Visualization of Graphs

Lecture 1b:
Drawing Trees and Series-Parallel Graphs

Part I:
Layered Drawings

Alexander Wolff
(Rooted) Trees

Leaf: Vertex of degree 1

Rooted tree: tree with designated root

Ancestor: Vertex on path to root

Parent: Neighbor on path to root

Successor: Vertex on path away from root

Child: Neighbor not on path to root

Depth: Length of path to root

Height: Maximum depth of a leaf

Binary Tree: At most two children per vertex (left / right child)

3 traversals:

- **preorder**: node – left – right
- **inorder**: left – node – right
- **postorder**: left – right – node
First Grid Layout of Binary Trees

1. Choose y-coordinates:
 $$y(u) = \text{depth}(u)$$

2. Choose x-coordinates:

 - preorder
 - inorder
 - postorder
Layered Drawings – Applications

Decision tree for outcome prediction after traumatic brain injury

Source: Nature Reviews Neurology
Layered Drawings – Applications

Aloisius Gaultier 1821

Family tree of LOTR elves and half-elves
Layered Drawings – Drawing Style

- What are properties of the layout?
- What are the drawing conventions?
- What are aesthetics to optimize?

Drawing conventions
- Vertices lie on layers and have integer coordinates
- Parent centered above children
- Edges are straight-line segments
- Isomorphic subtrees have identical drawings

Drawing aesthetics
- Area
- Symmetries
Layered Drawings – Algorithm

Input: A binary tree T

Output: A layered drawing of T

Base case: A single vertex

Divide: Recursively apply the algorithm to draw the left and right subtrees

Conquer:
Layered Drawings – Algorithm

Input: A binary tree \(T \)

Output: A layered drawing of \(T \)

Base case: A single vertex

Divide: Recursively apply the algorithm to draw the left and right subtrees

Conquer:

- some agreed distance
- parent centered wrt to children
- sometimes 3 apart for grid drawing!
Layered Drawings – Algorithm Details

Phase 1 – postorder traversal:

- For each vertex compute horizontal displacement of left and right child
- \(\text{x-offset}(v_l) = -\left\lceil \frac{d_v}{2} \right\rceil, \text{x-offset}(v_r) = \left\lceil \frac{d_v}{2} \right\rceil \)
- At vertex \(u \) (below \(v \)) store left and right contour of sub-tree \(T(u) \)
- Contour is linked list of vertex coordinates/offsets
- Find \(d_v = \text{min. horiz. distance between } v_l \text{ and } v_r \)

Phase 2 – preorder traversal:

- Compute x- and y-coordinates
Layered Drawings – Algorithm Details

Phase 1 – postorder traversal:
- For each vertex compute horizontal displacement of left and right child
 \[x\text{-offset}(v_l) = -\left\lceil \frac{d_v}{2} \right\rceil, \quad \text{x-offset}(v_r) = \left\lceil \frac{d_v}{2} \right\rceil \]
- At vertex \(u \) (below \(v \)) store left and right contour of sub-tree \(T(u) \)
- Contour is linked list of vertex coordinates/offsets
- Find \(d_v = \text{min. horiz. distance between } v_l \text{ and } v_r \)

Phase 2 – preorder traversal:
- Compute \(x \)- and \(y \)-coordinates

Runtime?
- How often do we have to walk along a contour?
 \(-\text{Less than } n = \# \text{ vertices times!}\)
Layered Drawings – Result

Theorem. [Reingold & Tilford '81]
Let T be a binary tree with n vertices. We can construct a
drawing Γ of T in $O(n)$ time, such that:

- Γ is planar, straight-line and strictly downward
- Γ is layered: y-coordinate of vertex v is $-\text{depth}(v)$
- Horizontal and Vertical distances are at least 1
- Each vertex is centred w.r.t. its children
- Area of Γ is in $O(n^2)$ – but not optimal!
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic subtrees have congruent drawings, up to translation and reflection

NP-hard
Theorem. [Reingold & Tilford '81]
Let T be a binary tree with n vertices. We can construct a drawing Γ of T in $O(n)$ time, such that:

- Γ is planar, straight-line and strictly downward
- Γ is layered: y-coordinate of vertex v is $-\text{depth}(v)$
- Horizontal and Vertical distances are at least 1
- Each vertex is centred w.r.t. its children
- Area of Γ is in $O(n^2)$ – but not optimal!
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic subtrees have congruent drawings, up to translation and reflection

\[\text{NP-hard}\]
Visualization of Graphs

Lecture 1b:
Drawing Trees and Series-Parallel Graphs

Part II:
HV-Drawings
HV-Drawings – Drawing Style

Applications

- Cons cell diagram in LISP
- *Cons* (constructs) are memory objects that hold two values or pointers to values

```
1  3  5  10  11
  |   /   |
  | /   10|
  |11 |
  4  6  7  8 /
```

Drawing conventions

- Children are vertically or horizontally aligned with their parent
- The bounding boxes of the subtrees of the children are disjoint
- Edges are strictly down- or rightwards

Drawing aesthetics

- Height, width, area

Source: after gajon.org/trees-linked-lists-common-lisp/
HV-Drawings – Algorithm

Input: A binary tree T

Output: An HV-drawing of T

Base case:

Divide: Recursively apply the algorithm to draw the left and right subtrees

Conquer: horizontal combination
HV-Drawings – Algorithm

Input: A binary tree T

Output: An HV-drawing of T

Base case:

Divide: Recursively apply the algorithm to draw the left and right subtrees

Conquer:

- horizontal combination
- vertical combination
Lemma. Let T be a binary tree. The drawing constructed by the right-heavy approach has
- width at most $n - 1$ and
- height at most $\log n$.

Right-heavy approach
- Always apply horizontal combination
- Place the larger subtree to the right

Size of subtree := number of vertices

How to implement this in linear time?

← This can change the embedding!
Theorem.
Let T be a binary tree with n vertices. The right-heavy algorithm constructs in $O(n)$ time a drawing Γ of T s.t.:

- Γ is an HV-drawing
 (planar, orthogonal, strictly right-/downward)
- Width is at most $n - 1$
- Height is at most $\log n$
- Area is in $O(n \log n)$
- Simply and axially isomorphic subtrees have congruent drawings up to translation
Theorem. Let T be a binary tree with n vertices. The right-heavy algorithm constructs in $O(n)$ time a drawing Γ of T s.t.:

- Γ is an HV-drawing
 - (planar, orthogonal, strictly right-/downward)
- Width is at most $n - 1$
- Height is at most $\log n$
- Area is in $O(n \log n)$
- Simply and axially isomorphic subtrees have congruent drawings up to translation.
Visualization of Graphs

Lecture 1b:
Drawing Trees and Series-Parallel Graphs

Part III:
Radial Layouts
Radial Layouts – Applications

Phylogenetic tree
by Colicelli, ScienceSignaling, 2004
Radial Layouts – Applications

Flare Visualization Toolkit code structure by Heer, Bostock and Ogievetsky, 2010

Greek Myth Family by Ribbecca, 2011
Radial Layouts – Drawing Style

Drawing conventions
- Vertices lie on circular layers according to their depth
- Drawing is planar

Drawing aesthetics
- Distribution of the vertices

How can an algorithm optimize the distribution of the vertices?
Radial Layouts – Algorithm Attempt

Idea

- Reserve area corresponding to size $\ell(u)$ of $T(u)$:
 \[
 \tau_u = \frac{\ell(u)}{\ell(v) - 1}
 \]

- Place u in middle of area
Radial Layouts – How To Avoid Crossings
Radial Layouts – How To Avoid Crossings

- τ_u – angle of the wedge corresponding to vertex u
- $\ell(u)$ – number of nodes in the subtree rooted at u
- ρ_i – radius of layer i
- $\cos \frac{\tau_u}{2} = \frac{\rho_i}{\rho_{i+1}}$
- $\tau_u = \min \left\{ \frac{\ell(u)}{\ell(v)-1}, \, 2 \arccos \frac{\rho_i}{\rho_{i+1}} \right\}$
- Alternative:
 - $\alpha_{\min} = \alpha_u - \arccos \frac{\rho_i}{\rho_{i+1}}$
 - $\alpha_{\max} = \alpha_u + \arccos \frac{\rho_i}{\rho_{i+1}}$
Radial Layouts – Pseudocode

RadialTreeLayout(tree T, root $r \in T$, radii $\rho_1 < \cdots < \rho_k$)
begin
 \[\text{postorder}(r)\]
 \[\text{preorder}(r, 0, 0, 2\pi)\]
 return $(d_v, \alpha_v)_{v \in V(T)}$
 // vertex positions in polar coordinates
end

postorder(vertex v)
begin
 $\ell(v) \leftarrow 1$
 foreach child w of v
 \[\text{postorder}(w)\]
 \[\ell(v) \leftarrow \ell(v) + \ell(w)\]
end

preorder(vertex v, t, α_{\min}, α_{\max})
begin
 \[d_v \leftarrow \rho_t\]
 \[\alpha_v \leftarrow (\alpha_{\min} + \alpha_{\max})/2\] //output
 if $t > 0$ then
 \[\alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_v - \arccos \frac{\rho_t}{\rho_{t+1}}\}\]
 \[\alpha_{\max} \leftarrow \min\{\alpha_{\max}, \alpha_v + \arccos \frac{\rho_t}{\rho_{t+1}}\}\]
 end
 left $\leftarrow \alpha_{\min}$
 foreach child w of v
 right $\leftarrow left + \frac{\ell(w)}{\ell(v)-1} \cdot (\alpha_{\max} - \alpha_{\min})$
 preorder($w, t + 1, left, right$)
 left $\leftarrow right$
end

Runtime? $O(n)$
Correctness? ✓
Radial Layouts – Result

Theorem.
Let T be a tree with n vertices. The RadialTreeLayout algorithm constructs in $O(n)$ time a drawing Γ of T s.t.:

- Γ is radial drawing
- Vertices lie on circle according to their depth
- Area quadratic in $\text{max-degree}(T) \times \text{height}(T)$

(see [GD Ch. 3.1.3] if interested)
Other tree visualisation styles

Writing Without Words: The project explores methods to visualises the differences in writing styles of different authors.

Similar to ballon layout
Other tree visualisation styles

A phylogenetically organised display of data for all placental mammal species.

Fractal layout
Other tree visualisation styles

A language family tree – in pictures
Other tree visualisation styles
Visualization of Graphs

Lecture 1b:
Drawing Trees and Series-Parallel Graphs

Part IV:
Series-Parallel Graphs
Series-Parallel Graphs

A graph G is **series-parallel**, if
- it contains a single (directed) edge (s, t), or
- it consists of two series-parallel graphs G_1, G_2 with sources s_1, s_2 and sinks t_1, t_2 that are combined using one of the following rules:

Series composition
\[
G_1 \rightarrow t_1 \\
G_2 \rightarrow t_2 \\
\rightarrow \\
G_1 \cup G_2 \\
G_1 \cup G_2
\]

Parallel composition
\[
G_1 \cup G_2 \\
\rightarrow \\
G_1 \cup G_2
\]

Convince yourself that series-parallel graphs are planar!
A **decomposition tree** of G is a binary tree T with nodes of three types: S, P and Q:

- A Q-node represents a single edge
- An S-node represents a series composition; its children T_1 and T_2 represent G_1 and G_2
- A P-node represents a parallel composition; its children T_1 and T_2 represent G_1 and $G_2
Series-Parallel Graphs – Decomposition Example
Computational complexity:
Series-parallel graphs often admit linear-time algorithms for NP-hard problems, e.g., minimum maximal matching, MIS, Hamiltonian completion
Series-Parallel Graphs – Drawing Style

Drawing conventions
- Planarity
- Straight-line edges
- Upward

Drawing aesthetics
- Area
- Symmetry
Series-Parallel Graphs – Straight-Line Drawings

Divide & conquer algorithm using the decomposition tree
- Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$

Base case: Q-nodes

Divide: Draw G_1 and G_2 first

Conquer:
- S-nodes / series composition
- P-nodes / parallel composition

Do you see any problem?
Series-Parallel Graphs – Straight-Line Drawings

Divide & conquer algorithm using the decomposition tree

- Draw G inside a right-angled isosceles bounding triangle $\Delta(G)$

Base case: Q-nodes

Divide: Draw G_1 and G_2 first

Conquer:

- S-nodes / series composition
- P-nodes / parallel composition

Divide: Draw G_1 and G_2 first

change embedding!
What makes parallel composition possible without creating crossings?

This condition is preserved during the induction step.

Assume the following holds:
the only vertex in angle(v) is s

Lemma.
The drawing produced by the algorithm is planar.
Theorem.
Let G be a series-parallel graph. Then G (with variable embedding) admits a drawing Γ that
- is upward planar and
- a straight-line drawing
- with area in $O(n^2)$.
- Isomorphic components of G have congruent drawings up to translation.
Γ can be computed in $O(n)$ time.
Theorem. [Bertolazzi et al. 94]

There exists a 2^n-vertex series-parallel graph G_n such that any upward planar drawing of G_n that respects the embedding requires $\Omega(4^n)$ area.

- $2 \cdot \text{Area}(G_n) < \text{Area}(\Pi)$
- $2 \cdot \text{Area}(\Pi) \leq \text{Area}(G_{n+1})$

$\Rightarrow 4 \cdot \text{Area}(G_n) \leq \text{Area}(G_{n+1})$
Literature

- [GD, Chapter 3] for divide and conquer methods for rooted trees and series-parallel graphs
- [Reingold, Tilford '81] “Tidier Drawings of Trees” original paper for level-based layout algo
- [Reingold, Supowit '83] “The complexity of drawing trees nicely” linear program and NP-hardness proof for area minimization
- treevis.net – compendium of drawing methods for trees