(n^3) \]
Bounds for Complete Graphs

Theorem. [Guy '60]

\[
\text{cr}(K_n) \leq \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor = \frac{3}{8} \binom{n}{4} + O(n^3)
\]
Bounds for Complete Graphs

Theorem. \[\text{cr}(K_n) \leq \frac{1}{4} \begin{bmatrix} n \\ 2 \end{bmatrix} \begin{bmatrix} n - 1 \\ 2 \end{bmatrix} \begin{bmatrix} n - 2 \\ 2 \end{bmatrix} \begin{bmatrix} n - 3 \\ 2 \end{bmatrix} = \frac{3}{8} \binom{n}{4} + O(n^3) \]

[Guy ’60]

Sylvester’s four-point problem
Bounds for Complete Graphs

Theorem. \[\text{cr}(K_n) \leq \frac{1}{4} \left(\binom{n}{2} \binom{n-1}{2} \binom{n-2}{2} \binom{n-3}{2} \right) = \frac{3}{8} \binom{n}{4} + O(n^3) \]

[Guy '60]

Conjecture. Sylvester's four-point problem
Bounds for Complete Graphs

Theorem. [Guy '60]

\[
\text{cr}(K_n) \leq \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor = \frac{3}{8} \binom{n}{4} + O(n^3)
\]

Bound is tight for \(n \leq 12 \).

Conjecture.

Sylvester’s four-point problem
Bounds for Complete Graphs

Theorem. \[\mathrm{cr}(K_n) \leq \frac{1}{4} \left[\frac{n}{2} \right] \left[\frac{n-1}{2} \right] \left[\frac{n-2}{2} \right] \left[\frac{n-3}{2} \right] = \frac{3}{8} \binom{n}{4} + O(n^3) \]

Bound is tight for \(n \leq 12 \).

Conjecture.

Theorem. \[\mathrm{cr}(K_{m,n}) \leq \frac{1}{4} \left[\frac{n}{2} \right] \left[\frac{n-1}{2} \right] \left[\frac{m}{2} \right] \left[\frac{m-1}{2} \right] \]

Sylvester’s four-point problem
Bounds for Complete Graphs

Theorem. [Guy ‘60]

\[
\text{cr}(K_n) \leq \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor = \frac{3}{8} \binom{n}{4} + O(n^3)
\]

Bound is tight for \(n \leq 12 \).

Theorem. [Zarankiewicz ’54, Urbaník ’55]

\[
\text{cr}(K_{m,n}) \leq \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{m}{2} \right\rfloor \left\lfloor \frac{m-1}{2} \right\rfloor
\]

Turán’s brick factory problem (1944)

Pál Turán
*1910 – 1976
Budapest, Hungary

Sylvester’s four-point problem
Bounds for Complete Graphs

Theorem. Conjecture. [Guy ’60]

\[
\text{cr}(K_n) \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{n-2}{2} \right\rceil \left\lceil \frac{n-3}{2} \right\rceil = \frac{3}{8} \binom{n}{4} + O(n^3)
\]

Bound is tight for \(n \leq 12 \).

Theorem. Conjecture. [Zarankiewicz ’54, Urbaník ’55]

\[
\text{cr}(K_{m,n}) \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{m}{2} \right\rceil \left\lceil \frac{m-1}{2} \right\rceil
\]

Turán’s brick factory problem (1944)

Sylvester’s four-point problem
Bounds for Complete Graphs

Theorem. \[\text{Conjecture.} \] [Guy ’60]

\[
\text{cr}(K_n) \leq 4 \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n - 1}{2} \right\rfloor \left\lfloor \frac{n - 2}{2} \right\rfloor \left\lfloor \frac{n - 3}{2} \right\rfloor = \frac{3}{8} \binom{n}{4} + O(n^3)
\]

Bound is tight for \(n \leq 12 \).

Theorem. \[\text{Conjecture.} \] [Zarankiewicz ’54, Urbaník ’55]

\[
\text{cr}(K_{m,n}) \leq 4 \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n - 1}{2} \right\rfloor \left\lfloor \frac{m}{2} \right\rfloor \left\lfloor \frac{m - 1}{2} \right\rfloor
\]

Theorem. [Lovász et al. ’04, Aichholzer et al. ’06]

\[
\left(\frac{3}{8} + \varepsilon \right) \binom{n}{4} + O(n^3) < \text{cr}(K_n) < 0.3807 \binom{n}{4} + O(n^3)
\]

Sylvester’s four-point problem
Bounds for Complete Graphs

Theorem. [Guy ’60]

\[
\text{cr}(K_n) \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{n-2}{2} \right\rceil \left\lceil \frac{n-3}{2} \right\rceil = \frac{3}{8} \binom{n}{4} + O(n^3)
\]

Bound is tight for \(n \leq 12 \).

Theorem. [Zarankiewicz ’54, Urbaník ’55]

\[
\text{cr}(K_{m,n}) \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{m}{2} \right\rceil \left\lceil \frac{m-1}{2} \right\rceil
\]

Theorem. [Lovász et al. ’04, Aichholzer et al. ’06]

\[
\left(\frac{3}{8} + \varepsilon\right) \binom{n}{4} + O(n^3) < \text{cr}(K_n) < 0.3807 \binom{n}{4} + O(n^3)
\]

Exact numbers are known for \(n \leq 27 \).
Bounds for Complete Graphs

Theorem. [Guy ’60]

\[
\text{cr}(K_n) \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{n-2}{2} \right\rceil \left\lceil \frac{n-3}{2} \right\rceil = \frac{3}{8} \binom{n}{4} + O(n^3)
\]

Bound is tight for \(n \leq 12 \).

Theorem. [Zarankiewicz ’54, Urbaník ’55]

\[
\text{cr}(K_{m,n}) \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{m}{2} \right\rceil \left\lceil \frac{m-1}{2} \right\rceil
\]

Theorem. [Lovász et al. ’04, Aichholzer et al. ’06]

\[
\left(\frac{3}{8} + \varepsilon \right) \binom{n}{4} + O(n^3) < \text{cr}(K_n) < 0.3807 \binom{n}{4} + O(n^3)
\]

Exact numbers are known for \(n \leq 27 \).

Check out http://www.ist.tugraz.at/staff/aichholzer/crossings.html!
First Lower Bounds on $\text{cr}(G)$

Lemma 2.
For a graph G with n vertices and m edges,

$$\text{cr}(G) \geq m - 3n + 6.$$
First Lower Bounds on $\text{cr}(G)$

Lemma 2.
For a graph G with n vertices and m edges,

$$\text{cr}(G) \geq m - 3n + 6.$$

Proof.

- Consider a drawing of G with $\text{cr}(G)$ crossings.
First Lower Bounds on $\text{cr}(G)$

Lemma 2.
For a graph G with n vertices and m edges,

$$\text{cr}(G) \geq m - 3n + 6.$$

Proof.

- Consider a drawing of G with $\text{cr}(G)$ crossings.
- Obtain a graph H by turning crossings into dummy vertices.

Proof.

- Consider a drawing of G with $\text{cr}(G)$ crossings.
- Obtain a graph H by turning crossings into dummy vertices.
First Lower Bounds on $\text{cr}(G)$

Lemma 2.
For a graph G with n vertices and m edges,
\[
\text{cr}(G) \geq m - 3n + 6.
\]

Proof.
- Consider a drawing of G with $\text{cr}(G)$ crossings.
- Obtain a graph H by turning crossings into dummy vertices.
- H has $n + \text{cr}(G)$ vertices and $m + 2\text{cr}(G)$ edges.
First Lower Bounds on $\text{cr}(G)$

Lemma 2.
For a graph G with n vertices and m edges,

$$\text{cr}(G) \geq m - 3n + 6.$$

Proof.
- Consider a drawing of G with $\text{cr}(G)$ crossings.
- Obtain a graph H by turning crossings into dummy vertices.
- H has $n + \text{cr}(G)$ vertices and $m + 2\text{cr}(G)$ edges.
- H is planar, so

$$m + 2\text{cr}(G) \leq 3(n + \text{cr}(G)) - 6. \quad \square$$

Proof.

- Consider a drawing of G with $\text{cr}(G)$ crossings.
- Obtain a graph H by turning crossings into dummy vertices.
- H has $n + \text{cr}(G)$ vertices and $m + 2\text{cr}(G)$ edges.
- H is planar, so

$$m + 2\text{cr}(G) \leq 3(n + \text{cr}(G)) - 6. \quad \square$$

Proof.

- Consider a drawing of G with $\text{cr}(G)$ crossings.
- Obtain a graph H by turning crossings into dummy vertices.
- H has $n + \text{cr}(G)$ vertices and $m + 2\text{cr}(G)$ edges.
- H is planar, so

$$m + 2\text{cr}(G) \leq 3(n + \text{cr}(G)) - 6. \quad \square$$

Proof.

- Consider a drawing of G with $\text{cr}(G)$ crossings.
- Obtain a graph H by turning crossings into dummy vertices.
- H has $n + \text{cr}(G)$ vertices and $m + 2\text{cr}(G)$ edges.
- H is planar, so

$$m + 2\text{cr}(G) \leq 3(n + \text{cr}(G)) - 6. \quad \square$$
First Lower Bounds on $\text{cr}(G)$

Lemma 2.
For a graph G with n vertices and m edges,

$$\text{cr}(G) \geq m - 3n + 6.$$

Proof.

- Consider a drawing of G with $\text{cr}(G)$ crossings.
- Obtain a graph H by turning crossings into dummy vertices.
- H has $n + \text{cr}(G)$ vertices and $m + 2\text{cr}(G)$ edges.
- H is planar, so

$$m + 2\text{cr}(G) \leq 3(n + \text{cr}(G)) - 6.$$

Consider this bound for graphs with $\Theta(n)$ and $\Theta(n^2)$ many edges.
First Lower Bounds on \(cr(G) \)

Lemma 3.

For a non-planar graph \(G \) with \(n \) vertices and \(m \) edges,

\[
\text{cr}(G) \geq r \cdot \left(\frac{\lfloor m/r \rfloor}{2} \right) \in \Omega \left(\frac{m^2}{n} \right)
\]

where \(r \leq 3n - 6 \) is the maximum number of edges in a planar subgraph of \(G \).
First Lower Bounds on \(\text{cr}(G) \)

Lemma 3.
For a non-planar graph \(G \) with \(n \) vertices and \(m \) edges,

\[
\text{cr}(G) \geq r \cdot \left(\frac{\lfloor m/r \rfloor}{2} \right) \in \Omega \left(\frac{m^2}{n} \right)
\]

where \(r \leq 3n - 6 \) is the maximum number of edges in a planar subgraph of \(G \).

Proof sketch.
- Take \(\lfloor m/r \rfloor \) edge-disjoint subgraphs of \(G \) with \(r \) edges.
First Lower Bounds on $\text{cr}(G)$

Lemma 3.
For a non-planar graph G with n vertices and m edges,

$$\text{cr}(G) \geq r \cdot \left(\left\lfloor \frac{m}{r} \right\rfloor \right)^2 \in \Omega \left(\frac{m^2}{n} \right)$$

where $r \leq 3n - 6$ is the maximum number of edges in a planar subgraph of G.

Proof sketch.
- Take $\left\lfloor \frac{m}{r} \right\rfloor$ edge-disjoint subgraphs of G with r edges.
- In the best case, they are all planar.
First Lower Bounds on $\text{cr}(G)$

Lemma 3.
For a non-planar graph G with n vertices and m edges,

$$\text{cr}(G) \geq r \cdot \left(\left\lfloor \frac{m}{r} \right\rfloor \right)^2 \in \Omega \left(\frac{m^2}{n} \right)$$

where $r \leq 3n - 6$ is the maximum number of edges in a planar subgraph of G.

Proof sketch.
- Take $\left\lfloor \frac{m}{r} \right\rfloor$ edge-disjoint subgraphs of G with r edges.
- In the best case, they are all planar.
- For every $i < j$, any edge of G_j induces at least one crossing with G_i.
 (If not, swap edges to reduce $\text{cr}(G_i)$.)
First Lower Bounds on \(\text{cr}(G) \)

Lemma 3.
For a non-planar graph \(G \) with \(n \) vertices and \(m \) edges,

\[
\text{cr}(G) \geq r \cdot \left(\frac{\lfloor m/r \rfloor}{2} \right) \in \Omega \left(\frac{m^2}{n} \right)
\]

where \(r \leq 3n - 6 \) is the maximum number of edges in a planar subgraph of \(G \).

Proof sketch.
- Take \(\lfloor m/r \rfloor \) edge-disjoint subgraphs of \(G \) with \(r \) edges.
- In the best case, they are all planar.
- For every \(i < j \), any edge of \(G_j \) induces at least one crossing with \(G_i \).
 (If not, swap edges to reduce \(\text{cr}(G_i) \).)
Visualization of Graphs

Lecture 11:
The Crossing Lemma
and its Applications

Part IV:
The Crossing Lemma

Alexander Wolff
1973 Erdős and Guy conjectured that $\text{cr}(G) \in \Omega(m^3/n^2)$.
The Crossing Lemma

- 1973 Erdős and Guy conjectured that \(\text{cr}(G) \in \Omega(m^3/n^2) \).

- In 1982 Leighton and, independently, Ajtai, Chávtal, Newborn, and Szemerédi showed that

\[
\text{cr}(G) \geq \frac{1}{64} \cdot \frac{m^3}{n^2}.
\]
The Crossing Lemma

- 1973 Erdős and Guy conjectured that \(\text{cr}(G') \in \Omega(m^3/n^2) \).

- In 1982 Leighton and, independently, Ajtai, Chávtal, Newborn, and Szemerédi showed that

\[
\text{cr}(G') \geq \frac{1}{64} \cdot \frac{m^3}{n^2}.
\]

Consider this bound for graphs with \(\Theta(n) \) and \(\Theta(n^2) \) many edges.
The Crossing Lemma

- 1973 Erdős and Guy conjectured that \(\text{cr}(G) \in \Omega(m^3/n^2) \).

- In 1982 Leighton and, independently, Ajtai, Chávtal, Newborn, and Szemerédi showed that

\[
\text{cr}(G) \geq \frac{1}{64} \cdot \frac{m^3}{n^2}.
\]

- Bound is asymptotically tight.

Consider this bound for graphs with \(\Theta(n) \) and \(\Theta(n^2) \) many edges.
The Crossing Lemma

- 1973 Erdős and Guy conjectured that \(\text{cr}(G) \in \Omega(m^3/n^2) \).

- In 1982 Leighton and, independently, Ajtai, Chávtal, Newborn, and Szemerédi showed that

 \[
 \text{cr}(G) \geq \frac{1}{64} \cdot \frac{m^3}{n^2}.
 \]

- Bound is asymptotically tight.

- Result stayed hardly known until Székely demonstrated its usefulness (in 1997).

Consider this bound for graphs with \(\Theta(n) \) and \(\Theta(n^2) \) many edges.
The Crossing Lemma

- 1973 Erdős and Guy conjectured that \(\text{cr}(G) \in \Omega(m^3/n^2) \).
- In 1982 Leighton and, independently, Ajtai, Chávtal, Newborn, and Szemerédi showed that
 \[
 \text{cr}(G) \geq \frac{1}{64} \cdot \frac{m^3}{n^2}.
 \]
- Bound is asymptotically tight.
- Result stayed hardly known until Székely demonstrated its usefulness (in 1997).
- We go through the proof from “THE BOOK” by Chazelle, Sharir, and Welzl.
The Crossing Lemma

- 1973 Erdős and Guy conjectured that $\text{cr}(G) \in \Omega(m^3/n^2)$.

- In 1982 Leighton and, independently, Ajtai, Chávtal, Newborn, and Szemerédi showed that
 \[
 \text{cr}(G) \geq \frac{1}{64} \cdot \frac{m^3}{n^2}.
 \]

- Bound is asymptotically tight.

- Result stayed hardly known until Székely demonstrated its usefulness (in 1997).

- We go through the proof from “THE BOOK” by Chazelle, Sharir, and Welzl.

- Factor $\frac{1}{64}$ was later (with intermediate steps) improved to $\frac{1}{29}$ by Ackerman in 2013.

Consider this bound for graphs with $\Theta(n)$ and $\Theta(n^2)$ many edges.
The Crossing Lemma

Crossing Lemma.
For a graph G with n vertices and m edges, $m \geq 4n$,
$$\text{cr}(G) \geq \frac{1}{64} \cdot \frac{m^3}{n^2}.$$
The Crossing Lemma

Proof.
- Consider a crossing-minimal drawing of G.

Crossing Lemma.
For a graph G with n vertices and m edges, $m \geq 4n$,

$$\text{cr}(G) \geq \frac{1}{64} \cdot \frac{m^3}{n^2}.$$
The Crossing Lemma

Crossing Lemma. For a graph G with n vertices and m edges, $m \geq 4n$,
\[
\text{cr}(G) \geq \frac{1}{64} \cdot \frac{m^3}{n^2}.
\]

Proof.

- Consider a crossing-minimal drawing of G.
- Let p be a number in $(0, 1]$.
The Crossing Lemma

Crossing Lemma.
For a graph G with n vertices and m edges, $m \geq 4n$, $cr(G) \geq \frac{1}{64} \cdot \frac{m^3}{n^2}$.

Proof.
- Consider a crossing-minimal drawing of G.
- Let p be a number in $(0, 1]$.
- Keep every vertex of G independently with probability p.
The Crossing Lemma

Proof.

- Consider a crossing-minimal drawing of G.
- Let p be a number in $(0, 1]$.
- Keep every vertex of G independently with probability p.
- $G_p = \text{remaining graph (with drawing } \Gamma_p)$.
- Let n_p, m_p, X_p be the random variables counting the numbers of vertices / edges / crossings of Γ_p, resp.

Crossing Lemma.

For a graph G with n vertices and m edges, $m \geq 4n$,

$$\text{cr}(G) \geq \frac{1}{64} \cdot \frac{m^3}{n^2}.$$
The Crossing Lemma

Crossing Lemma.
For a graph G with n vertices and m edges, $m \geq 4n$,
$$\text{cr}(G) \geq \frac{1}{64} \cdot \frac{m^3}{n^2}. $$

Proof.
- Consider a crossing-minimal drawing of G.
- Let p be a number in $(0, 1]$.
- Keep every vertex of G independently with probability p.
- $G_p =$ remaining graph (with drawing Γ_p).
- Let n_p, m_p, X_p be the random variables counting the numbers of vertices / edges / crossings of Γ_p, resp.
- By Lemma 2, $\text{cr}(G_p) - m_p + 3n_p \geq 6.$
The Crossing Lemma

Crossing Lemma. For a graph G with n vertices and m edges, $m \geq 4n$, \[
\text{cr}(G) \geq \frac{1}{64} \cdot \frac{m^3}{n^2}.
\]

Proof.

- Consider a crossing-minimal drawing of G.
- Let p be a number in $(0, 1]$.
- Keep every vertex of G independently with probability p.
- $G_p = \text{remaining graph (with drawing } \Gamma_p\text{)}$.
- Let n_p, m_p, X_p be the random variables counting the numbers of vertices / edges / crossings of Γ_p, resp.
- By Lemma 2, $\text{cr}(G_p) - m_p + 3n_p \geq 6$.
 \[\Rightarrow E(X_p - m_p + 3n_p) \geq 0.\]
The Crossing Lemma

Crossing Lemma.
For a graph G with n vertices and m edges, $m \geq 4n$,
\[
\text{cr}(G) \geq \frac{1}{64} \cdot \frac{m^3}{n^2}.
\]

Proof.
- Consider a crossing-minimal drawing of G.
- Let p be a number in $(0, 1]$.
- Keep every vertex of G independently with probability p.
- $G_p = \text{remaining graph (with drawing } \Gamma_p \text{)}$.
- Let n_p, m_p, X_p be the random variables counting the numbers of vertices / edges / crossings of Γ_p, resp.
- By Lemma 2, $\text{cr}(G_p) - m_p + 3n_p \geq 6$.
 \[
 \Rightarrow \mathbb{E}(X_p - m_p + 3n_p) \geq 0.
 \]
The Crossing Lemma

Crossing Lemma. For a graph G with n vertices and m edges, $m \geq 4n$,
$$\text{cr}(G) \geq \frac{1}{64} \cdot \frac{m^3}{n^2}.$$

Proof.
- Consider a crossing-minimal drawing of G.
- Let p be a number in $(0, 1]$.
- Keep every vertex of G independently with probability p.
- $G_p =$ remaining graph (with drawing Γ_p).
- Let n_p, m_p, X_p be the random variables counting the numbers of vertices / edges / crossings of Γ_p, resp.
- By Lemma 2, $\text{cr}(G_p) - m_p + 3n_p \geq 6$.
 \[\Rightarrow \mathbb{E}(X_p - m_p + 3n_p) \geq 0. \]
The Crossing Lemma

Crossing Lemma.
For a graph G with n vertices and m edges, $m \geq 4n,$
\[
\text{cr}(G) \geq \frac{1}{64} \cdot \frac{m^3}{n^2}.
\]

Proof.
- Consider a crossing-minimal drawing of $G.$
- Let p be a number in $(0, 1].$
- Keep every vertex of G independently with probability $p.$
- $G_p = \text{remaining graph (with drawing } \Gamma_p).$
- Let n_p, m_p, X_p be the random variables counting the numbers of vertices / edges / crossings of $\Gamma_p,$ resp.
- By Lemma 2, $\text{cr}(G_p) - m_p + 3n_p \geq 6.$
 \[\Rightarrow \mathbb{E}(X_p - m_p + 3n_p) \geq 0.\]

$\mathbb{E}(n_p) = pn$ and $\mathbb{E}(m_p) = p^2 m$
The Crossing Lemma

Crossing Lemma.
For a graph G with n vertices and m edges, $m \geq 4n$,
$$\text{cr}(G) \geq \frac{1}{64} \cdot \frac{m^3}{n^2}.$$

Proof.

- Consider a crossing-minimal drawing of G.
- Let p be a number in $(0, 1]$.
- Keep every vertex of G independently with probability p.
- $G_p = \text{remaining graph (with drawing } \Gamma_p).$
- Let n_p, m_p, X_p be the random variables counting the numbers of vertices / edges / crossings of Γ_p, resp.
- By Lemma 2, $\text{cr}(G_p) - m_p + 3n_p \geq 6$.
 $$\Rightarrow \mathbb{E}(X_p - m_p + 3n_p) \geq 0.$$
The Crossing Lemma

Crossing Lemma.
For a graph G with n vertices and m edges, $m \geq 4n$,
\[
\text{cr}(G) \geq \frac{1}{64} \cdot \frac{m^3}{n^2}.
\]

Proof.

- Consider a crossing-minimal drawing of G.
- Let p be a number in $(0, 1]$.
- Keep every vertex of G independently with probability p.
- $G_p = \text{remaining graph (with drawing } \Gamma_p\text{)}$.
- Let n_p, m_p, X_p be the random variables counting the numbers of vertices / edges / crossings of Γ_p, resp.
- By Lemma 2, $\text{cr}(G_p) - m_p + 3n_p \geq 6$.
- \[\Rightarrow \mathbb{E}(X_p - m_p + 3n_p) \geq 0.\]
- \[\mathbb{E}(n_p) = pn \text{ and } \mathbb{E}(m_p) = p^2m\]
- \[\mathbb{E}(X_p) = p^4\text{cr}(G)\]
The Crossing Lemma

Crossing Lemma.
For a graph G with n vertices and m edges, $m \geq 4n,$
\[\text{cr}(G) \geq \frac{1}{64} \cdot \frac{m^3}{n^2}. \]

Proof.
- Consider a crossing-minimal drawing of G.
- Let p be a number in $(0, 1]$.
- Keep every vertex of G independently with probability p.
- G_p = remaining graph (with drawing Γ_p).
- Let n_p, m_p, X_p be the random variables counting the numbers of vertices / edges / crossings of Γ_p, resp.
- By Lemma 2, $\text{cr}(G_p) - m_p + 3n_p \geq 6$.
 \[\Rightarrow \mathbb{E}(X_p - m_p + 3n_p) \geq 0. \]

- $\mathbb{E}(n_p) = pn$ and $\mathbb{E}(m_p) = p^2m$
- $\mathbb{E}(X_p) = p^4\text{cr}(G)$
- $0 \leq \mathbb{E}(X_p) - \mathbb{E}(m_p) + 3\mathbb{E}(n_p)$
The Crossing Lemma

Crossing Lemma.
For a graph G with n vertices and m edges, $m \geq 4n$,
$$
\text{cr}(G) \geq \frac{1}{64} \cdot \frac{m^3}{n^2}.
$$

Proof.

- Consider a crossing-minimal drawing of G.
- Let p be a number in $(0, 1]$.
- Keep every vertex of G independently with probability p.
- $G_p = \text{remaining graph (with drawing } \Gamma_p \text{)}$.
- Let n_p, m_p, X_p be the random variables counting the numbers of vertices / edges / crossings of Γ_p, resp.
- By Lemma 2, $\text{cr}(G_p) - m_p + 3n_p \geq 6$.
 \[\Rightarrow \mathbb{E}(X_p - m_p + 3n_p) \geq 0. \]

\[\begin{align*}
\mathbb{E}(n_p) &= pn \text{ and } \mathbb{E}(m_p) = p^2m \\
\mathbb{E}(X_p) &= p^4 \text{cr}(G) \\
0 &\leq \mathbb{E}(X_p) - \mathbb{E}(m_p) + 3\mathbb{E}(n_p) \\
&= p^4 \text{cr}(G) - p^2m + 3pn
\end{align*} \]
The Crossing Lemma

Crossing Lemma.
For a graph G with n vertices and m edges, $m \geq 4n$,
$$\text{cr}(G) \geq \frac{1}{64} \cdot \frac{m^3}{n^2}.$$

Proof.

- Consider a crossing-minimal drawing of G.
- Let p be a number in $(0, 1]$.
- Keep every vertex of G independently with probability p.
- Let $G_p = \text{remaining graph (with drawing } \Gamma_p)$.
- Let n_p, m_p, X_p be the random variables counting the numbers of vertices / edges / crossings of Γ_p, resp.
- By Lemma 2, $\text{cr}(G_p) - m_p + 3n_p \geq 6$.
 \[\Rightarrow E(X_p - m_p + 3n_p) \geq 0. \]
- $E(n_p) = pn$ and $E(m_p) = p^2m$
- $E(X_p) = p^4\text{cr}(G)$
- $0 \leq E(X_p) - E(m_p) + 3E(n_p)$
 \[= p^4\text{cr}(G) - p^2m + 3pn \]
- $\text{cr}(G) \geq \frac{p^2m - 3pn}{p^4}$
The Crossing Lemma

Crossing Lemma.
For a graph G with n vertices and m edges, $m \geq 4n$,

$$\text{cr}(G) \geq \frac{1}{64} \cdot \frac{m^3}{n^2}.$$

Proof.

- Consider a crossing-minimal drawing of G.
- Let p be a number in $(0, 1]$.
- Keep every vertex of G independently with probability p.
- G_p = remaining graph (with drawing Γ_p).
- Let n_p, m_p, X_p be the random variables counting the numbers of vertices / edges / crossings of Γ_p, resp.
- By Lemma 2, $\text{cr}(G_p) = m_p + 3n_p \geq 6$.

$$\Rightarrow \mathbb{E}(X_p - m_p + 3n_p) \geq 0.$$

- $\mathbb{E}(n_p) = pn$ and $\mathbb{E}(m_p) = p^2m$
- $\mathbb{E}(X_p) = p^4\text{cr}(G)$
- $0 \leq \mathbb{E}(X_p) - \mathbb{E}(m_p) + 3\mathbb{E}(n_p) = p^4\text{cr}(G) - p^2m + 3pn$
- $\text{cr}(G) \geq \frac{p^2m - 3pn}{p^4} = \frac{m}{p^2} - \frac{3n}{p^3}$
The Crossing Lemma

Crossing Lemma.
For a graph G with n vertices and m edges, $m \geq 4n$,
$$\text{cr}(G) \geq \frac{1}{64} \cdot \frac{m^3}{n^2}.$$

Proof.
- Consider a crossing-minimal drawing of G.
- Let p be a number in $(0, 1]$.
- Keep every vertex of G independently with probability p.
- $G_p = \text{remaining graph (with drawing } \Gamma_p\text{)}$.
- Let n_p, m_p, X_p be the random variables counting the numbers of vertices / edges / crossings of Γ_p, resp.
- By Lemma 2, $\text{cr}(G_p) - m_p + 3n_p \geq 6$.
 $$\Rightarrow \mathbb{E}(X_p - m_p + 3n_p) \geq 0.$$
- $\mathbb{E}(n_p) = pn$ and $\mathbb{E}(m_p) = p^2m$
- $\mathbb{E}(X_p) = p^4\text{cr}(G)$
- $0 \leq \mathbb{E}(X_p) - \mathbb{E}(m_p) + 3\mathbb{E}(n_p)$
 $$= p^4\text{cr}(G) - p^2m + 3pn$$
- $\text{cr}(G) \geq \frac{p^2m - 3pn}{p^4} = \frac{m}{p^2} - \frac{3n}{p^3}$
- Set $p = \frac{4n}{m}$.

The Crossing Lemma

Crossing Lemma.
For a graph G with n vertices and m edges, $m \geq 4n$,
\[\text{cr}(G) \geq \frac{1}{64} \cdot \frac{m^3}{n^2}. \]

Proof.
- Consider a crossing-minimal drawing of G.
- Let p be a number in $(0, 1]$.
- Keep every vertex of G independently with probability p.
- G_p = remaining graph (with drawing Γ_p).
- Let n_p, m_p, X_p be the random variables counting the numbers of vertices / edges / crossings of Γ_p, resp.
- By Lemma 2, $\text{cr}(G_p) - m_p + 3n_p \geq 6$.
 \[\Rightarrow \mathbb{E}(X_p - m_p + 3n_p) \geq 0. \]
- $\mathbb{E}(n_p) = pn$ and $\mathbb{E}(m_p) = p^2 m$
- $\mathbb{E}(X_p) = p^4 \text{cr}(G)$
- $0 \leq \mathbb{E}(X_p) - \mathbb{E}(m_p) + 3\mathbb{E}(n_p)$
 \[= p^4 \text{cr}(G') - p^2 m + 3pn \]
- $\text{cr}(G) \geq \frac{p^2 m - 3pn}{p^4} = \frac{m}{p^2} - \frac{3n}{p^3}$
- Set $p = \frac{4n}{m}$.
- \[\text{cr}(G') \geq \frac{m}{p^2} - \frac{3n}{p^3} \]

\[
\boxed{\text{cr}(G) \geq \frac{1}{64} \cdot \frac{m^3}{n^2}.}
\]
The Crossing Lemma

Crossing Lemma. For a graph G with n vertices and m edges, $m \geq 4n$, \[
\text{cr}(G) \geq \frac{1}{64} \cdot \frac{m^3}{n^2}.
\]

Proof.

- Consider a crossing-minimal drawing of G.
- Let p be a number in $(0, 1]$.
- Keep every vertex of G independently with probability p.
- $G_p = \text{remaining graph (with drawing } \Gamma_p).$
- Let n_p, m_p, X_p be the random variables counting the numbers of vertices / edges / crossings of Γ_p, resp.
- By Lemma 2, $\text{cr}(G_p) - m_p + 3n_p \geq 6.$ \[\Rightarrow \mathbb{E}(X_p - m_p + 3n_p) \geq 0.\]

- $\mathbb{E}(n_p) = pn$ and $\mathbb{E}(m_p) = p^2m$.
- $\mathbb{E}(X_p) = p^4\text{cr}(G)$.
- $0 \leq \mathbb{E}(X_p) - \mathbb{E}(m_p) + 3\mathbb{E}(n_p) = p^4\text{cr}(G) - p^2m + 3pn$.
- $\text{cr}(G) \geq \frac{p^2m - 3pn}{p^4} = \frac{m}{p^2} - \frac{3n}{p^3}$.
- Set $p = \frac{4n}{m}$.
- $\text{cr}(G) \geq \frac{m^3}{16n^2} - \frac{3m^3}{64n^2}.$
The Crossing Lemma

The Crossing Lemma.
For a graph G with n vertices and m edges, $m \geq 4n$,

$$\text{cr}(G) \geq \frac{1}{64} \cdot \frac{m^3}{n^2}.$$

Proof.

- Consider a crossing-minimal drawing of G.
- Let p be a number in $(0, 1]$.
- Keep every vertex of G independently with probability p.
- Let G_p = remaining graph (with drawing Γ_p).
- Let n_p, m_p, X_p be the random variables counting the numbers of vertices / edges / crossings of Γ_p, resp.
- By Lemma 2, $\text{cr}(G_p) - m_p + 3n_p \geq 6$.
 \[\Rightarrow \mathbb{E}(X_p - m_p + 3n_p) \geq 0. \]

\[\mathbb{E}(n_p) = pn \text{ and } \mathbb{E}(m_p) = p^2 m \]

\[\mathbb{E}(X_p) = p^4 \text{cr}(G) \]

\[0 \leq \mathbb{E}(X_p) - \mathbb{E}(m_p) + 3\mathbb{E}(n_p) = p^4 \text{cr}(G) - p^2 m + 3pn \]

\[\text{cr}(G) \geq \frac{p^2 m - 3pn}{p^4} = \frac{m}{p^2} - \frac{3n}{p^3} \]

Set $p = \frac{4n}{m}$.

\[\text{cr}(G) \geq \frac{m^3}{16n^2} - \frac{3m^3}{64n^2} = \frac{1}{64} \cdot \frac{m^3}{n^2} \]

\[\square \]
Visualization of Graphs

Lecture 11:
The Crossing Lemma
and its Applications

Part V:
Applications

Alexander Wolff
Application 1: Point–Line Incidences

- For a set $P \subset \mathbb{R}^2$ of points and a set \mathcal{L} of lines, let $I(P, \mathcal{L}) = \text{number of point–line incidences in } (P, \mathcal{L})$.
Application 1: Point–Line Incidences

For a set $P \subset \mathbb{R}^2$ of points and a set \mathcal{L} of lines, let $I(P, \mathcal{L}) =$ number of point–line incidences in (P, \mathcal{L}).
Application 1: Point–Line Incidences

- For a set $P \subset \mathbb{R}^2$ of points and a set \mathcal{L} of lines, let $I(P, \mathcal{L}) = \text{number of point–line incidences in } (P, \mathcal{L})$.

\[P \quad \mathcal{L} \]
Application 1: Point–Line Incidences

For a set \(P \subset \mathbb{R}^2 \) of points and a set \(\mathcal{L} \) of lines, let \(I(P, \mathcal{L}) \) = number of point–line incidences in \((P, \mathcal{L}) \).

\[\Rightarrow I(P, \mathcal{L}) = \]
Application 1: Point–Line Incidences

- For a set \(P \subset \mathbb{R}^2 \) of points and a set \(\mathcal{L} \) of lines, let \(I(P, \mathcal{L}) = \) number of point–line incidences in \((P, \mathcal{L})\).

\[
\Rightarrow I(P, \mathcal{L}) = \]

\[\begin{array}{llll}
1 & 2 & 3 & \\
P & & & \\
\mathcal{L} & & & \\
\end{array}\]
Application 1: Point–Line Incidences

For a set $P \subset \mathbb{R}^2$ of points and a set \mathcal{L} of lines, let $I(P, \mathcal{L}) = \text{number of point–line incidences in } (P, \mathcal{L})$.

$$\Rightarrow I(P, \mathcal{L}) = 10$$
Application 1: Point–Line Incidences

- For a set $P \subset \mathbb{R}^2$ of points and a set \mathcal{L} of lines, let $I(P, \mathcal{L}) = \text{number of point–line incidences in } (P, \mathcal{L})$.

\[\Rightarrow I(P, \mathcal{L}) = 10 \]

- Define $I(n, k) = \max_{|P|=n, |\mathcal{L}|=k} I(P, \mathcal{L})$.

\[\mathcal{L} \]

\[P \]

\[3 \]

\[3 \]

\[2 \]

\[2 \]
For a set $P \subset \mathbb{R}^2$ of points and a set \mathcal{L} of lines, let $I(P, \mathcal{L}) =$ number of point–line incidences in (P, \mathcal{L}).

For a set $P \subset \mathbb{R}^2$ of points and a set \mathcal{L} of lines, let $I(P, \mathcal{L}) =$ number of point–line incidences in (P, \mathcal{L}).

Define $I(n, k) = \max_{|P|=n, |\mathcal{L}|=k} I(P, \mathcal{L})$.

For example: $I(4, 4) =$
Application 1: Point–Line Incidences

- For a set $P \subset \mathbb{R}^2$ of points and a set \mathcal{L} of lines, let $I(P, \mathcal{L}) =$ number of point–line incidences in (P, \mathcal{L}).

- Define $I(n, k) = \max_{|P|=n, |\mathcal{L}|=k} I(P, \mathcal{L})$.

- For example: $I(4, 4) =$

\[
\begin{array}{c}
\mathcal{L} \\
\quad 3 \\
\quad 2 \\
\quad 3 \\
P \\
\quad 2 \\
\quad 3 \\
\end{array}
\]

$\Rightarrow I(P, \mathcal{L}) = 10$
Application 1: Point–Line Incidences

- For a set $P \subset \mathbb{R}^2$ of points and a set \mathcal{L} of lines, let $I(P, \mathcal{L}) = \text{number of point–line incidences in } (P, \mathcal{L})$.

\[\Rightarrow I(P, \mathcal{L}) = 10 \]

- Define $I(n, k) = \max_{|P|=n, |\mathcal{L}|=k} I(P, \mathcal{L})$.

- For example: $I(4, 4) =$
Application 1: Point–Line Incidences

- For a set $P \subset \mathbb{R}^2$ of points and a set \mathcal{L} of lines, let $I(P, \mathcal{L}) = \text{number of point–line incidences in } (P, \mathcal{L})$.

- Define $I(n, k) = \max_{|P|=n, |\mathcal{L}|=k} I(P, \mathcal{L})$.

- For example: $I(4, 4) =$

\[
\begin{array}{ccc}
& & 3 \\
3 & & 8 \\
& & 9 \\
\end{array}
\]
Application 1: Point–Line Incidences

- For a set \(P \subset \mathbb{R}^2 \) of points and a set \(\mathcal{L} \) of lines, let \(I(P, \mathcal{L}) \) = number of point–line incidences in \((P, \mathcal{L})\).

\[
\Rightarrow I(P, \mathcal{L}) = 10
\]

- Define \(I(n, k) = \max_{|P|=n,|\mathcal{L}|=k} I(P, \mathcal{L}). \)

- For example: \(I(4, 4) = 9 \)
Application 1: Point–Line Incidences

- For a set $P \subset \mathbb{R}^2$ of points and a set \mathcal{L} of lines, let $I(P, \mathcal{L}) =$ number of point–line incidences in (P, \mathcal{L}).

- Define $I(n, k) = \max_{|P|=n, |\mathcal{L}|=k} I(P, \mathcal{L})$.

- For example: $I(4, 4) = 9$

Theorem 1. ([Szemerédi, Trotter ’83, Székely ’97] $I(n, k) \leq 2.7n^{2/3}k^{2/3} + 6n + 2k$.)
Application 1: Point–Line Incidences

- For a set $P \subset \mathbb{R}^2$ of points and a set \mathcal{L} of lines, let $I(P, \mathcal{L}) = \text{number of point–line incidences in } (P, \mathcal{L})$.

\[\Rightarrow I(P, \mathcal{L}) = 10\]

- Define $I(n, k) = \max_{|P|=n, |\mathcal{L}|=k} I(P, \mathcal{L})$.

- For example: $I(4, 4) = 9$

Theorem 1.
[Szemerédi, Trotter ’83, Székely ’97]
\[I(n, k) \leq c(n^{2/3}k^{2/3} + n + k)\]
Application 1: Point–Line Incidences

- For a set $P \subset \mathbb{R}^2$ of points and a set \mathcal{L} of lines, let $I(P, \mathcal{L})$ = number of point–line incidences in (P, \mathcal{L}).

\[\Rightarrow I(P, \mathcal{L}) = 10 \]

- Define $I(n, k) = \max_{|P|=n, |\mathcal{L}|=k} I(P, \mathcal{L})$.

- For example: $I(4, 4) = 9$

Theorem 1.
[Szemerédi, Trotter '83, Székely '97]
\[I(n, k) \leq c\left(n^{2/3}k^{2/3} + n + k\right). \]

Proof.
Application 1: Point–Line Incidences

- For a set $P \subset \mathbb{R}^2$ of points and a set \mathcal{L} of lines, let $I(P, \mathcal{L}) =$ number of point–line incidences in (P, \mathcal{L}).

$\Rightarrow I(P, \mathcal{L}) = 10$

- Define $I(n, k) = \max_{|P|=n, |\mathcal{L}|=k} I(P, \mathcal{L})$.

- For example: $I(4, 4) = 9$

Theorem 1.
[Szemerédi, Trotter '83, Székely '97]
$I(n, k) \leq c(n^{2/3}k^{2/3} + n + k)$.

Proof.
Application 1: Point–Line Incidences

For a set \(P \subset \mathbb{R}^2 \) of points and a set \(\mathcal{L} \) of lines, let \(I(P, \mathcal{L}) = \) number of point–line incidences in \((P, \mathcal{L})\).

\[\Rightarrow I(P, \mathcal{L}) = 10 \]

Define \(I(n, k) = \max_{|P|=n, |\mathcal{L}|=k} I(P, \mathcal{L}). \)

For example: \(I(4, 4) = 9 \)

Theorem 1.
[Szemerédi, Trotter '83, Székely '97]
\[I(n, k) \leq c(n^{2/3}k^{2/3} + n + k). \]

Proof.
\[\text{cr}(G) \leq k^2 \]
Application 1: Point–Line Incidences

- For a set $P \subset \mathbb{R}^2$ of points and a set \mathcal{L} of lines, let $I(P, \mathcal{L}) = \text{number of point–line incidences in } (P, \mathcal{L})$.

$\Rightarrow I(P, \mathcal{L}) = 10$

- Define $I(n, k) = \max_{|P|=n, |\mathcal{L}|=k} I(P, \mathcal{L})$.

- For example: $I(4, 4) = 9$

\[\begin{align*}
\text{Theorem 1.} & & \text{[Szemerédi, Trotter '83, Székely '97]} \\
& & I(n, k) \leq c(n^{2/3}k^{2/3} + n + k).
\end{align*}\]

\[\begin{align*}
\text{Proof.} & & \text{cr}(G) \leq k^2 \\
& & \#\text{(points on } \ell) - 1 = \#\text{(edges on } \ell)
\end{align*}\]
Application 1: Point–Line Incidences

- For a set $P \subset \mathbb{R}^2$ of points and a set \mathcal{L} of lines, let $I(P, \mathcal{L}) = \text{number of point–line incidences in } (P, \mathcal{L})$.

- Define $I(n, k) = \max_{|P| = n, |\mathcal{L}| = k} I(P, \mathcal{L})$.

- For example: $I(4, 4) = 9$

Theorem 1. [Szemerédi, Trotter '83, Székely '97]

$I(n, k) \leq c\left(\frac{n^{2/3}k^{2/3}}{3} + n + k\right)$.

Proof.

- $\#(\text{points on } \ell) - 1 = \#(\text{edges on } \ell)$

- $\Rightarrow I(n, k) - k \leq m$ (sum up over \mathcal{L})
Application 1: Point–Line Incidences

- For a set $P \subset \mathbb{R}^2$ of points and a set \mathcal{L} of lines, let $I(P, \mathcal{L}) = \text{number of point–line incidences in } (P, \mathcal{L})$.

- Define $I(n, k) = \max_{|P|=n, |\mathcal{L}|=k} I(P, \mathcal{L})$.

- For example: $I(4, 4) = 9$

$\Rightarrow I(P, \mathcal{L}) = 10$

Theorem 1.

[Szemerédi, Trotter ’83, Székely ’97] $I(n, k) \leq c(n^{2/3}k^{2/3} + n + k)$.

Proof.

- $\#(\text{points on } \ell) - 1 = \#(\text{edges on } \ell)$
- $\Rightarrow I(n, k) - k \leq m \quad \text{(sum up over } \mathcal{L})$
- Crossing Lemma: $\frac{1}{64} \frac{m^3}{n^2} \leq \text{cr}(G)$
Application 1: Point–Line Incidences

For a set \(P \subset \mathbb{R}^2 \) of points and a set \(\mathcal{L} \) of lines, let \(I(P, \mathcal{L}) = \) number of point–line incidences in \((P, \mathcal{L})\).

Define \(I(n, k) = \max_{|P|=n, |\mathcal{L}|=k} I(P, \mathcal{L}) \).

For example: \(I(4, 4) = 9 \)

\[\Rightarrow I(P, \mathcal{L}) = 10 \]

\[\Rightarrow I(n, k) - k \leq m \quad \text{(sum up over } \mathcal{L} \text{)} \]

Crossing Lemma: \(\frac{1}{64} \frac{m^3}{n^2} \leq cr(G) \)

\[\Rightarrow \exists c: c(I(n, k) - k)^3/n^2 \leq cr(G) \]

Theorem 1.

[Szemerédi, Trotter '83, Székely '97]
\[I(n, k) \leq c\left(\frac{n^{2/3}k^{2/3}}{} + n + k\right) \]

Proof.

\[cr(G) \leq k^2 \]

\[\#(\text{points on } \ell) - 1 = \#(\text{edges on } \ell) \]

\[\Rightarrow I(n, k) - k \leq m \quad \text{(sum up over } \mathcal{L} \text{)} \]
Application 1: Point–Line Incidences

- For a set $P \subset \mathbb{R}^2$ of points and a set \mathcal{L} of lines, let $I(P, \mathcal{L}) = \text{number of point–line incidences in } (P, \mathcal{L})$.

\[\Rightarrow I(P, \mathcal{L}) = 10 \]

- Define $I(n, k) = \max_{|P|=n, |\mathcal{L}|=k} I(P, \mathcal{L})$.

- For example: $I(4, 4) = 9$

\[I(n, k) \leq c(n^{2/3}k^{2/3} + n + k). \]

Proof.

- $(\text{points on } \ell) - 1 = (\text{edges on } \ell)$

\[\Rightarrow I(n, k) - k \leq m \quad (\text{sum up over } \mathcal{L}) \]

- Crossing Lemma: $\frac{1}{64} \frac{m^3}{n^2} \leq \text{cr}(G)$

\[\Rightarrow \exists c: c(I(n, k) - k)^3/n^2 \leq \text{cr}(G) \leq k^2 \]
Application 1: Point–Line Incidences

- For a set \(P \subset \mathbb{R}^2 \) of points and a set \(\mathcal{L} \) of lines, let \(I(P, \mathcal{L}) = \) number of point–line incidences in \((P, \mathcal{L})\).

- Define \(I(n, k) = \max_{|P|=n, |\mathcal{L}|=k} I(P, \mathcal{L}) \).

- For example: \(I(4, 4) = 9 \)

Theorem 1.
[Szemerédi, Trotter ’83, Székely ’97]
\[
I(n, k) \leq c(n^{2/3}k^{2/3} + n + k).
\]

Proof.

- \#(points on \(\ell \)) − 1 = #(edges on \(\ell \))

- \(I(n, k) − k \leq m \) (sum up over \(\mathcal{L} \))

- Crossing Lemma: \(\frac{1}{64} \frac{m^3}{n^2} \leq \text{cr}(G) \)

- \(\exists c: c(I(n, k) − k)^3/n^2 \leq \text{cr}(G) \leq k^2 \)

- If \(m < 4n \),
Application 1: Point–Line Incidences

- For a set $P \subset \mathbb{R}^2$ of points and a set \mathcal{L} of lines, let $I(P, \mathcal{L}) =$ number of point–line incidences in (P, \mathcal{L}).

- Define $I(n, k) = \max_{|P|=n, |\mathcal{L}|=k} I(P, \mathcal{L})$.

- For example: $I(4, 4) = 9$

- **Theorem 1.**

 [Szemerédi, Trotter ’83, Székely ’97]

 $I(n, k) \leq c(n^{2/3}k^{2/3} + n + k)$.

Proof.

- $(\text{points on } \ell) - 1 = (\text{edges on } \ell)$

 $\Rightarrow I(n, k) - k \leq m$ \hspace{1cm} (sum up over \mathcal{L})

- Crossing Lemma: $\frac{1}{64} \frac{m^3}{n^2} \leq \text{cr}(G)$

 $\Rightarrow \exists c: c(I(n, k) - k)^{3/n^2} \leq \text{cr}(G) \leq k^2$

 If $m < 4n$, then $I(n, k) - k \leq 4n$. \hspace{1cm} \square
Application 2: Unit Distances

For a set $P \subset \mathbb{R}^2$ of points, define

- $U(P)$ = number of pairs in P at unit distance and
- $U(n) = \max_{|P|=n} U(P)$.
Application 2: Unit Distances

For a set $P \subset \mathbb{R}^2$ of points, define

- $U(P)$ = number of pairs in P at unit distance and
- $U(n) = \max_{|P|=n} U(P)$.

Theorem 2.

[Spencer, Szemerédi, Trotter ’84, Székely ’97]

$U(n) < 6.7n^{4/3}$
Application 2: Unit Distances

For a set $P \subset \mathbb{R}^2$ of points, define

- $U(P)$ = number of pairs in P at unit distance and
- $U(n) = \max_{|P|=n} U(P)$.

Theorem 2.

[Spencer, Szemerédi, Trotter '84, Székely '97]

$U(n) < 6.7n^{4/3}$

Proof.
Application 2: Unit Distances

For a set $P \subset \mathbb{R}^2$ of points, define

- $U(P)$ = number of pairs in P at unit distance and
- $U(n) = \max_{|P|=n} U(P)$.

Theorem 2.
[Spencer, Szemerédi, Trotter '84, Székely '97]

$U(n) < 6.7n^{4/3}$

Proof.
Application 2: Unit Distances

For a set $P \subset \mathbb{R}^2$ of points, define

- $U(P) =$ number of pairs in P at unit distance and
- $U(n) = \max_{|P|=n} U(P)$.

Theorem 2.

[Spencer, Szemerédi, Trotter '84, Székely '97]

$U(n) < 6.7n^{4/3}$

Proof.
Application 2: Unit Distances

For a set $P \subset \mathbb{R}^2$ of points, define

- $U(P) = \text{number of pairs in } P \text{ at unit distance and}$
- $U(n) = \max_{|P|=n} U(P)$.

Theorem 2.

[Spencer, Szemerédi, Trotter '84, Székely '97]

$U(n) < 6.7n^{4/3}$

Proof.
Application 2: Unit Distances

For a set \(P \subset \mathbb{R}^2 \) of points, define
\[
\begin{align*}
U(P) &= \text{number of pairs in } P \text{ at unit distance and} \\
U(n) &= \max_{|P|=n} U(P).
\end{align*}
\]

Theorem 2.
[Spencer, Szemerédi, Trotter '84, Székely '97]
\[U(n) < 6.7n^{4/3} \]

Proof.

![Diagram showing the relationship between points and unit distances](image)
Application 2: Unit Distances

For a set \(P \subset \mathbb{R}^2 \) of points, define

- \(U(P) \) = number of pairs in \(P \) at unit distance and
- \(U(n) = \max_{|P|=n} U(P) \).

Theorem 2.
[Spencer, Szemerédi, Trotter '84, Székely '97]

\[U(n) < 6.7n^{4/3} \]

Proof.
Application 2: Unit Distances

For a set $P \subset \mathbb{R}^2$ of points, define

- $U(P) =$ number of pairs in P at unit distance and
- $U(n) = \max_{|P|=n} U(P)$.

Theorem 2.

[Spencer, Szemerédi, Trotter ’84, Székely ’97]

$U(n) < 6.7n^{4/3}$

Proof.

$U(P) \leq c'm$
Application 2: Unit Distances

For a set $P \subset \mathbb{R}^2$ of points, define

- $U(P)$ = number of pairs in P at unit distance and
- $U(n) = \max_{|P|=n} U(P)$.

Theorem 2.

[Spencer, Szemerédi, Trotter '84, Székely '97]

$U(n) < 6.7n^{4/3}$

Proof.

- $U(P) \leq c'm$
- $\text{cr}(G) \leq 2n^2$
Application 2: Unit Distances

For a set $P \subset \mathbb{R}^2$ of points, define

- $U(P) =$ number of pairs in P at unit distance and
- $U(n) = \max_{|P|=n} U(P)$.

Theorem 2.
[Spencer, Szemerédi, Trotter '84, Székely '97]
\[U(n) < 6.7n^{4/3} \]

Proof.

- $U(P) \leq c'm$
- $\text{cr}(G) \leq 2n^2$
- $c\frac{U(P)^3}{n^2} \leq \text{cr}(G) \leq 2n^2$
Application 3: Expected Number of Crossings in a Matching

Given set of n points (in general position, n even) –
Application 3: Expected Number of Crossings in a Matching

Given set of n points (in general position, n even) – what is the average number of crossings in a perfect matching?
Application 3: Expected Number of Crossings in a Matching

Given set of \(n \) points (in general position, \(n \) even) – what is the average number of crossings in a perfect matching?
Application 3: Expected Number of Crossings in a Matching

Given set of n points (in general position, n even) – what is the average number of crossings in a perfect matching?
Application 3: Expected Number of Crossings in a Matching

Given set of n points (in general position, n even) – what is the average number of crossings in a perfect matching?

Point set spans drawing Γ of K_n. 6 crossings
Application 3: Expected Number of Crossings in a Matching

Given set of n points (in general position, n even) – what is the average number of crossings in a perfect matching?

Point set spans drawing Γ of K_n.
We will analyze the number of crossings in a \textit{random} perfect matching in Γ!
Application 3: Expected Number of Crossings in a Matching

Given set of \(n \) points (in general position, \(n \) even) – what is the average number of crossings in a perfect matching?

Point set spans drawing \(\Gamma \) of \(K_n \).

We will analyze the number of crossings in a \textcolor{red}{random} perfect matching in \(\Gamma \)!

Number of crossings in \(\Gamma \) \(\geq \) \(\overline{cr}(K_n) \)
Application 3: Expected Number of Crossings in a Matching

Given set of n points (in general position, n even) – what is the average number of crossings in a perfect matching?

Point set spans drawing Γ of K_n.

We will analyze the number of crossings in a random perfect matching in Γ!

Number of crossings in $\Gamma \geq \text{cr}(K_n) > \frac{3}{8} \binom{n}{4}$
Application 3: Expected Number of Crossings in a Matching

Given set of \(n \) points (in general position, \(n \) even) – what is the average number of crossings in a perfect matching?

Point set spans drawing \(\Gamma \) of \(K_n \).

We will analyze the number of crossings in a random perfect matching in \(\Gamma \! \).

Number of crossings in \(\Gamma \) \(\geq \) \(\text{cr}(K_n) > \frac{3}{8} \binom{n}{4} \)

Number of edges in \(K_n \): \(\binom{n}{2} \)
Application 3: Expected Number of Crossings in a Matching

Given set of \(n \) points (in general position, \(n \) even) – what is the average number of crossings in a perfect matching?

Point set spans drawing \(\Gamma \) of \(K_n \).

We will analyze the number of crossings in a random perfect matching in \(\Gamma \! \).

Number of crossings in \(\Gamma \) \(\geq \) \(\text{cr}(K_n) > \frac{3}{8} \binom{n}{4} \)

Number of edges in \(K_n \): \(\binom{n}{2} \)

Number of potential crossings (all pairs of edges): \(\text{pot}(K_n) = \)
Application 3: Expected Number of Crossings in a Matching

Given set of n points (in general position, n even) – what is the average number of crossings in a perfect matching?

Point set spans drawing Γ of K_n.
We will analyze the number of crossings in a random perfect matching in Γ!

Number of crossings in $\Gamma \geq \text{cr}(K_n) > \frac{3}{8} \binom{n}{4}$
Number of edges in K_n: $\binom{n}{2}$
Number of potential crossings (all pairs of edges): $\text{pot}(K_n) = \binom{n}{2} \approx \binom{n}{4}$
Application 3: Expected Number of Crossings in a Matching

Given set of \(n \) points (in general position, \(n \) even) – what is the average number of crossings in a perfect matching?

Point set spans drawing \(\Gamma \) of \(K_n \).

We will analyze the number of crossings in a random perfect matching in \(\Gamma \! \).

Number of crossings in \(\Gamma \) \(\geq \) \(\text{cr}(K_n) > \frac{3}{8} \binom{n}{4} \)

Number of edges in \(K_n \): \(\binom{n}{2} \)

Number of potential crossings (all pairs of edges): \(\text{pot}(K_n) = \binom{n}{2} \approx 3 \binom{n}{4} \)
Application 3: Expected Number of Crossings in a Matching

Given set of n points (in general position, n even) – what is the average number of crossings in a perfect matching?

Point set spans drawing Γ of K_n.
We will analyze the number of crossings in a random perfect matching in Γ!

Number of crossings in $\Gamma \geq \text{cr}(K_n) > \frac{3}{8} \binom{n}{4}$
Number of edges in K_n: $\binom{n}{2}$
Number of potential crossings (all pairs of edges): $\text{pot}(K_n) = \binom{\binom{n}{2}}{2} \approx 3 \binom{n}{4}$

Pick two random edges e_1 and e_2.
Application 3: Expected Number of Crossings in a Matching

Given set of n points (in general position, n even) – what is the average number of crossings in a perfect matching?

Point set spans drawing Γ of K_n.
We will analyze the number of crossings in a random perfect matching in Γ!

Number of crossings in $\Gamma \geq \text{cr}(K_n) > \frac{3}{8} \binom{n}{4}$

Number of edges in K_n: $\binom{n}{2}$

Number of potential crossings (all pairs of edges): $\text{pot}(K_n) = \binom{n}{2} = 3 \binom{n}{4}$

Pick two random edges e_1 and e_2.

Pr[e_1 and e_2 cross] \geq
Application 3: Expected Number of Crossings in a Matching

Given set of \(n \) points (in general position, \(n \) even) – what is the average number of crossings in a perfect matching?

Point set spans drawing \(\Gamma \) of \(K_n \).
We will analyze the number of crossings in a random perfect matching in \(\Gamma \! \).

Number of crossings in \(\Gamma \) \(\geq \) \(\overline{\text{cr}}(K_n) > \frac{3}{8} \binom{n}{4} \)
Number of edges in \(K_n \): \(\binom{n}{2} \)
Number of potential crossings (all pairs of edges): \(\text{pot}(K_n) = \binom{n}{2} \approx 3 \binom{n}{4} \)

Pick two random edges \(e_1 \) and \(e_2 \).
\(\text{Pr}[e_1 \text{ and } e_2 \text{ cross}] \geq \overline{\text{cr}}(K_n)/\text{pot}(K_n) > \)
Application 3: Expected Number of Crossings in a Matching

Given set of n points (in general position, n even) – what is the average number of crossings in a perfect matching?

Point set spans drawing Γ of K_n.

We will analyze the number of crossings in a random perfect matching in Γ!

Number of crossings in $\Gamma \geq \overline{cr}(K_n) > \frac{3}{8} \binom{n}{4}$

Number of edges in K_n: \(\binom{n}{2} \)

Number of potential crossings (all pairs of edges): $\text{pot}(K_n) = \binom{\binom{n}{2}}{2} \approx 3 \binom{n}{4}$

Pick two random edges e_1 and e_2.

$\Pr[e_1 \text{ and } e_2 \text{ cross}] \geq \overline{cr}(K_n)/\text{pot}(K_n) > \frac{1}{8}$.
Application 3: Expected Number of Crossings in a Matching

Given set of n points (in general position, n even) – what is the average number of crossings in a perfect matching?

Point set spans drawing Γ of K_n.

We will analyze the number of crossings in a random perfect matching in Γ!

Number of crossings in $\Gamma \geq \overline{cr}(K_n) > \frac{3}{8} \binom{n}{4}$

Number of edges in K_n: $\binom{n}{2}$

Number of potential crossings (all pairs of edges): $\text{pot}(K_n) = \binom{\binom{n}{2}}{2} \approx 3 \binom{n}{4}$

Pick two random edges e_1 and e_2.

$\Pr[e_1 \text{ and } e_2 \text{ cross}] \geq \frac{\overline{cr}(K_n)}{\text{pot}(K_n)} > \frac{1}{8}$.

Pick random perfect matching M; it has $n/2$ edges, so

pairs of edges.
Application 3: Expected Number of Crossings in a Matching

Given set of \(n \) points (in general position, \(n \) even) – what is the average number of crossings in a perfect matching?

Point set spans drawing \(\Gamma \) of \(K_n \).

We will analyze the number of crossings in a **random** perfect matching in \(\Gamma \! \).

Number of crossings in \(\Gamma \geq \overline{cr}(K_n) > \frac{3}{8} \binom{n}{4} \)

Number of edges in \(K_n \): \(\binom{n}{2} \)

Number of **potential crossings** (all pairs of edges): \(\text{pot}(K_n) = \binom{n}{2} \approx 3 \binom{n}{4} \)

Pick two random edges \(e_1 \) and \(e_2 \).

\[\Pr[e_1 \text{ and } e_2 \text{ cross}] \geq \frac{\overline{cr}(K_n)}{\text{pot}(K_n)} > \frac{1}{8}. \]

Pick random perfect matching \(M \); it has \(n/2 \) edges, so \(\binom{n/2}{2} \) pairs of edges.
Application 3: Expected Number of Crossings in a Matching

Given set of \(n \) points (in general position, \(n \) even) – what is the average number of crossings in a perfect matching?

Point set spans drawing \(\Gamma \) of \(K_n \).

We will analyze the number of crossings in a \textbf{random} perfect matching in \(\Gamma \! \)!

Number of crossings in \(\Gamma \) \(\geq \overline{\text{cr}}(K_n) > \frac{3}{8} \binom{n}{4} \)

Number of edges in \(K_n \): \(\binom{n}{2} \)

Number of \textbf{potential crossings} (all pairs of edges): \(\text{pot}(K_n) = \binom{\binom{n}{2}}{2} \approx 3 \binom{n}{4} \)

Pick two random edges \(e_1 \) and \(e_2 \).

\[\Pr[e_1 \text{ and } e_2 \text{ cross}] \geq \overline{\text{cr}}(K_n)/\text{pot}(K_n) > \frac{1}{8}. \]

Pick random perfect matching \(M \); it has \(n/2 \) edges, so \(\binom{n/2}{2} = \frac{1}{8} n(n - 2) \) pairs of edges.
Application 3: Expected Number of Crossings in a Matching

Given set of \(n \) points (in general position, \(n \) even) – what is the average number of crossings in a perfect matching?

Point set spans drawing \(\Gamma \) of \(K_n \).

We will analyze the number of crossings in a \textbf{random} perfect matching in \(\Gamma \)!

Number of crossings in \(\Gamma \) \(\geq \) \(\overline{cr}(K_n) > \frac{3}{8} \binom{n}{4} \)

Number of edges in \(K_n \): \(\binom{n}{2} \)

Number of \textit{potential crossings} (all pairs of edges): \(\text{pot}(K_n) = \binom{\binom{n}{2}}{2} \approx 3 \binom{n}{4} \)

Pick two random edges \(e_1 \) and \(e_2 \).

\[\Pr[e_1 \text{ and } e_2 \text{ cross}] \geq \frac{\overline{cr}(K_n)}{\text{pot}(K_n)} > \frac{1}{8}. \]

Pick random perfect matching \(M \); it has \(n/2 \) edges, so \(\binom{n/2}{2} = \frac{1}{8} n(n - 2) \) pairs of edges.

By linearity of expectation, the expected number of crossings in \(M \) is >
Application 3: Expected Number of Crossings in a Matching

Given set of n points (in general position, n even) – what is the average number of crossings in a perfect matching?

Point set spans drawing Γ of K_n.
We will analyze the number of crossings in a random perfect matching in Γ!

Number of crossings in $\Gamma \geq \overline{cr}(K_n) > \frac{3}{8} \binom{n}{4}$

Number of edges in K_n: $\binom{n}{2}$

Number of potential crossings (all pairs of edges): $\text{pot}(K_n) = \left(\binom{n}{2}\right)^2 \approx 3 \binom{n}{4}$

Pick two random edges e_1 and e_2.

$\Pr[e_1 \text{ and } e_2 \text{ cross}] \geq \overline{cr}(K_n) / \text{pot}(K_n) > \frac{1}{8}$.

Pick random perfect matching M; it has $n/2$ edges, so $\binom{n/2}{2} = \frac{1}{8} n(n - 2)$ pairs of edges.

By linearity of expectation, the expected number of crossings in M is $> \frac{1}{8} \binom{n/2}{2} = \square$
Application 3: Expected Number of Crossings in a Matching

Given set of \(n \) points (in general position, \(n \) even) – what is the average number of crossings in a perfect matching?

Point set spans drawing \(\Gamma \) of \(K_n \).
We will analyze the number of crossings in a random perfect matching in \(\Gamma \).

Number of crossings in \(\Gamma \) \(\geq \frac{\text{cr}(K_n)}{\text{pot}(K_n)} > \frac{3}{8} \binom{n}{4} \)

Number of edges in \(K_n \): \(\binom{n}{2} \)

Number of potential crossings (all pairs of edges): \(\text{pot}(K_n) = \binom{n/2}{2} \approx 3 \binom{n}{4} \)

Pick two random edges \(e_1 \) and \(e_2 \).
\[\text{Pr}[e_1 \text{ and } e_2 \text{ cross}] \geq \frac{\text{cr}(K_n)}{\text{pot}(K_n)} > \frac{1}{8}. \]

Pick random perfect matching \(M \); it has \(n/2 \) edges, so \(\binom{n/2}{2} = \frac{1}{8} n(n-2) \) pairs of edges.

By linearity of expectation, the expected number of crossings in \(M \) is \(> \frac{1}{8} \binom{n/2}{2} = \frac{1}{64} n(n-2) \).
Application 3: Expected Number of Crossings in a Matching

Given set of n points (in general position, n even) – what is the average number of crossings in a perfect matching?

Point set spans drawing Γ of K_n.

We will analyze the number of crossings in a random perfect matching in Γ!

Number of crossings in $\Gamma \geq \text{cr}(K_n) > \frac{3}{8} \binom{n}{4}$

Number of edges in K_n: $\binom{n}{2}$

Number of potential crossings (all pairs of edges): $\text{pot}(K_n) = \binom{\binom{n}{2}}{2} \approx 3 \binom{n}{4}$

Pick two random edges e_1 and e_2.

$\Pr[e_1$ and e_2 cross $] \geq \frac{\text{cr}(K_n)}{\text{pot}(K_n)} > \frac{1}{8}$.

Pick random perfect matching M; it has $n/2$ edges, so $\binom{n/2}{2} = \frac{1}{8} n(n - 2)$ pairs of edges.

By linearity of expectation,

the expected number of crossings in M is: $> \frac{1}{8} \binom{n/2}{2} = \frac{1}{64} n(n - 2) \in \Theta(n^2)$.

\[\square \]
Literature

- [Aigner, Ziegler] Proofs from THE BOOK [https://doi.org/10.1007/978-3-662-57265-8]
- [Schaefer ’20] The Graph Crossing Number and its Variants: A Survey
- Terence Tao’s blog post “The crossing number inequality” from 2007
- [Garey, Johnson ’83] Crossing number is NP-complete
- [Bienstock, Dean ’93] Bounds for rectilinear crossing numbers
- [Székely ’97] Crossing Numbers and Hard Erdős Problems in Discrete Geometry
- Documentary/Biography “N Is a Number: A Portrait of Paul Erdős”
- Exact computations of crossing numbers: http://crossings.uos.de