Visualization of Graphs

Lecture 9:
Partial Visibility Representation Extension

Part I:
Problem Definition

Alexander Wolff
Partial Representation Extension Problem

Let $G = (V, E)$ be a graph.
Partial Representation Extension Problem

Let $G = (V, E)$ be a graph.

Let $V' \subseteq V$
Partial Representation Extension Problem

Let $G = (V, E)$ be a graph.

Let $V' \subseteq V$ and $H = G[V']$
Partial Representation Extension Problem

Let $G = (V, E)$ be a graph.
Let $V' \subseteq V$ and $H = G[V']$
Let Γ_H be a representation of H.
Partial Representation Extension Problem

Let $G = (V, E)$ be a graph.

Let $V' \subseteq V$ and $H = G[V']$

Let Γ_H be a representation of H.

Find a representation Γ_G of G that extends Γ_H
Partial Representation Extension Problem

Let $G = (V, E)$ be a graph.

Let $V' \subseteq V$ and $H = G[V']$.

Let Γ_H be a representation of H.

Find a representation Γ_G of G that extends Γ_H.
Partial Representation Extension Problem

Let $G = (V, E)$ be a graph.
Let $V' \subseteq V$ and $H = G[V']$
Let Γ_H be a representation of H.
Find a representation Γ_G of G that extends Γ_H
Partial Representation Extension Problem

Let $G = (V, E)$ be a graph.

Let $V' \subseteq V$ and $H = G[V']$

Let Γ_H be a representation of H.

Find a representation Γ_G of G that extends Γ_H
Partial Representation Extension Problem

Let $G = (V, E)$ be a graph.
Let $V' \subseteq V$ and $H = G[V']$
Let Γ_H be a representation of H.
Find a representation Γ_G of G that extends Γ_H

Polytime for:
- (unit) interval graphs
Partial Representation Extension Problem

Let $G = (V, E)$ be a graph.
Let $V' \subseteq V$ and $H = G[V']$
Let Γ_H be a representation of H.
Find a representation Γ_G of G that extends Γ_H

Polytime for:
- (unit) interval graphs
- permutation graphs
Partial Representation Extension Problem

Let $G = (V, E)$ be a graph.
Let $V' \subseteq V$ and $H = G[V']$
Let Γ_H be a representation of H.
Find a representation Γ_G of G that extends Γ_H

Polytime for:
- (unit) interval graphs
- permutation graphs
- circle graphs
Partial Representation Extension Problem

Let \(G = (V, E) \) be a graph.
Let \(V' \subseteq V \) and \(H = G[V'] \)
Let \(\Gamma_H \) be a representation of \(H \).
Find a representation \(\Gamma_G \) of \(G \) that extends \(\Gamma_H \)

Polytime for:
- (unit) interval graphs
- permutation graphs
- circle graphs

NP-hard for:
- planar straight-line drawings
- contacts of
- disks
- triangles
- orthogonal segments
Partial Representation Extension Problem

Let $G = (V, E)$ be a graph.

Let $V' \subseteq V$ and $H = G[V']$.

Let Γ_H be a representation of H.

Find a representation Γ_G of G that extends Γ_H.

Polytime for:
- (unit) interval graphs
- permutation graphs
- circle graphs

NP-hard for:
- planar straight-line drawings
- contacts of disks
- triangles
- orthogonal segments
- planar straight-line drawings
- contacts of disks
- triangles
- orthogonal segments
Partial Representation Extension Problem

Let $G = (V, E)$ be a graph.

Let $V' \subseteq V$ and $H = G[V']$

Let Γ_H be a representation of H.

Find a representation Γ_G of G that extends Γ_H.

NP-hard for:
- planar straight-line drawings
- contacts of disks
- triangles
- orthogonal segments

Polytime for:
- (unit) interval graphs
- permutation graphs
- circle graphs
Partial Representation Extension Problem

Let $G = (V, E)$ be a graph.
Let $V' \subseteq V$ and $H = G[V']$
Let Γ_H be a representation of H.
Find a representation Γ_G of G that extends Γ_H

Polytime for:
- (unit) interval graphs
- permutation graphs
- circle graphs

NP-hard for:
- planar straight-line drawings
- contacts of disks
- disks
Partial Representation Extension Problem

Let $G = (V, E)$ be a graph.

Let $V' \subseteq V$ and $H = G[V']$

Let Γ_H be a representation of H.

Find a representation Γ_G of G that extends Γ_H

NP-hard for:
- planar straight-line drawings
- contacts of
- disks
- triangles

Polytime for:
- (unit) interval graphs
- permutation graphs
- circle graphs
Partial Representation Extension Problem

Let $G = (V, E)$ be a graph.
Let $V' \subseteq V$ and $H = G[V']$
Let Γ_H be a representation of H.
Find a representation Γ_G of G that extends Γ_H

Polytime for:
- (unit) interval graphs
- permutation graphs
- circle graphs

NP-hard for:
- planar straight-line drawings
- contacts of
 - disks
 - triangles
 - orthogonal segments
Bar Visibility Representation
Bar Visibility Representation

- Vertices correspond to horizontal open line segments called bars.
Bar Visibility Representation

- Vertices correspond to horizontal open line segments called **bars**.
- **Edges** correspond to unobstructed vertical lines of sight.
Bar Visibility Representation

- Vertices correspond to horizontal open line segments called **bars**.
- **Edges** correspond to unobstructed vertical lines of sight.
Bar Visibility Representation

- Vertices correspond to horizontal open line segments called \textit{bars}.
- \textbf{Edges} correspond to unobstructed vertical lines of sight.
Bar Visibility Representation

- Vertices correspond to horizontal open line segments called **bars**.
- **Edges** correspond to unobstructed vertical lines of sight.
Bar Visibility Representation

- Vertices correspond to horizontal open line segments called **bars**.
- **Edges** correspond to unobstructed vertical lines of sight.
Bar Visibility Representation

- Vertices correspond to horizontal open line segments called **bars**.
- **Edges** correspond to unobstructed vertical lines of sight.
Bar Visibility Representation

- Vertices correspond to horizontal open line segments called bars.
- Edges correspond to unobstructed vertical lines of sight.
Bar Visibility Representation

- Vertices correspond to horizontal open line segments called **bars**.
- **Edges** correspond to unobstructed vertical lines of sight.
Bar Visibility Representation

- Vertices correspond to horizontal open line segments called **bars**.
- **Edges** correspond to unobstructed vertical lines of sight.
- What about unobstructed **0-width** vertical lines of sight? Do all visibilities induce edges?
Bar Visibility Representation

- Vertices correspond to horizontal open line segments called **bars**.
- **Edges** correspond to unobstructed vertical lines of sight.
- What about unobstructed **0-width** vertical lines of sight? Do all visibilities induce edges?

Models.
Bar Visibility Representation

- Vertices correspond to horizontal open line segments called **bars**.
- **Edges** correspond to unobstructed vertical lines of sight.
- What about unobstructed **0-width** vertical lines of sight? Do all visibilities induce edges?

Models.

- **Strong:**

 Edge $uv \iff$ unobstructed **0-width** vertical lines of sight.
Bar Visibility Representation

- Vertices correspond to horizontal open line segments called **bars**.
- **Edges** correspond to unobstructed vertical lines of sight.
- What about unobstructed **0-width** vertical lines of sight? Do all visibilities induce edges?

Models.

- **Strong:**
 Edge $uv \iff$ unobstructed **0-width** vertical lines of sight.
- **Epsilon:**
 Edge $uv \iff \varepsilon$-wide vertical lines of sight for $\varepsilon > 0$.
Bar Visibility Representation

- Vertices correspond to horizontal open line segments called **bars**.
- **Edges** correspond to unobstructed vertical lines of sight.
- What about unobstructed **0-width** vertical lines of sight? Do all visibilities induce edges?

Models.

- **Strong:**
 Edge $uv \iff$ unobstructed **0-width** vertical lines of sight.
- **Epsilon:**
 Edge $uv \iff \epsilon$-wide vertical lines of sight for $\epsilon > 0$.
Bar Visibility Representation

- Vertices correspond to horizontal open line segments called **bars**.
- **Edges** correspond to unobstructed vertical lines of sight.
- What about unobstructed **0-width** vertical lines of sight? Do all visibilities induce edges?

Models.

- **Strong:**
 Edge $uv \iff$ unobstructed **0-width** vertical lines of sight.
- **Epsilon:**
 Edge $uv \iff \epsilon$-wide vertical lines of sight for $\epsilon > 0$.
Bar Visibility Representation

- Vertices correspond to horizontal open line segments called **bars**.
- **Edges** correspond to unobstructed vertical lines of sight.
- What about unobstructed **0-width** vertical lines of sight? Do all visibilities induce edges?

Models.

- **Strong:**
 Edge $uv \iff$ unobstructed **0-width** vertical lines of sight.

- **Epsilon:**
 Edge $uv \iff$ ϵ-wide vertical lines of sight for $\epsilon > 0$.

- **Weak:**
 Edge $uv \Rightarrow$ unobstructed vertical sightlines exists, i.e., any subset of **visible** pairs
Bar Visibility Representation

- Vertices correspond to horizontal open line segments called bars.
- Edges correspond to unobstructed vertical lines of sight.
- What about unobstructed 0-width vertical lines of sight? Do all visibilities induce edges?

Models.
- Strong:
 Edge $uv \iff$ unobstructed 0-width vertical lines of sight.
- Epsilon:
 Edge $uv \iff \epsilon$-wide vertical lines of sight for $\epsilon > 0$.
- Weak:
 Edge $uv \Rightarrow$ unobstructed vertical sightlines exists, i.e., any subset of visible pairs
Problems
Problems

weak

strong
Problems

weak

strong

epsilon
Problems

weak

strong

epsilon

a

b

c

da

d

b

c

b

c

da

d

b

c

b

c

a

d

a

d

Problems

weak

strong

epsilon
Recognition Problem.
Given a graph G, decide whether there exists a weak/strong/ε bar visibility representation ψ of G.
Recognition Problem.
Given a graph G, decide whether there exists a weak/strong/ε bar visibility representation ψ of G.

Construction Problem.
Given a graph G, construct a weak/strong/ε bar visibility representation ψ of G – if one exists.
Problems

Recognition Problem.
Given a graph G, decide whether there exists a weak/strong/ϵ bar visibility representation ψ of G.

Construction Problem.
Given a graph G, construct a weak/strong/ϵ bar visibility representation ψ of G – if one exists.

Partial Representation Extension Problem.
Given a graph G and a set of bars ψ' of $V' \subset V(G)$, decide whether there exists a weak/strong/ϵ bar visibility representation ψ of G where $\psi|_{V'} = \psi'$ (and construct ψ if a representation exists).
Background

weak

strong

epsilon
Weak Bar Visibility.

- All planar graphs. [Tamassia & Tollis '86; Wismath '85]
- Linear time recognition and construction [T&T '86]
- Representation Extension is NP-complete [Chaplick et al. '14]
Background

Weak Bar Visibility.

- All planar graphs. [Tamassia & Tollis ’86; Wismath ’85]
Background

Weak Bar Visibility.

- All planar graphs. [Tamassia & Tollis ’86; Wismath ’85]
- Linear time recognition and construction [T&T ’86]
Background

Weak Bar Visibility.
- All planar graphs. [Tamassia & Tollis ’86; Wismath ’85]
- Linear time recognition and construction [T&T ’86]
- Representation Extension is NP-complete [Chaplick et al. ’14]
Background

Weak Bar Visibility.

- All planar graphs. [Tamassia & Tollis '86; Wismath '85]
- Linear time recognition and construction [T&T '86]
- Representation Extension is NP-complete [Chaplick et al. '14]

Strong Bar Visibility.
Weak Bar Visibility.
- All planar graphs. [Tamassia & Tollis ’86; Wismath ’85]
- Linear time recognition and construction [T&T ’86]
- Representation Extension is NP-complete [Chaplick et al. ’14]

Strong Bar Visibility.
- NP-complete to recognize [Andreae ’92]
Background

- **ε-Bar Visibility.**

- Planar graphs that can be embedded with all cut vertices on the outerface. [T&T '86, Wismath '85]
- Linear-time recognition and construction [T&T '86]
- Representation extension?
Background

ε-Bar Visibility.

- Planar graphs that can be embedded with all cut vertices on the outerface. [T&T ’86, Wismath ’85]
Background

ε-Bar Visibility.

- Planar graphs that can be embedded with all cut vertices on the outerface. [T&T '86, Wismath '85]
- Linear-time recognition and construction [T&T '86]
Background

- Bar Visibility.
 - Planar graphs that can be embedded with all cut vertices on the outerface. [T&T ’86, Wismath ’85]
 - Linear-time recognition and construction [T&T ’86]
 - Representation extension?
Background

- **ε-Bar Visibility.**
 - Planar graphs that can be embedded with all **cut vertices** on the outerface. [T&T ’86, Wismath ’85]
 - Linear-time recognition and construction [T&T ’86]
 - Representation extension? **This Lecture!**
Visualization of Graphs

Lecture 9:
Partial Visibility Representation Extension

Part II:
Recognition & Construction

 Alexander Wolff
ε-bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.
ε-bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.
ε-bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.
ε-bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

st-orientations correspond to ε-bar visibility representations.
ε-bar Visibility and \textit{st}-Graphs

Recall that an \textit{st-graph} is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

\textbf{Observation.}
\textit{st}-orientations correspond to ε-bar visibility representations.
\(\varepsilon\)-bar Visibility and \(st\)-Graphs

Recall that an \(st\)-graph is a planar digraph \(G\) with exactly one source \(s\) and one sink \(t\) where \(s\) and \(t\) occur on the outer face of an embedding of \(G\).

Observation.
\(st\)-orientations correspond to \(\varepsilon\)-bar visibility representations.
ε-bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

st-orientations correspond to ε-bar visibility representations.
\(\varepsilon\)-bar Visibility and \(st\)-Graphs

Recall that an \(st\)-graph is a planar digraph \(G\) with exactly one source \(s\) and one sink \(t\) where \(s\) and \(t\) occur on the outer face of an embedding of \(G\).

Observation.

\(st\)-orientations correspond to \(\varepsilon\)-bar visibility representations.
\(\varepsilon \)-bar Visibility and \(st \)-Graphs

Recall that an \(st \)-graph is a planar digraph \(G \) with exactly one source \(s \) and one sink \(t \) where \(s \) and \(t \) occur on the outer face of an embedding of \(G \).

Observation.

\(st \)-orientations correspond to \(\varepsilon \)-bar visibility representations.
ε-bar Visibility and \textit{st}-Graphs

Recall that an \textit{st}-graph is a planar digraph G with exactly one \textbf{source} s and one \textbf{sink} t where s and t occur on the outer face of an embedding of G.

\textbf{Observation.} \textit{st}-orientations correspond to ε-bar visibility representations.
ε-bar Visibility and \textit{st}-Graphs

Recall that an \textit{st}-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

\textbf{Observation.}

\textit{st}-orientations correspond to ε-bar visibility representations.
ε-bar Visibility and \textit{st}-Graphs

Recall that an \textit{st}-graph is a planar digraph G with exactly one \textbf{source} s and one \textbf{sink} t where s and t occur on the outer face of an embedding of G.

Observation.

\textit{st}-orientations correspond to \textbf{ε-bar} visibility representations.
ε-bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

st-orientations correspond to ε-bar visibility representations.
ε-bar Visibility and \textit{st}-Graphs

Recall that an \textit{st}-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

\textbf{Observation.} \textit{st}-orientations correspond to ε-bar visibility representations.
ε-bar Visibility and \textit{st}-Graphs

Recall that an \textit{st}-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

\textbf{Observation.} \textit{st}-orientations correspond to ε-bar visibility representations.
Recall that an \textit{st-graph} is a planar digraph G with exactly one \textit{source} s and one \textit{sink} t where s and t occur on the outer face of an embedding of G.

\textbf{Observation.} \textit{st}-orientations correspond to ε-bar visibility representations.
\(\varepsilon \)-bar Visibility and \(st \)-Graphs

Recall that an \(st \)-graph is a planar digraph \(G \) with exactly one source \(s \) and one sink \(t \) where \(s \) and \(t \) occur on the outer face of an embedding of \(G \).

Observation.
\(st \)-orientations correspond to \(\varepsilon \)-bar visibility representations.
ε-bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Observation.

st-orientations correspond to ε-bar visibility representations.
\(\varepsilon \)-bar Visibility and \(st \)-Graphs

Recall that an \(st \)-graph is a planar digraph \(G \) with exactly one source \(s \) and one sink \(t \) where \(s \) and \(t \) occur on the outer face of an embedding of \(G \).

Observation.

\(st \)-orientations correspond to \(\varepsilon \)-bar visibility representations.
ε-bar Visibility and st-Graphs

Recall that an *st-graph* is a planar digraph G with exactly one *source* s and one *sink* t where s and t occur on the outer face of an embedding of G.

Testing whether an acyclic planar digraph has a weak bar visibility representation is NP-complete.

Observation.

st-orientations correspond to ε-bar visibility representations.
Recall that an \textit{st-graph} is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

Testing whether an acyclic planar digraph has a weak bar visibility representation is NP-complete.

\begin{itemize}
 \item This is upward planarity testing! [Garg & Tamassia '01]
\end{itemize}
ε-bar Visibility and *st*-Graphs

Recall that an *st-graph* is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

- *ε-bar* visibility testing is easily done via *st*-graph recognition.

Observation.

st-orientations correspond to *ε-bar* visibility representations.
ε-bar Visibility and st-Graphs

Recall that an st-graph is a planar digraph G with exactly one source s and one sink t where s and t occur on the outer face of an embedding of G.

- ε-bar visibility testing is easily done via st-graph recognition.
- Strong bar visibility recognition... open!

Observation.

tst-orientations correspond to ε-bar visibility representations.
ε-bar Visibility and \(st \)-Graphs

Recall that an \(st \)-graph is a planar digraph \(G \) with exactly one source \(s \) and one sink \(t \) where \(s \) and \(t \) occur on the outer face of an embedding of \(G \).

- **ε-bar visibility testing** is easily done via \(st \)-graph recognition.
- Strong bar visibility recognition... open!
- In a **rectangular** bar visibility representation \(\psi(s) \) and \(\psi(t) \) span an enclosing rectangle.

Observation.

\(st \)-orientations correspond to \(ε \)-bar visibility representations.
Theorem 1. [Chaplick et al. ’18]
Rectangular ε-Bar Visibility Representation Extension can be solved in $O(n \log^2 n)$ time for st-graphs.
Results and Outline

Theorem 1. [Chaplick et al. ’18]
Rectangular ε-Bar Visibility Representation Extension can be solved in $O(n \log^2 n)$ time for \textit{st}-graphs.

- Dynamic program via SPQR-trees
Results and Outline

<table>
<thead>
<tr>
<th>Theorem 1. [Chaplick et al. ’18]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rectangular ε-Bar Visibility Representation Extension can be solved in $O(n \log^2 n)$ time for st-graphs.</td>
</tr>
</tbody>
</table>

- Dynamic program via SPQR-trees
- Easier version: $O(n^2)$
Results and Outline

Theorem 1. [Chaplick et al. ’18]
Rectangular ε-Bar Visibility Representation Extension can be solved in $O(n \log^2 n)$ time for st-graphs.
- Dynamic program via SPQR-trees
- Easier version: $O(n^2)$

Theorem 2. [Chaplick et al. ’18]
ε-Bar Visibility Representation Extension is NP-complete.
Results and Outline

Theorem 1. [Chaplick et al. ’18]

Rectangular ε-Bar Visibility Representation Extension can be solved in $O(n \log^2 n)$ time for st-graphs.

- Dynamic program via SPQR-trees
- Easier version: $O(n^2)$

Theorem 2. [Chaplick et al. ’18]

ε-Bar Visibility Representation Extension is NP-complete.

- Reduction from Planar Monotone 3-SAT
Results and Outline

Theorem 1. [Chaplick et al. ’18]
Rectangular \(\varepsilon\)-Bar Visibility Representation Extension can be solved in \(O(n \log^2 n)\) time for \(st\)-graphs.
- Dynamic program via SPQR-trees
- Easier version: \(O(n^2)\)

Theorem 2. [Chaplick et al. ’18]
\(\varepsilon\)-Bar Visibility Representation Extension is NP-complete.
- Reduction from Planar Monotone 3-SAT

Theorem 3. [Chaplick et al. ’18]
\(\varepsilon\)-Bar Visibility Representation Extension is NP-complete for (series-parallel) \(st\)-graphs when restricted to the integer grid (or if any fixed \(\varepsilon > 0\) is specified).
Results and Outline

Theorem 1. [Chaplick et al. ’18]
Rectangular ε-Bar Visibility Representation Extension can be solved in $O(n \log^2 n)$ time for st-graphs.

- Dynamic program via SPQR-trees
- Easier version: $O(n^2)$

Theorem 2. [Chaplick et al. ’18]
ε-Bar Visibility Representation Extension is NP-complete.

- Reduction from Planar Monotone 3-SAT

Theorem 3. [Chaplick et al. ’18]
ε-Bar Visibility Representation Extension is NP-complete for (series-parallel) st-graphs when restricted to the integer grid (or if any fixed $\varepsilon > 0$ is specified).

- Reduction from 3-Partition
Visualization of Graphs

Lecture 9:
Partial Visibility Representation Extension

Part III:
SPQR-Trees

Alexander Wolff
SPQR-Tree

- An **SPQR-tree** T is a decomposition of a planar graph G by **separation pairs**.
An **SPQR-tree** T is a decomposition of a planar graph G by *separation pairs*.
An **SPQR-tree** T is a decomposition of a planar graph G by **separation pairs**.
SPQR-Tree

- An **SPQR-tree** T is a decomposition of a planar graph G by **separation pairs**.
- The nodes of T are of four types:
 - S-nodes represent a series composition
 - P-nodes represent a parallel composition
 - Q-nodes represent a single edge
 - R-nodes represent 3-connected (rigid) subgraphs
SPQR-Tree

- An **SPQR-tree** T is a decomposition of a planar graph G by separation pairs.

- The nodes of T are of four types:
 - S-nodes represent a series composition
 - P-nodes represent a parallel composition
 - Q-nodes represent a single edge
 - R-nodes represent 3-connected (rigid) subgraphs
SPQR-Tree

- An **SPQR-tree** T is a decomposition of a planar graph G by separation pairs.

- The nodes of T are of four types:
 - **S**-nodes represent a series composition
 - **P**-nodes represent a parallel composition
 - **Q**-nodes represent a single edge
 - **R**-nodes represent 3-connected (rigid) subgraphs
SPQR-Tree

- An **SPQR-tree** T is a decomposition of a planar graph G by **separation pairs**.

- The nodes of T are of four types:
 - **S**-nodes represent a series composition
 - **P**-nodes represent a parallel composition
 - **Q**-nodes represent a single edge
 - **R**-nodes represent 3-connected (rigid) subgraphs
An **SPQR-tree** T is a decomposition of a planar graph G by **separation pairs**.

The nodes of T are of four types:

- **S**-nodes represent a series composition
- **P**-nodes represent a parallel composition
- **Q**-nodes represent a single edge
- **R**-nodes represent 3-connected (rigid) subgraphs
An **SPQR-tree** T is a decomposition of a planar graph G by *separation pairs*.

The nodes of T are of four types:
- **S**-nodes represent a series composition
- **P**-nodes represent a parallel composition
- **Q**-nodes represent a single edge
- **R**-nodes represent 3-connected (*rigid*) subgraphs

A decomposition tree of a series-parallel graph is an SPQR-tree without **R**-nodes.
SPQR-Tree

An **SPQR-tree** T is a decomposition of a planar graph G by **separation pairs**.

The nodes of T are of four types:
- **S**-nodes represent a series composition
- **P**-nodes represent a parallel composition
- **Q**-nodes represent a single edge
- **R**-nodes represent 3-connected (rigid) subgraphs

A decomposition tree of a series-parallel graph is an SPQR-tree without **R**-nodes.

T represents all planar embeddings of G.
An **SPQR-tree** T is a decomposition of a planar graph G by **separation pairs**.

The nodes of T are of four types:
- **S**-nodes represent a series composition
- **P**-nodes represent a parallel composition
- **Q**-nodes represent a single edge
- **R**-nodes represent 3-connected (**rigid**) subgraphs

A decomposition tree of a series-parallel graph is an SPQR-tree without **R**-nodes.

T represents all planar embeddings of G.

T can be computed in $O(n)$ time. [Gutwenger, Mutzel ’01]
SPQR-Tree Example
SPQR-Tree Example

G

root

reference edge

Q

14

1

14

1
SPQR-Tree Example

G

P

Q
SPQR-Tree Example
Visualization of Graphs

Lecture 9:
Partial Visibility Representation Extension

Part IV:
Rectangular Representation Extension

Alexander Wolff
Theorem 1'.
Rectangular ε-Bar Visibility Representation Extension can be solved in $O(n^2)$ time for st-graphs.
Theorem 1'.
Rectangular ε-Bar Visibility Representation Extension can be solved in $O(n^2)$ time for st-graphs.
Theorem 1'. Rectangular ε-Bar Visibility Representation Extension can be solved in $\mathcal{O}(n^2)$ time for st-graphs.
Theorem 1’.
Rectangular ε-Bar Visibility Representation Extension can be solved in $O(n^2)$ time for st-graphs.
Theorem 1'.

Rectangular ε-Bar Visibility Representation Extension can be solved in $O(n^2)$ time for st-graphs.

- Simplify with assumption on y-coordinates

Representation Extension for st-Graphs
Theorem 1'.

Rectangular ε-Bar Visibility Representation Extension can be solved in $O(n^2)$ time for st-graphs.

- Simplify with assumption on y-coordinates
- Look at connection to SPQR-trees – tiling
Representation Extension for st-Graphs

Theorem 1'. Rectangular ε-Bar Visibility Representation Extension can be solved in $O(n^2)$ time for st-graphs.

- Simplify with assumption on y-coordinates
- Look at connection to SPQR-trees – tiling
- Solve problems for S-, P-, and R-nodes
Theorem 1'.
Rectangular ε-Bar Visibility Representation Extension can be solved in $O(n^2)$ time for st-graphs.

- Simplify with assumption on y-coordinates
- Look at connection to SPQR-trees – tiling
- Solve problems for S-, P-, and R-nodes
- Dynamic program via SPQR-tree
y-Coordinate Invariant

Let $G = (V, E)$ be an st-graph, and let ψ' be a representation of $V' \subseteq V$.
y-Coordinate Invariant

- Let $G = (V, E)$ be an st-graph, and let ψ' be a representation of $V' \subseteq V$.
- Let $y: V \to \mathbb{R}$ such that

 - for each $v \in V'$, $y(v) = \text{the y-coordinate of } \psi'(v)$.
 - for each edge (u, v), $y(u) < y(v)$.
y-Coordinate Invariant

- Let $G = (V, E)$ be an st-graph, and let ψ' be a representation of $V' \subseteq V$.
- Let $y : V \to \mathbb{R}$ such that
 - for each $v \in V'$, $y(v) =$ the y-coordinate of $\psi'(v)$.
y-Coordinate Invariant

- Let $G = (V, E)$ be an st-graph, and let ψ' be a representation of $V' \subseteq V$.
- Let $y: V \to \mathbb{R}$ such that
 - for each $v \in V'$, $y(v) = \text{the y-coordinate of } \psi'(v)$.
 - for each edge (u, v), $y(u) < y(v)$.

Let $G = (V, E)$ be an st-graph, and let ψ' be a representation of $V' \subseteq V$.
y-Coordinate Invariant

- Let $G = (V, E)$ be an st-graph, and let ψ' be a representation of $V' \subseteq V$.
- Let $y: V \to \mathbb{R}$ such that
 - for each $v \in V'$, $y(v) =$ the y-coordinate of $\psi'(v)$.
 - for each edge (u, v), $y(u) < y(v)$.

Lemma 1.

G has a representation extending ψ' \iff G has a representation extending ψ' where the y-coordinates of the bars are as in y.
Let $G = (V, E)$ be an st-graph, and let ψ' be a representation of $V' \subseteq V$.

Let $y : V \rightarrow \mathbb{R}$ such that
- for each $v \in V'$, $y(v)$ = the y-coordinate of $\psi'(v)$.
- for each edge (u, v), $y(u) < y(v)$.

Lemma 1.
G has a representation extending ψ' \iff G has a representation extending ψ'
where the y-coordinates of the bars are as in y.

Proof idea. The relative positions of adjacent bars must match the order given by y.
So, we can adjust the y-coordinates of any solution to be as in y by sweeping from bottom to top.
y-Coordinate Invariant

- Let $G = (V, E)$ be an st-graph, and let ψ' be a representation of $V' \subseteq V$.
- Let $y: V \rightarrow \mathbb{R}$ such that
 - for each $v \in V'$, $y(v) =$ the y-coordinate of $\psi'(v)$.
 - for each edge (u, v), $y(u) < y(v)$.

Lemma 1.
G has a representation extending ψ' \iff
G has a representation extending ψ'
where the y-coordinates of the bars are as in y.

Proof idea. The relative positions of adjacent bars must match the order given by y.
So, we can adjust the y-coordinates of any solution to be as in y by sweeping from bottom to top.
But why do SPQR-Trees help?

Lemma 2.
The SPQR-tree of an \(st\)-graph \(G\) induces a recursive tiling of any \(\varepsilon\)-bar visibility representation of \(G\).
But why do SPQR-Trees help?

Lemma 2.
The SPQR-tree of an st-graph G induces a recursive tiling of any ε-bar visibility representation of G.

Solve tiles bottom-up
Visualization of Graphs

Lecture 9:
Partial Visibility Representation Extension

Part V:
Dynamic Program

Alexander Wolff
Tiles

Convention. Orange bars are from the partial representation

\[\psi(t) \]

\[\psi(s) \]
Tiles

Convention. Orange bars are from the partial representation

\[\psi(t) \]

\[\psi(s) \]
Tiles

Con**vention.** Orange bars are from the partial representation

\[\psi(t) \]

\[\psi(s) \]

Observation.
The bounding box (tile) of any solution \(\psi \) contains the bounding box of the partial representation.
Tiles

Convention. **Orange** bars are from the partial representation

\[\psi(t) \]

\[\psi(s) \]

Observation.
The bounding box (tile) of any solution \(\psi \) **contains** the bounding box of the partial representation.

How many different **types** of tiles are there?
Types of Tiles

- Right **Fixed** – due to the orange bar
- Left **Loose** – due to the orange bar
Types of Tiles

- **Right Fixed** – due to the orange bar
- **Left Loose** – due to the orange bar

- **Left Fixed** – due to the orange bar
- **Right Loose** – due to the orange bar
Types of Tiles

- Right *Fixed* – due to the orange bar
- Left *Loose* – due to the orange bar

- Left *Fixed* – due to the orange bar
- Right *Loose* – due to the orange bar
Types of Tiles

- Right Fixed – due to the orange bar
- Left Loose – due to the orange bar

- Left Fixed – due to the orange bar
- Right Loose – due to the orange bar
Types of Tiles

- Right Fixed – due to the orange bar
- Left Loose – due to the orange bar
- Left Fixed – due to the orange bar
- Right Loose – due to the orange bar

Four different types: FF, FL, LF, LL
P-Nodes

\[\psi(t) \]

\[\psi(s) \]
P-Nodes

\[\psi(t) \]

\[\psi(s) \]
P-Nodes

$\psi(t)$

$\psi(s)$
P-Nodes

\[\psi(s) \]

\[\psi(t) \]
P-Nodes

\[\psi(t) \]

\[\psi(s) \]
P-Nodes

Children of P-node with **prescribed bars** occur in given left-to-right order
\textbf{P-Nodes}

- Children of \textbf{P}-node with \textit{prescribed bars} occur in given left-to-right order
- But there might be some \textit{gaps}...
P-Nodes

- Children of P-node with prescribed bars occur in given left-to-right order.
- But there might be some gaps...

Idea.

Greedily fill the gaps by preferring to “stretch” the children with prescribed bars.
Children of P-node with prescribed bars occur in given left-to-right order.

But there might be some gaps.

Idea.
Greedily fill the gaps by preferring to “stretch” the children with prescribed bars.

Outcome.
After processing, we must know the valid types for the corresponding subgraphs.
S-Nodes

$\psi(t)$

$\psi(s)$
S-Nodes

\[\psi(t) \]

\[\psi(s) \]

This fixed vertex means we can only make a Fixed-Fixed representation!
This fixed vertex means we can only make a Fixed-Fixed representation!
This fixed vertex means we can only make a Fixed-Fixed representation!
S-Nodes

This fixed vertex means we can only make a Fixed-Fixed representation!

Here we have a chance to make all (LL, FL, LF, FF) types.

\[\psi(s) \] \[\psi(t) \]
R-Nodes
R-Nodes

$\psi(t)$

$\psi(14)$

$\psi(13)$

$\psi(5)$

$\psi(10)$

$\psi(s)$

$\psi(13)$

$\psi(10)$

$\psi(5)$

$\psi(t)$

$\psi(s)$

$\psi(14)$

$\psi(13)$

$\psi(10)$

$\psi(5)$

$\psi(t)$

$\psi(14)$

$\psi(13)$

$\psi(10)$

$\psi(5)$

$\psi(t)$

$\psi(14)$

$\psi(13)$

$\psi(10)$

$\psi(5)$

$\psi(t)$

$\psi(14)$

$\psi(13)$

$\psi(10)$

$\psi(5)$
R-Nodes
R-Nodes
R-Nodes

\[\psi(t) \]
\[\psi(14) \]
\[\psi(5) \]
\[\psi(10) \]
\[\psi(s) \]

\[\psi(13) \]
\mathcal{R}-Nodes

\[
\begin{align*}
\psi(s) & \rightarrow \psi(5) & \psi(10) & \rightarrow \psi(13) & \rightarrow \psi(t) \\
& & & & \\
& & & & \\
& & & & \\
& & & & \\
\end{align*}
\]
R-Nodes

\[\psi(t) \]

\[\psi(14) \]

\[\psi(5) \]

\[\psi(10) \]

\[\psi(13) \]

\[\psi(s) \]
R-Nodes

\[\psi(s) \rightarrow \psi(5) \rightarrow \psi(10) \rightarrow \psi(13) \rightarrow \psi(t) \]
R-Nodes

\[\psi(t) \]

\[\psi(14) \]

\[\psi(5) \]

\[\psi(10) \]

\[\psi(13) \]

\[\psi(s) \]
R-Nodes

ψ(5) ψ(10) ψ(13) ψ(t)

ψ(s)
R-Nodes

ψ(t)ψ(14)

ψ(5)ψ(10)ψ(13)

ψ(s)
R-Nodes

\[\psi(t) \]

\[\psi(14) \]

\[\psi(5) \]

\[\psi(10) \]

\[\psi(13) \]

\[\psi(s) \]
R-Nodes

\[\psi(s) \]
\[\psi(5) \]
\[\psi(10) \]
\[\psi(13) \]
\[\psi(14) \]
\[\psi(t) \]

separation pair!
R-Nodes

ψ(t)
ψ(14)
ψ(5)
ψ(10)
ψ(13)
ψ(s)

separation pair!
R-Nodes

- for each child (edge) e:

![Diagram showing separation pair!](image-url)
R-Nodes

- for each child (edge) e:
 - find all types of $\{\text{FF, FL, LF, LL}\}$ that admit a drawing
 - consistency clauses

\[\psi(s)\]

\[\psi(5)\]

\[\psi(10)\]

\[\psi(13)\]

\[\psi(14)\]

\[\psi(t)\]

separation pair!
R-Nodes with 2-SAT Formulation

- for each child (edge) \(e \):
 - find all types of \{FF, FL, LF, LL\} that admit a drawing
 - 2 variables \(l_e, r_e \) encoding fixed/loose type of its tile
 - consistency clauses
R-Nodes with 2-SAT Formulation

- for each child (edge) \(e \):
 - find all types of \(\{ FF, FL, LF, LL \} \) that admit a drawing
 - 2 variables \(l_e, r_e \) encoding fixed/loose type of its tile

\[\psi(s) \rightarrow \psi(5) \rightarrow \psi(10) \rightarrow \psi(13) \rightarrow \psi(t) \]

separation pair!
R-Nodes with 2-SAT Formulation

- for each child (edge) e:
 - find all types of \{FF, FL, LF, LL\} that admit a drawing
 - 2 variables l_e, r_e encoding fixed/loose type of its tile

\[\psi(s)\]
\[\psi(t)\]

separation pair!
R-Nodes with 2-SAT Formulation

- for each child (edge) e:
 - find all types of \{FF, FL, LF, LL\} that admit a drawing
 - 2 variables l_e, r_e encoding fixed/loose type of its tile

![Graph diagram with nodes and edges labeled with variables and types.](image-url)
R-Nodes with 2-SAT Formulation

- for each child (edge) e:
 - find all types of \{FF, FL, LF, LL\} that admit a drawing
 - 2 variables l_e, r_e encoding fixed/loose type of its tile
 - consistency clauses

```plaintext
ψ(s) ψ(5) FL

ψ(10) FF

ψ(13) LL

ψ(14) LL

ψ(t) FL
```

separation pair!
R-Nodes with 2-SAT Formulation

- for each child (edge) e:
 - find all types of $\{\text{FF, FL, LF, LL}\}$ that admit a drawing
 - 2 variables l_e, r_e encoding fixed/loose type of its tile
 - consistency clauses
R-Nodes with 2-SAT Formulation

- for each child (edge) e:
 - find all types of $\{\text{FF, FL, LF, LL}\}$ that admit a drawing
 - 2 variables l_e, r_e encoding fixed/loose type of its tile
 - consistency clauses

separation pair!
R-Nodes with 2-SAT Formulation

- for each child (edge) e:
 - find all types of $\{\text{FF, FL, LF, LL}\}$ that admit a drawing
 - 2 variables l_e, r_e encoding fixed/loose type of its tile
 - consistency clauses \(-O(n^2)\) many,
R-Nodes with 2-SAT Formulation

- for each child (edge) \(e \):
 - find all types of \(\{\text{FF,FL,LF,LL}\} \) that admit a drawing
 - 2 variables \(l_e, r_e \) encoding fixed/loose type of its tile
 - consistency clauses \(- O(n^2) \) many, but can be reduced to \(O(n \log^2 n) \)
Visualization of Graphs

Lecture 9:
Partial Visibility Representation Extension

Part VI:
NP-Hardness
of the General Case

Alexander Wolff
NP-Hardness of RepExt in the General Case

Theorem 2.
\(\varepsilon \)-Bar Visibility Representation Extension is NP-complete.

- Reduction from Planar Monotone 3-SAT
NP-Hardness of RepExt in the General Case

Theorem 2.
\(\varepsilon \)-Bar Visibility Representation Extension is NP-complete.

Reduction from Planar Monotone 3-SAT
NP-Hardness of RepExt in the General Case

Theorem 2.
ε-Bar Visibility Representation Extension is NP-complete.

- Reduction from Planar Monotone 3-SAT

Diagram:

```
x1 \lor x3 \lor x6
```

- NP-complete
 [Berg & Khosravi ’10]
NP-Hardness of RepExt in the General Case

Theorem 2.
\(\varepsilon \)-Bar Visibility Representation Extension is NP-complete.

- Reduction from Planar Monotone 3-SAT

NP-complete

[Berg & Khosravi '10]
Variable Gadget

$x = \text{FALSE}$

$x = \text{TRUE}$
Clause Gadget

\[x \lor y \lor z \]
Clause Gadget

\[x \lor y \lor z \]
Clause Gadget

$x \lor y \lor z$
Clause Gadget

\[x \lor y \lor z \]
Clause Gadget

\[x \lor y \lor z \]
Clause Gadget

\[x \lor y \lor z \]

\[x \lor y = \text{TRUE} \]
Clause Gadget

\[x \lor y \lor z \]

\begin{align*}
\text{OR} & \quad x \lor y = \text{TRUE} \\
& \quad x \lor y = \text{FALSE}
\end{align*}
Clause Gadget

\[x \lor y \lor z \]

\[x \lor y = \text{TRUE} \]

\[x \lor y = \text{FALSE} \]
Clause Gadget

\[x \lor y \lor z \]

\[x \lor y = \text{False} \]
\[x \lor y = \text{True} \]
\[x \lor y \lor z = \text{True} \]
Clause Gadget

$x \lor y \lor z$

$x \lor y = \text{True}$

$x \lor y = \text{False}$

$x \lor y \lor z = \text{True}$

$x \lor y \lor z = \text{False}$
Clause Gadget

\[x \lor y \lor z \]

\[x \lor y = \text{True} \]

\[x \lor y = \text{False} \]

\[x \lor y \lor z = \text{True} \]

\[x \lor y \lor z = \text{False} \]
Clause Gadget

$x \lor y \lor z$

$x \lor y = \text{TRUE}$

$x \lor y = \text{FALSE}$

$x \lor y \lor z = \text{TRUE}$

$x \lor y \lor z = \text{FALSE}$
Clause Gadget

\[x \lor y \lor z \]

\[x \lor y = \text{True} \]

\[x \lor y = \text{False} \]

\[x \lor y = \text{or True} \]

or \[\text{True} \]

\[x \lor y \lor z = \text{True} \]

\[x \lor y \lor z = \text{False} \]
Clause Gadget

\[x \lor y \lor z \]

\[x \lor y = \text{TRUE} \]

\[x \lor y = \text{FALSE} \] or TRUE

\[x \lor y \lor z = \text{TRUE} \] or TRUE

\[x \lor y \lor z = \text{FALSE} \] or TRUE
OR’ Gadget

\[x \]

\[y \]
OR’ Gadget

\begin{figure}
\begin{center}
\begin{tikzpicture}

% Nodes
\node[shape=circle,fill=orange!20] (x) at (0,0) {x};
\node[shape=circle,fill=orange!20] (y) at (0,-2) {y};
\node[shape=rectangle,fill=blue!20] (x_bar) at (3,0) {x};
\node[shape=rectangle,fill=blue!20] (y_bar) at (3,-2) {y};

% Connections
\draw (x) -- (y);
\draw (x) -- (x_bar);
\draw (y) -- (y_bar);
\draw (x) -- (y_bar);
\draw (y) -- (x_bar);
\end{tikzpicture}
\end{center}
\end{figure}
OR' Gadget

The diagram illustrates an OR' gadget with input variables x and y. The gadget is composed of a network of interconnections, with x and y as inputs, leading to the final output in a cascade manner. The structure ensures the correct functionality of the OR' operation, as depicted by the flow of connections and the labeled nodes.
OR’ Gadget

\[x \]

\[y \]
OR' Gadget
OR’ Gadget
OR’ Gadget

x

y

x

y
OR’ Gadget

\[x \quad y \]
OR’ Gadget

\[x \quad y \]

\[(\quad) \quad (\quad) \quad (\quad) \]

\[(\quad) \quad (\quad) \quad (\quad) \]

\[(\quad) \quad (\quad) \quad (\quad) \]

\[(\quad) \quad (\quad) \quad (\quad) \]

\[(\quad) \quad (\quad) \quad (\quad) \]
OR’ Gadget
OR’ Gadget

Diagram showing the connections and nodes labeled as ‘x’ and ‘y’.
OR’ Gadget
OR’ Gadget

\[x \]

\[y \]
OR’ Gadget
OR’ Gadget
Discussion

- Rectangular ε-Bar Visibility Representation Extension can be solved in $O(n \log^2 n)$ time for st-graphs.
Discussion

- *Rectangular* ε-Bar Visibility Representation Extension can be solved in $O(n \log^2 n)$ time for st-graphs.

- ε-Bar Visibility Representation Extension is NP-complete.
Discussion

- *Rectangular* ε-Bar Visibility Representation Extension can be solved in $O(n \log^2 n)$ time for st-graphs.

- ε-Bar Visibility Representation Extension is NP-complete.

- ε-Bar Visibility Representation Extension is NP-complete for (series-parallel) st-graphs when restricted to the *Integer Grid* (or if any fixed $\varepsilon > 0$ is specified).
Discussion

- **Rectangular ε-Bar Visibility Representation Extension** can be solved in $O(n \log^2 n)$ time for st-graphs.

- ε-Bar Visibility Representation Extension is NP-complete.

- ε-Bar Visibility Representation Extension is NP-complete for (series-parallel) st-graphs when restricted to the Integer Grid (or if any fixed $\varepsilon > 0$ is specified).

Open Problems:

- Can **rectangular** ε-Bar Visibility Representation Extension be solved in polynomial time for st-graphs?
Discussion

- *Rectangular* ε-Bar Visibility Representation Extension can be solved in $O(n \log^2 n)$ time for st-graphs.

- ε-Bar Visibility Representation Extension is NP-complete.

- ε-Bar Visibility Representation Extension is NP-complete for (series-parallel) st-graphs when restricted to the *Integer Grid* (or if any fixed $\varepsilon > 0$ is specified).

Open Problems:

- Can *rectangular* ε-Bar Visibility Representation Extension be solved in polynomial time for st-graphs? For DAGs?
Discussion

- **Rectangular** ε-Bar Visibility Representation Extension can be solved in $O(n \log^2 n)$ time for st-graphs.

- ε-Bar Visibility Representation Extension is NP-complete.

- ε-Bar Visibility Representation Extension is NP-complete for (series-parallel) st-graphs when restricted to the *Integer Grid* (or if any fixed $\varepsilon > 0$ is specified).

Open Problems:

- Can **rectangular** ε-Bar Visibility Representation Extension be solved in polynomial time for st-graphs? For DAGs?

- Can **Strong** Bar Visibility Recognition / Representation Extension can be solved in polynomial time for st-graphs?
Literature

Main source:
- [Chaplick, Guśpiel, Gutowski, Krawczyk, Liotta ’18]
 The Partial Visibility Representation Extension Problem

Referenced papers:
- [Gutwenger, Mutzel ’01] A Linear Time Implementation of SPQR-Trees
- [Wismath ’85] Characterizing bar line-of-sight graphs
- [Tamassia, Tollis ’86] Algorithms for visibility representations of planar graphs
- [Andreae ’92] Some results on visibility graphs
- [Chaplick, Dorbec, Kratchovíl, Montassier, Stacho ’14]
 Contact representations of planar graphs: Extending a partial representation is hard