Visualization of Graphs

Lecture 3:
Straight-Line Drawings of Planar Graphs I:
Canonical Ordering and the Shift Method

Part I:
Planar Straight-Line Drawings

Alexander Wolff
Planar Graphs

\(G \) is **planar**: it can be drawn in such a way that no edges cross each other.

planar embedding: Clockwise orientation of adjacent vertices around each vertex.

A planar graph can have many planar embeddings.

A planar embedding can have many planar drawings!

faces: Connected region of the plane bounded by edges

Euler’s polyhedra formula.

\[
\text{#faces} - \text{#edges} + \text{#vertices} = \text{#conn.comp.} + 1
\]

\[f - m + n = c + 1 \]

Proof. By induction on \(m \):

\(m = 0 \Rightarrow f = 1 \) and \(c = n \)
\[\Rightarrow 1 - 0 + n = n + 1 \checkmark \]

\(m \geq 1 \Rightarrow \text{remove some edge } e \Rightarrow m \to m - 1 \)

\[e \Rightarrow c \to c + 1 \]
Properties of Planar Graphs

Euler’s polyhedra formula.
\[f - m + n = c + 1 \]

Theorem. \(G \) simple planar graph with \(n \geq 3 \) vtc.
1. \(m \leq 3n - 6 \)
2. \(f \leq 2n - 4 \)
3. There is a vertex of degree at most 5.

Proof. 1. Every edge incident to \(\leq 2 \) faces
 Every face incident to \(\geq 3 \) edges
 \(\Rightarrow 3f \leq 2m \)
 \(\Rightarrow 6 \leq 3c + 3 \leq 3f - 3m + 3n \leq 2m - 3m + 3n = 3n - m \)
 \(\Rightarrow m \leq 3n - 6 \)
2. \(3f \leq 2m \leq 6n - 12 \) \(\Rightarrow f \leq 2n - 4 \)
3. \(\sum_{v \in V} \deg(v) = 2m \leq 6n - 12 \)
 \(\Rightarrow \min_{v \in V} \deg(v) \leq \text{average degree}(G) = 1/n \sum_{v \in V} \deg(v) < 6 \)

Handshaking lemma.
\(\sum_{v \in V} \deg(v) = 2|E| \)
Triangulations

A **plane (inner) triangulation** is a plane graph where every (inner) face is a triangle.

A **maximal planar graph** is a planar graph where adding any edge would violate planarity.

Observation.
A maximal plane graph is a plane triangulation.

Lemma.
A plane triangulation is at least 3-connected and thus has a unique planar embedding.

We focus on plane triangulations:

Lemma.
Every plane graph is subgraph of a plane triangulation.
Triangulations

A **plane (inner) triangulation** is a plane graph where every (inner) face is a triangle.

A **maximal planar graph** is a planar graph where adding any edge would violate planarity.

Observation.
A maximal plane graph is a plane triangulation.

Lemma.
A plane triangulation is at least 3-connected and thus has a unique planar embedding.

We focus on plane triangulations:

Lemma.
Every plane graph is subgraph of a plane triangulation.
Motivation

- Why planar and straight-line?

[Bennett, Ryall, Spaltzeholz and Gooch ’07]

The Aesthetics of Graph Visualization

3.2. Edge Placement Heuristics

By far the most agreed-upon edge placement heuristic is to **minimize the number of edge crossings** in a graph [BMRW98, Har98, DH96, Pur02, TR05, TBB88]. The importance of avoiding edge crossings has also been extensively validated in terms of user preference and performance (see Section 4). Similarly, based on perceptual principles, it is beneficial to **minimize the number of edge bends** within a graph [Pur02, TR05, TBB88]. Edge bends make edges more difficult to follow because an edge with a sharp bend is more likely to be perceived as two separate objects. This leads to the heuristic of **keeping edge bends uniform** with respect to the bend’s position on the edge and its angle [TR05]. If an edge must be bent to satisfy other aesthetic criteria, the angle of the bend should be as little as possible, and the bend placement should evenly divide the edge.

Drawing conventions
- No crossings \Rightarrow planar
- No bends \Rightarrow straight-line

Drawing aesthetics
- Area
Towards Straight-Line Drawings

Theorem. [Kuratowski 1930]

G planar \iff neither K_5 nor $K_{3,3}$ minor of G

Theorem. [Hopcroft & Tarjan 1974]

Let G be a graph with n vertices. There is an $O(n)$-time algorithm to test whether G is planar. Also computes a planar embedding in $O(n)$ time.

Theorem. [Wagner 1936, Fáry 1948, Stein 1951]

Every planar graph has a planar drawing where the edges are straight-line segments.
Towards Straight-Line Drawings

Theorem. [Kuratowski 1930]

\[G \text{ planar} \iff \text{neither } K_5 \text{ nor } K_{3,3} \text{ minor of } G \]

Theorem. [Hopcroft & Tarjan 1974]

Let \(G \) be a graph with \(n \) vertices. There is an \(O(n) \)-time algorithm to test whether \(G \) is planar.

Also computes a planar embedding in \(O(n) \) time.

Theorem. [Wagner 1936, Fáry 1948, Stein 1951]

Every planar graph has a planar drawing where the edges are straight-line segments.

The algorithms implied by these theorems produce drawings whose area is **not** bounded by any polynomial in \(n \).
Planar straight-line drawings

Theorem. [De Fraysseix, Pach, Pollack '90]
Every \(n \)-vertex planar graph has a planar straight-line drawing of size \((2n - 4) \times (n - 2) \).

Idea.
- Start with single edge \((v_1, v_2)\). Let this be \(G_2 \).
- To obtain \(G_{i+1} \), add \(v_{i+1} \) to \(G_i \) so that neighbours of \(v_{i+1} \) are on the outer face of \(G_i \).
- Neighbours of \(v_{i+1} \) in \(G_i \) have to form path of length at least two.

Theorem. [Schnyder '90]
Every \(n \)-vertex planar graph has a planar straight-line drawing of size \((n - 2) \times (n - 2) \).
Visualization of Graphs

Lecture 3:
Straight-Line Drawings of Planar Graphs I:
Canonical Ordering and Shift Method

Part II:
Canonical Order

Alexander Wolff
Definition.
Let $G = (V, E)$ be a triangulated plane graph on $n \geq 3$ vertices. An ordering $\pi = (v_1, v_2, \ldots, v_n)$ of V is called a **canonical order** if the following conditions hold for each $k \in \{3, 4, \ldots, n\}$:

(C1) Vertices $\{v_1, \ldots v_k\}$ induce a biconnected internally triangulated graph; call it G_k.

(C2) Edge (v_1, v_2) belongs to the outer face of G_k.

(C3) If $k < n$ then vertex v_{k+1} lies in the outer face of G_k, and the neighbors of v_{k+1} form a path on the boundary of G_k.
(C1) Vertices \(\{v_1, \ldots v_k\}\) induce a biconnected internally triangulated graph; call it \(G_k\).

(C2) Edge \((v_1, v_2)\) belongs to the outer face of \(G_k\).

(C3) If \(k < n\) then vertex \(v_{k+1}\) lies in the outer face of \(G_k\), and the neighbors of \(v_{k+1}\) form a path on the boundary of \(G_k\).
(C1) Vertices \(\{v_1, \ldots, v_k\}\) induce a biconnected internally triangulated graph; call it \(G_k\).

(C2) Edge \((v_1, v_2)\) belongs to the outer face of \(G_k\).

(C3) If \(k < n\) then vertex \(v_{k+1}\) lies in the outer face of \(G_k\), and the neighbors of \(v_{k+1}\) form a path on the boundary of \(G_k\).
(C1) Vertices \(\{v_1, \ldots v_k\}\) induce a biconnected internally triangulated graph; call it \(G_k\).

(C2) Edge \((v_1, v_2)\) belongs to the outer face of \(G_k\).

(C3) If \(k < n\) then vertex \(v_{k+1}\) lies in the outer face of \(G_k\), and the neighbors of \(v_{k+1}\) form a path on the boundary of \(G_k\).
Canonical Order – Example

(C1) Vertices \(\{v_1, \ldots v_k\} \) induce a biconnected internally triangulated graph; call it \(G_k \).

(C2) Edge \((v_1, v_2)\) belongs to the outer face of \(G_k \).

(C3) If \(k < n \) then vertex \(v_{k+1} \) lies in the outer face of \(G_k \), and the neighbors of \(v_{k+1} \) form a path on the boundary of \(G_k \).
(C1) Vertices \(\{v_1, \ldots v_k\} \) induce a biconnected internally triangulated graph; call it \(G_k \).

(C2) Edge \((v_1, v_2)\) belongs to the outer face of \(G_k \).

(C3) If \(k < n \) then vertex \(v_{k+1} \) lies in the outer face of \(G_k \), and the neighbors of \(v_{k+1} \) form a path on the boundary of \(G_k \).
(C1) Vertices \(\{v_1, \ldots, v_k\} \) induce a biconnected internally triangulated graph; call it \(G_k \).

(C2) Edge \((v_1, v_2) \) belongs to the outer face of \(G_k \).

(C3) If \(k < n \) then vertex \(v_{k+1} \) lies in the outer face of \(G_k \), and the neighbors of \(v_{k+1} \) form a path on the boundary of \(G_k \).
Canonical Order – Example

(C1) Vertices \{v_1, \ldots, v_k\} induce a biconnected internally triangulated graph; call it \(G_k\).

(C2) Edge \((v_1, v_2)\) belongs to the outer face of \(G_k\).

(C3) If \(k < n\) then vertex \(v_{k+1}\) lies in the outer face of \(G_k\), and the neighbors of \(v_{k+1}\) form a path on the boundary of \(G_k\).

\[
\begin{align*}
\text{chord:} & \quad \text{edge joining two nonadjacent vertices in a cycle}
\end{align*}
\]
Canonical Order – Example

(C1) Vertices $\{v_1, \ldots, v_k\}$ induce a biconnected internally triangulated graph; call it G_k.

(C2) Edge (v_1, v_2) belongs to the outer face of G_k.

(C3) If $k < n$ then vertex v_{k+1} lies in the outer face of G_k, and the neighbors of v_{k+1} form a path on the boundary of G_k.
(C1) Vertices \(\{v_1, \ldots v_k\}\) induce a biconnected internally triangulated graph; call it \(G_k\).

(C2) Edge \((v_1, v_2)\) belongs to the outer face of \(G_k\).

(C3) If \(k < n\) then vertex \(v_{k+1}\) lies in the outer face of \(G_k\), and the neighbors of \(v_{k+1}\) form a path on the boundary of \(G_k\).
Canonical Order – Existence

Lemma.
Every triangulated plane graph has a canonical order.

Base Case:
Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n. Conditions (C1)–(C3) hold.

Induction hypothesis:
Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions (C1)–(C3) hold for $k + 1 \leq i \leq n$.

Induction step: Consider G_k. We search for v_k.

(C1) G_k biconnected and internally triangulated

(C2) (v_1, v_2) on outer face of G_k

(C3) $k < n \Rightarrow v_{k+1}$ in outer face of G_k, neighbors of v_{k+1} form path on boundary of G_k

Have to show:
1. v_k not incident to chord is sufficient
2. Such v_k exists
Canonical Order – Existence

Claim 1.
If \(v_k \) is not incident to a chord, then \(G_{k-1} \) is biconnected.

Claim 2.
There exists a vertex in \(G_k \) that is not incident to a chord as choice for \(v_k \).

Contradiction to neighbors of \(v_k \) forming a path on \(\partial G_{k-1} \)!

Not triangulated!

\(G_k \) was not biconnected!

\(v_1 \) \(v_2 \)

This completes the proof of the lemma. \(\square \)
Canonical Order – Implementation

CanonicalOrder\((G = (V, E), (v_1, v_2, v_n))\)

```plaintext
forall v ∈ V do
  chords(v) ← 0; out(v) ← false; mark(v) ← false
mark(v_1), mark(v_2), out(v_1), out(v_2), out(v_n) ← true
for k = n downto 3 do
  choose v such that mark(v) = false, out(v) = true, and chords(v) = 0
  \(v_k ← v; mark(v) ← true\)
  // Let \(\partial G_{k-1}\) be \(w_1 = v_1, w_2, \ldots, w_{t-1}, w_t = v_2\).
  Let \(w_p, \ldots, w_q\) be the unmarked neighbors of \(v_k\).
  for i = p to q do
    out\(w_i\) ← true
    update chords\(w_i\)
    and for its neighbours
```

- **chord\(v)\)**: \# chords adjacent to \(v\)
- **out\(v\)** = true iff \(v\) is currently outer vertex
- **mark\(v\)** = true iff \(v\) has received its number

Lemma.
Algorithm CanonicalOrder computes a canonical order of a plane graph in \(O(n)\) time.
Visualization of Graphs

Lecture 3:
Straight-Line Drawings of Planar Graphs I:
Canonical Ordering and the Shift Method

Part III:
The Shift Method

Alexander Wolff
Shift Method – Idea

Drawing invariants:

$G_{k−1}$ is drawn such that

- v_1 is at $(0, 0)$, v_2 is at $(2k − 6, 0)$,
- boundary of $G_{k−1}$ (minus edge (v_1, v_2)) is drawn x-monotone,
- each edge of the boundary of $G_{k−1}$ (minus edge (v_1, v_2)) is drawn with slopes $±1$.

What could be the solution?
Shift Method – Idea

Drawing invariants:

G_{k-1} is drawn such that

- v_1 is at $(0, 0)$, v_2 is at $(2k - 6, 0)$,
- boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn x-monotone,
- each edge of the boundary of G_{k-1} (minus edge (v_1, v_2)) is drawn with slopes ± 1.

Yes, because w_p and w_q have even Manhattan distance $\Delta x + \Delta y$.

Will v_k lie on the grid?
Shift Method – Example
Shift Method – Example

$L(10)$
Shift Method – Example

$L(16)$
Shift Method – Example
Shift Method – Planarity

Observations.
- Each internal vertex is **covered** exactly once.
- Covering relation defines a tree in \(G \)
- and a forest in \(G_i, 1 \leq i \leq n - 1 \).

Lemma.

Let \(0 < \delta_1 \leq \delta_2 \leq \cdots \leq \delta_t \in \mathbb{N} \), such that \(\delta_q - \delta_p \geq 2 \) and even. If we shift \(L(w_i) \) by \(\delta_i \) to the right, then we get a planar straight-line drawing.

Proof by induction:
If \(G_{k-1} \) is drawn planar and straight-line, then so is \(G_k \).
Shift Method – Pseudocode

Let v_1, \ldots, v_n be a canonical order of G.

for $i = 1$ to 3 do
 $L(v_i) \leftarrow \{v_i\}$
 $P(v_1) \leftarrow (0, 0); P(v_2) \leftarrow (2, 0), P(v_3) \leftarrow (1, 1)$

for $i = 4$ to n do
 Let ∂G_{i-1} be $v_1 = w_1, w_2, \ldots, w_{t-1}, w_t = v_2$.
 Let w_p, \ldots, w_q be the neighbors of v_i.
 foreach $v \in \bigcup_{j=p+1}^{q-1} L(w_j)$ do /* $O(n^2)$ in total */
 $x(v) \leftarrow x(v) + 1$
 endforeach
 foreach $v \in \bigcup_{j=q}^{t} L(w_j)$ do /* $O(n^2)$ in total */
 $x(v) \leftarrow x(v) + 2$
 endforeach
 $P(v_i) \leftarrow$ intersection of slope-± 1 diagonals through $P(w_p)$ and $P(w_q)$
 $L(v_i) \leftarrow \bigcup_{j=p+1}^{q-1} L(w_j) \cup \{v_i\}$

Running Time?
Shift Method – Linear-Time Implementation

Idea 1.
To compute $x(v_k)$ & $y(v_k)$, we only need $y(w_p)$ and $y(w_q)$ and $x(w_q) - x(w_p)$

Idea 2.
Instead of storing explicit x-coordinates, we store x-distances.

(1) $x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p))$
(2) $y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p))$
Idea 1.
To compute \(x(v_k) & y(v_k) \), we only need \(y(w_p) \) and \(y(w_q) \) and \(x(w_q) - x(w_p) \)

Idea 2.
Instead of storing explicit x-coordinates, we store x-distances.
After an x-distance is computed for each \(v_k \), use preorder traversal to compute all x-coordinates.

\[
\begin{align*}
(1) \quad x(v_k) &= \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p)) \\
(2) \quad y(v_k) &= \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p)) \\
(3) \quad x(v_k) - x(w_p) &= \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) - y(w_p))
\end{align*}
\]
Shift Method – Linear-Time Implementation

Relative x-distance tree.
For each vertex v store
- x-offset $\Delta_x(v)$ from parent
- y-coordinate $y(v)$

Calculations.
- $\Delta_x(w_{p+1})++$, $\Delta_x(w_q)++$
- $\Delta_x(w_p, w_q) = \Delta_x(w_{p+1}) + \ldots + \Delta_x(w_q)$
- $\Delta_x(v_k)$ by (3)
- $y(v_k)$ by (2)
- $\Delta_x(w_q) = \Delta_x(w_p, w_q) - \Delta_x(v_k)$
- $\Delta_x(w_{p+1}) = \Delta_x(w_{p+1}) - \Delta_x(v_k)$

(1) $x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p))$
(2) $y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p))$
(3) $x(v_k) - x(w_p) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) - y(w_p))$
Literature

- [PGD Ch. 4.2] for detailed explanation of shift method
- [de Fraysseix, Pach, Pollack 1990] “How to draw a planar graph on a grid”
 - original paper on shift method