K - Teardown

Cameron Reuschel, David Schantz
Table of Contents

- The Problem
- Debunking Approaches
- Problem Structure
- The Algorithm
- Implementation Tips
- Summary
The Problem
Problem Description

Bulldozer Time!

Given:
- Many buildings along a long, straight road
- modelled as individual square blocks

Objective:
- Level all the buildings
- by getting all blocks on the ground
- by moving any block left or right
- with as few moves as possible
What is a Move?
Input

Number of columns

10
1 3 0 0 1 9 1 1 1 1

Height of each column in blocks
Output

Minimum number of moves needed to get all blocks to level 0

13
Pause the video and play a little!

https://xdracam.itch.io/teardown
Definitions

<table>
<thead>
<tr>
<th>n</th>
<th>Number of columns</th>
</tr>
</thead>
<tbody>
<tr>
<td>Block</td>
<td>Single block with clearly defined xy-coordinates</td>
</tr>
<tr>
<td>h</td>
<td>Height of a block = y-coordinate</td>
</tr>
<tr>
<td>m</td>
<td>Number of blocks with h > 0</td>
</tr>
<tr>
<td>Column</td>
<td>A specific x-coordinate</td>
</tr>
<tr>
<td>Gap</td>
<td>A column without any blocks</td>
</tr>
<tr>
<td>Stack</td>
<td>Multiple adjacent blocks in the same column</td>
</tr>
<tr>
<td>Split</td>
<td>Separation of a column into three parts that either go left, right or are leveled in place</td>
</tr>
</tbody>
</table>

![Diagram showing definitions](image-url)

Obvious Problem Characteristics

- always possible to find a solution
 - infinite gaps to the left and right of the instance
- solution is not unique
 - many different moves and orders can lead to the same or equivalent outcomes
- each problem instance has mirror version with left/right swapped
 - so the order with which we iterate the instance does not matter
Intuitive Heuristics

- after pushing blocks into a direction, it makes no sense to push them back
- good idea to move many blocks at once
- moving towards closer/足够 enough gaps is better

- moving blocks at h=0 is useless

Or is it?
Debunking Approaches
Move all blocks into same direction?
Find a column c.
Move all blocks with $x \leq c$ to the left & all blocks with $x > c$ to the right
For each column, move left or right individually?
Problem Structure
Problem Complexity

- depends on number of blocks above ground level = m
- hard to solve in linear time
 - we need to split a stack in the middle sometimes
 - we can’t know where to split in advance
 - so we need to consider all splits

- up to 10^9 columns with 10^5 blocks each ($m < 10^{14}$)

10^{14} bytes = 100 terabytes

⇒ we cannot possibly use $O(m)$ memory

As much data as the LHC generates in one second!
Upper and Lower Bounds

- $m = \text{number of blocks above ground level}$

- need a minimum of m moves
 - every move can only level at most one block
 - blocks on floor are already leveled

- need a maximum of $2m$ moves
 $\Rightarrow \text{2-approximation strategy}$
Basic Solution Idea

Partition all blocks with $h > 0$ into non-overlapping intervals

- Every block in an interval is leveled with the same strategy
- In *Left/Right intervals*, all blocks are moved in the same direction until leveled
- In a *NoOp interval*, all blocks are leveled with the 2-approximation strategy
 - every block in a NoOp interval requires exactly 2 moves to be leveled

⇒ Partitioning of *all* blocks with $h > 0$ into non-overlapping intervals so that the *sum of required moves* is minimal
Visualization: Interval Partitioning

required moves: 4+2+3+4+1 = 14
Definition: Left / Right Intervals

- every block with $h > 0$ is moved in the same direction until leveled
- contain a start stack and a continuous sequence of complete columns
 - can include gap columns outside the problem instance!

Clearly defined by:

- start column index
- end column index
- number of blocks moved in start column (= start stack size)

length of an interval = number of included columns - 1
= end column index - start column index
Left / Right Intervals: Observations

- start stack always has at least 1 block with \(h > 0 \)
 - otherwise there would be nothing to move, so why include?
- for every block with \(h > 0 \), includes at least one matching gap
 - otherwise we could not have leveled that block in the interval
- end column is always a gap
 - interval ends as soon as we have found a gap for each non-leveled block
- a single column can include start stacks of both a left and a right interval

- required moves to level \(= \) length of the interval
 - in a right-interval, we need to move the leftmost block into the rightmost gap
 - the leftmost block is in the start stack, the rightmost gap is the end column
 - all other blocks on the way will be leveled before the leftmost block reaches the end gap
How Many Intervals?

- each block with $h > 0$ can be in either a left, right or noop interval
 \[\Rightarrow\text{up to } 3m \text{ possible intervals in a problem instance}\]

- up to m non-overlapping intervals at the same time

 \[\Rightarrow O(2^m) \text{ interval partitionings to consider!}\]

 \[\text{but } m < 10^{14} \Rightarrow \text{impossible to calculate all partitionings}\]
The Algorithm
Incremental Calculation

Too many possible interval partitions

Cannot calculate them all

→ Dynamic Programming
Basic Approach

Iterate over columns from left to right

For each column \(x \), remember min number of moves required to level everything to the left (including \(x \)) in \(\text{movesUntil}[x] \)

Input : \(n, h \)

```plaintext
for x from 0 until n do
  // assume NoOp:
  \( \text{movesUntil}[x] \leftarrow \text{movesUntil}[x-1] + 2 \cdot \max(h[x] - 1, 0) \)
  consider left and right intervals separately

return \( \text{movesUntil}.last \)
```
Calculating a Left Interval

Naive approach: go left until we have gaps for all found blocks

→ Inefficient, will result in $O(m^2)$ runtime for left moves alone

Idea: Keep

- a stack of open gaps we found
- a counter how many gaps to the left of 0 have been filled
Calculating a Left Interval

Input : n, h

let gaps ← empty stack
let gapsFilledBeyondLeftBorder ← 0
let leftSplits ← 2-dim array
for x from 0 until n do
 leftSplits[x][0] ← movesUntil[x-1]
 if h[x] = 0 then
 push x to gaps
 else
 for y from 1 until h[x] do
 if gaps is not empty then
 leftBound ← gaps.pop()
 else
 gapsFilledBeyondLeftBorder += 1
 leftBound ← gapsFilledBeyondLeftBorder
 leftSplits[x][y] ← leftSplits[x][y-1] + 2
 let leftMoves ← movesUntil[leftBound] + x - leftBound
 if leftSplits[x][y] > leftMoves then
 leftSplits[x][y] ← leftMoves
 movesUntil[x] ← leftSplits[x][h[x]-1]
Calculating a Right Interval

Handle right intervals at their end column ➔ x must be a gap

A search for each gap would be inefficient

Idea: New columns have to be leveled completely before a right interval can end

➔ Keep stack of possible right intervals

Each with $\{\text{leftCol}, \text{remainingBlocks}\}$
Calculating a Right Interval

Input : n, h

let openRightIntervals ← empty stack of \{ leftCol, remainingBlocks \}

for x from 0 until n do
 if h[x] > 1 then
 push \{ x, h[x] - 1 \} to openRightIntervals
 (left interval handling)
else if h[x] = 0 then
 movesUntil[x] ← movesUntil[x - 1]
 if openRightIntervals is not empty then
 let ri ← openRightIntervals.top
 let x₁ ← ri.leftCol
 let blocksTaken ← h[x₁] - ri.remainingBlocks
 let totalMoves ← leftSplits[x₁][blocksTaken] + x - x₁
 if totalMoves < movesUntil[x] then
 movesUntil[x] ← totalMoves
 ri.remainingBlocks ← 1
 if ri.remainingBlocks = 0 then
 openRightIntervals.pop()

Handle all remaining intervals in stack
Right column is always lastRightBound + .remainingBlocks (lastRightBound is n - 1 for the first one)
Necessary Optimizations
Current Performance

Need to iterate over every block with h > 1
- Once for left-intervals, once for right-intervals
→ \(O(m) \) runtime

Need to save min move value for each possible split
→ \(O(m) \) memory
- Worst case: No Gaps
 → All columns on right-interval stack
 → Need to handle all splits at the end
 → Actually need all the values until the end

Remember: up to \(10^{14} \) blocks
1 byte per block → 100 terabyte
\(O(m) \) definitely doesn’t work for extreme cases.
Idea: Implement **leftSplits** as sparse data

Step one: flatten the array

Observation if $h > 1$:

$$\text{leftSplit}[x][h(x)-1] == \text{leftSplit}[x+1][0]$$

(== movesUntil[x])
Idea: Implement leftSplits as sparse data

Assumption: No gaps

How do the values in the array develop?

+1 For most blocks
+2 For a new column
Idea: Implement \texttt{leftSplits} as sparse data

Generalizing to gaps:

- At every gap, the required moves do not increase (one non-positive change)

\[\Rightarrow \text{Only } O(n) \text{ non-1 differences in } \texttt{leftSplits} \]
\[\Rightarrow \text{If we only save non-1 differences, we can reduce the memory usage from } O(m) \text{ to } O(n) \]
Getting the required data

But how do we get the minimum number of moves until starting a left split when considering a right split?

- Use a search tree (C++ std::map, Java TreeMap)
- Keys: indices of old array
- When entry is present, then done
- If not, search the tree for the next smaller key
- Result: Value at present entry + difference between the keys

$\rightarrow O(\log n)$ lookup instead of $O(1)$

Logarithmic factors can often be ignored for actual runtimes 😊
Idea: Skip Left Interval calculations

When calculating left intervals, we only jump from gap to gap (at most n)

→ As long as we stay in bounds (left column index ≥ 0), total left split calculation is in $O(n \log n)$, as there can be at most n gaps

→ $O(m \log n)$ only applies when leaving bounds

Idea: If we do leave the left bound, there will be infinite gaps → Every additional block only adds $+1$ move

Since we don’t save those, we can simply break once we found a worthy (= better than 2-approx strategy) left split across the left bound → $O(n \log n)$
Idea: Cleanup right intervals faster

Same approach: Infinite consecutive gaps after handling all columns

- No need to find `.remainingBlocks` next gaps, can just calculate end column
- Partitionally leveling stack is not necessary, taking all blocks is optimal

Only have to handle all right splits ending before right bounds (at most n) and one right interval per column that exceeds bounds (at most n)

$\rightarrow O(n \log n)$ in total
Implementation Tips

- Use long (int64) for most numbers!
 - large instances can easily cause ints to overflow
 - performance will be fine, we promise

- Watch out for offsets!
 - +/- 1 issues can easily happen
 - depending on how you keep track of values

- Use expressive variable names!
 - which values are in/exclusive w.r.t. column indices?, etc

- Ignore micro-optimizations until the very end
 - can get up to factor ~3 faster
 - but algorithmic improvements can lead to ~1000 times faster code!

https://xkcd.com/1691/
Summary

Iterate through all columns and keep track of:
- min number of moves required to level everything so far
- number of blocks with $h > 0$ encountered so far (= key for leftSplits)

If height of column > 1:
- push to openRightIntervals
- calculate possible leftSplits by iterating through the blocks
- stop iterating early when all following blocks would only need 1 more move

If column is a gap:
- push it to the gaps stack
- check whether including the top of openRightIntervals yields a better result

After iterating, iterate backwards through openRightIntervals and check for a better result

⇒ $O(n \log n)$ runtime
⇒ $O(n)$ space