Visualization of Graphs

Lecture 11:
The Crossing Lemma
and its Applications

Part I:
Definition and Hanani–Tutte

Jonathan Klawitter
Crossing Number and Topological Graphs

For a graph G, the **crossing number** $cr(G)$ is the smallest number of crossings in a drawing of G (in the plane).
Crossing Number and Topological Graphs

For a graph G, the **crossing number** $\text{cr}(G)$ is the smallest number of crossings in a drawing of G (in the plane).

Example.
$\text{cr}(K_{3,3}) = 1$
Crossing Number and Topological Graphs

For a graph \(G \), the **crossing number** \(\text{cr}(G) \) is the smallest number of crossings in a drawing of \(G \) (in the plane).

Example.
\[\text{cr}(K_{3,3}) = 1 \]

In a crossing-minimal drawing of \(G \)
Crossing Number and Topological Graphs

For a graph G, the **crossing number** $cr(G)$ is the smallest number of crossings in a drawing of G (in the plane).

Example.
$cr(K_{3,3}) = 1$

In a crossing-minimal drawing of G
- no edge is self-intersecting,
Crossing Number and Topological Graphs

For a graph G, the **crossing number** $cr(G)$ is the smallest number of crossings in a drawing of G (in the plane).

Example. $cr(K_{3,3}) = 1$

In a crossing-minimal drawing of G

- no edge is self-intersecting,
Crossing Number and Topological Graphs

For a graph G, the **crossing number** $\text{cr}(G)$ is the smallest number of crossings in a drawing of G (in the plane).

In a crossing-minimal drawing of G
- no edge is self-intersecting,

Example.
$\text{cr}(K_{3,3}) = 1$
Crossing Number and Topological Graphs

For a graph G, the **crossing number** $cr(G)$ is the smallest number of crossings in a drawing of G (in the plane).

Example. $cr(K_{3,3}) = 1$

In a crossing-minimal drawing of G

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
Crossing Number and Topological Graphs

For a graph G, the **crossing number** $\text{cr}(G)$ is the smallest number of crossings in a drawing of G (in the plane).

In a crossing-minimal drawing of G

- no edge is self-intersecting,
- edges with common endpoints do not intersect,

Example.

$\text{cr}(K_{3,3}) = 1$
Crossing Number and Topological Graphs

For a graph G, the **crossing number** $\text{cr}(G)$ is the smallest number of crossings in a drawing of G (in the plane).

Example.
$\text{cr}(K_{3,3}) = 1$

In a crossing-minimal drawing of G

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
Crossing Number and Topological Graphs

For a graph G, the **crossing number** $cr(G)$ is the smallest number of crossings in a drawing of G (in the plane).

In a crossing-minimal drawing of G

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once,

Example.

$cr(K_{3,3}) = 1$
Crossing Number and Topological Graphs

For a graph G, the **crossing number** $\text{cr}(G)$ is the smallest number of crossings in a drawing of G (in the plane).

In a crossing-minimal drawing of G

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once,

Example.

$\text{cr}(K_{3,3}) = 1$
For a graph G, the **crossing number** $\text{cr}(G)$ is the smallest number of crossings in a drawing of G (in the plane).

In a crossing-minimal drawing of G

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once,

Example.

$\text{cr}(K_{3,3}) = 1$
Crossing Number and Topological Graphs

For a graph G, the **crossing number** $\text{cr}(G)$ is the smallest number of crossings in a drawing of G (in the plane).

In a crossing-minimal drawing of G

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once,
- and wlog, at most two edges intersect at the same point.

Example.

$$\text{cr}(K_{3,3}) = 1$$
Crossing Number and Topological Graphs

For a graph G, the **crossing number** $\text{cr}(G)$ is the smallest number of crossings in a drawing of G (in the plane).

In a crossing-minimal drawing of G

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once,
- and wlog, at most two edges intersect at the same point.

Such a drawing is called a **topological drawing** of G.

Example.

$\text{cr}(K_{3,3}) = 1$
Crossing Number and Topological Graphs

For a graph G, the **crossing number** $\text{cr}(G)$ is the smallest number of crossings in a drawing of G (in the plane).

In a crossing-minimal drawing of G

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once,
- and wlog, at most two edges intersect at the same point.

Such a drawing is called a **topological drawing** of G.

Example.

$\text{cr}(K_{3,3}) = 1$
Crossing Number and Topological Graphs

For a graph G, the **crossing number** $cr(G)$ is the smallest number of crossings in a drawing of G (in the plane).

In a crossing-minimal drawing of G

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once,
- and wlog, at most two edges intersect at the same point.

Such a drawing is called a **topological drawing** of G.

Example.

$cr(K_{3,3}) = 1$
Crossing Number and Topological Graphs

For a graph G, the **crossing number** $cr(G)$ is the smallest number of crossings in a drawing of G (in the plane).

Example.

$cr(K_{3,3}) = 1$

In a crossing-minimal drawing of G

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once,
- and wlog, at most two edges intersect at the same point.

Such a drawing is called a **topological drawing** of G.

![Diagram of a topological drawing with examples of edge intersections and self-intersections]
Crossing Number and Topological Graphs

For a graph G, the **crossing number** $cr(G)$ is the smallest number of crossings in a drawing of G (in the plane).

In a crossing-minimal drawing of G

- no edge is self-intersecting,
- edges with common endpoints do not intersect,
- two edges intersect at most once,
- and wlog, at most two edges intersect at the same point.

Such a drawing is called a **topological drawing** of G.

Example.

$cr(K_{3,3}) = 1$

crossings reduced, so terminates
Hanani–Tutte Theorem

Theorem. [Hanani’43, Tutte’70]
A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.
Hanani–Tutte Theorem

Theorem. [Hanani’43, Tutte’70]
A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

Proof Sketch.
Hanani showed that every drawing of K_5 and $K_{3,3}$ must have a pair of edges that crosses an odd number of times.
Hanani–Tutte Theorem

Theorem. [Hanani’43, Tutte’70]
A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

Proof Sketch.
Hanani showed that every drawing of K_5 and $K_{3,3}$ must have a pair of edges that crosses an odd number of times.

Every non-planar graph has K_5 or $K_{3,3}$ as minor, so there are two paths that cross an odd number of times.
Hanani–Tutte Theorem

Theorem. [Hanani’43, Tutte’70]
A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

Proof Sketch.
Hanani showed that every drawing of K_5 and $K_{3,3}$ must have a pair of edges that crosses an odd number of times.
Every non-planar graph has K_5 or $K_{3,3}$ as minor, so there are two paths that cross an odd number of times.
Hence, there must be two edges on these paths that cross an odd number of times.
Hanani–Tutte Theorem

Theorem. [Hanani’43, Tutte’70]
A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The **odd crossing number** $\text{ocr}(G)$ of G is the smallest number of pairs of edges that cross oddly in a drawing of G.
Hanani–Tutte Theorem

Theorem. [Hanani’43, Tutte’70]
A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The **odd crossing number** $\text{ocr}(G)$ of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary. $\text{ocr}(G) = 0 \Rightarrow \text{cr}(G) = 0$
Hanani–Tutte Theorem

Theorem. [Hanani’43, Tutte’70]
A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The odd crossing number $ocr(G)$ of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary. $ocr(G) = 0 \Rightarrow cr(G) = 0$

Is $ocr(G') = cr(G')$?
Theorem. [Hanani’43, Tutte’70]
A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The odd crossing number $\text{ocr}(G)$ of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary. $\text{ocr}(G) = 0 \Rightarrow \text{cr}(G) = 0$

Is $\text{ocr}(G) = \text{cr}(G)$? No!
Hanani–Tutte Theorem

Theorem. [Hanani’43, Tutte’70]
A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The **odd crossing number** $\text{ocr}(G)$ of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary. $\text{ocr}(G) = 0 \Rightarrow \text{cr}(G) = 0$

Is $\text{ocr}(G) = \text{cr}(G)$? No!

Theorem. [Pelsmajer, Schaefer & Štefankovič ’08, Tóth ’08]
There is a graph G with $\text{ocr}(G) < \text{cr}(G) \leq 10$
Hanani–Tutte Theorem

Theorem. [Hanani’43, Tutte’70]
A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The **odd crossing number** $ocr(G)$ of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary. $ocr(G) = 0 \Rightarrow cr(G) = 0$

Is $ocr(G) = cr(G)$? **No!**

Theorem. [Pelsmajer, Schaefer & Štefankovič ’08, Tóth ’08]
There is a graph G with $ocr(G) < cr(G) \leq 10$

Theorem. [Pach & Tóth ’00]
If Γ is a drawing of G and E_0 is the set of edges with only even numbers of crossings in Γ, then G can be drawn such that no edge in E_0 is involved in any crossings and no new pairs of edges cross.
Hanani–Tutte Theorem

Theorem. [Hanani’43, Tutte’70]
A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The **odd crossing number** $\text{ocr}(G)$ of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary. $\text{ocr}(G) = 0 \Rightarrow \text{cr}(G) = 0$

Is $\text{ocr}(G) = \text{cr}(G)$? **No!**

Theorem. [Pelsmajer, Schaefer & Štefankovič ’08, Tóth ’08]
There is a graph G with $\text{ocr}(G) < \text{cr}(G) \leq 10$

Theorem. [Pelsmajer, Schaefer & Štefankovič ’08] [Pach & Tóth ’00]
If Γ is a drawing of G and E_0 is the set of edges with only even numbers of crossings in Γ, then G can be drawn such that no edge in E_0 is involved in any crossings and no new pairs of edges cross.
Hanani–Tutte Theorem

Theorem. [Hanani’43, Tutte’70]
A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The **odd crossing number** $ocr(G)$ of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary. $ocr(G) = 0 \Rightarrow cr(G) = 0$

Is $ocr(G) = cr(G)$? No!

Theorem. [Pelsmajer, Schaefer & Štefankovič ’08, Tóth ’08]
There is a graph G with $ocr(G) < cr(G) \leq 10$

The **pairwise crossing number** $pcr(G)$ of G is the smallest number of pairs of edges that cross in a drawing of G.
Hanani–Tutte Theorem

Theorem. [Hanani’43, Tutte’70]
A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The **odd crossing number** $ocr(G)$ of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary. $ocr(G) = 0 \Rightarrow cr(G) = 0$

Is $ocr(G) = cr(G)$? No!

Theorem. [Pelsmajer, Schaefer & Štefankovič ’08, Tóth ’08]
There is a graph G with $ocr(G) < cr(G) \leq 10$

The **pairwise crossing number** $pcr(G)$ of G is the smallest number of pairs of edges that cross in a drawing of G.

By definition $ocr(G) \leq pcr(G) \leq cr(G)$

Theorem.

A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The odd crossing number $ocr(G)$ of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary. $ocr(G) = 0 \Rightarrow cr(G) = 0$

Is $ocr(G) = cr(G)$? No!

Theorem. [Pelsmajer, Schaefer & Štefankovič ’08, Tóth ’08]
There is a graph G with $ocr(G) < cr(G) \leq 10$

The pairwise crossing number $pcr(G)$ of G is the smallest number of pairs of edges that cross in a drawing of G.

By definition $ocr(G) \leq pcr(G) \leq cr(G)$
Hanani–Tutte Theorem

Theorem. [Hanani’43, Tutte’70]
A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The **odd crossing number** $ocr(G)$ of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary. $ocr(G) = 0 \Rightarrow cr(G) = 0$

Is $ocr(G) = cr(G)$? No!

Theorem. [Pelsmajer, Schaefer & Štefankovič ’08, Tóth ’08]
There is a graph G with $ocr(G) < cr(G) \leq 10$

The **pairwise crossing number** $pcr(G)$ of G is the smallest number of pairs of edges that cross in a drawing of G.

By definition $ocr(G) \leq pcr(G) \leq cr(G)$

Is $pcr(G) = cr(G)$?
Hanani–Tutte Theorem

Theorem. [Hanani’43, Tutte’70]
A graph is planar if and only if it has a drawing in which all pairs of vertex-disjoint edges cross an even number of times.

The **odd crossing number** $\text{ocr}(G)$ of G is the smallest number of pairs of edges that cross oddly in a drawing of G.

Corollary. $\text{ocr}(G) = 0 \Rightarrow \text{cr}(G) = 0$

Is $\text{ocr}(G) = \text{cr}(G)$? No!

Theorem. [Pelsmajer, Schaefer & Štefankovič ’08, Tóth ’08]
There is a graph G with $\text{ocr}(G) < \text{cr}(G) \leq 10$

The **pairwise crossing number** $\text{pcr}(G)$ of G is the smallest number of pairs of edges that cross in a drawing of G.

By definition $\text{ocr}(G) \leq \text{pcr}(G) \leq \text{cr}(G)$

Is $\text{pcr}(G) = \text{cr}(G)$? Open!
Visualization of Graphs

Lecture 11:
The Crossing Lemma
and its Applications

Part II:
Computation & Variations

Jonathan Klawitter
Computing the Crossing Number

- Computing $cr(G)$ is NP-hard. [Garey & Johnson '83]

... even if G is a planar graph plus one edge! [Cabello & Mohar '08]
Computing the Crossing Number

Computing $\text{cr}(G)$ is NP-hard.
... even if G is a planar graph plus one edge!

[Garey & Johnson '83]
[Cabello & Mohar '08]
Computing the Crossing Number

- Computing $\text{cr}(G)$ is NP-hard.
 ... even if G is a planar graph plus one edge!

- $\text{cr}(G)$ often unknown, only conjectures exist
 - for K_n it is only known for up to ~ 12 vertices

[Garey & Johnson '83]
[Cabello & Mohar '08]
Computing the Crossing Number

- Computing $\text{cr}(G)$ is NP-hard.
 ... even if G is a planar graph plus one edge!

- $\text{cr}(G)$ often unknown, only conjectures exist
 - for K_n it is only known for up to ~ 12 vertices

- In practice, $\text{cr}(G)$ is often not computed directly but rather drawings of G are optimized with

\[\text{[Garey & Johnson '83]} \]
\[\text{[Cabello & Mohar '08]} \]
Computing the Crossing Number

- Computing \(\text{cr}(G) \) is NP-hard. ... even if \(G \) is a planar graph plus one edge! [Garey & Johnson '83]

- \(\text{cr}(G) \) often unknown, only conjectures exist
 - for \(K_n \) it is only known for up to \(\sim 12 \) vertices

- In practice, \(\text{cr}(G) \) is often not computed directly but rather drawings of \(G \) are optimized with
 - force-based methods,
 - multidimensional scaling,
 - heuristics, ...
Computing the Crossing Number

- Computing $cr(G)$ is NP-hard.
 ... even if G is a planar graph plus one edge! [Garey & Johnson '83] [Cabello & Mohar '08]

- $cr(G)$ often unknown, only conjectures exist
 - for K_n it is only known for up to ~ 12 vertices

- In practice, $cr(G)$ is often not computed directly but rather drawings of G are optimized with
 - force-based methods,
 - multidimensional scaling,
Computing the Crossing Number

- Computing $\text{cr}(G)$ is NP-hard. ... even if G is a planar graph plus one edge!

- $\text{cr}(G)$ often unknown, only conjectures exist
 - for K_n it is only known for up to ~ 12 vertices

- In practice, $\text{cr}(G)$ is often not computed directly but rather drawings of G are optimized with
 - force-based methods,
 - multidimensional scaling,
 - heuristics, ...
Computing the Crossing Number

- Computing \(\text{cr}(G) \) is NP-hard. [Garey & Johnson '83]
 ... even if \(G \) is a planar graph plus one edge! [Cabello & Mohar '08]

- \(\text{cr}(G) \) often unknown, only conjectures exist
 - for \(K_n \) it is only known for up to \(\sim 12 \) vertices

- In practice, \(\text{cr}(G) \) is often not computed directly but rather drawings of \(G \) are optimized with
 - force-based methods,
 - multidimensional scaling,
 - heuristics, ...

For exact computations, check out http://crossings.uos.de!
Computing the Crossing Number

- Computing $\text{cr}(G)$ is NP-hard.
 ... even if G is a planar graph plus one edge!

- $\text{cr}(G)$ often unknown, only conjectures exist
 - for K_n it is only known for up to ~ 12 vertices

- In practice, $\text{cr}(G)$ is often not computed directly but rather drawings of G are optimized with
 - force-based methods,
 - multidimensional scaling,
 - heuristics, ...

- $\text{cr}(G)$ is a measure of how far G is from being planar

For exact computations, check out http://crossings.uos.de!
Computing the Crossing Number

- Computing $\text{cr}(G)$ is NP-hard.
 ... even if G is a planar graph plus one edge! [Garey & Johnson '83] [Cabello & Mohar '08]

- $\text{cr}(G)$ often unknown, only conjectures exist
 - for K_n it is only known for up to ~ 12 vertices

- In practice, $\text{cr}(G)$ is often not computed directly but rather
drawings of G are optimized with
 - force-based methods,
 - multidimensional scaling,
 - heuristics, ... For exact computations, check out http://crossings.uos.de!

- $\text{cr}(G)$ is a measure of how far G is from being planar

- Planarization, where we replace crossings with dummy vertices, also uses only heuristics
Other Crossing Numbers

- Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)
Other Crossing Numbers

- Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)

- One-sided crossing minimization . . .
Other Crossing Numbers

- Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)
- One-sided crossing minimization . . .
- Fixed Linear Crossing Number
Other Crossing Numbers

- Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)

- One-sided crossing minimization

- Fixed Linear Crossing Number
Other Crossing Numbers

- Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)

- One-sided crossing minimization …

- Fixed Linear Crossing Number
Other Crossing Numbers

- Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)
- One-sided crossing minimization . . .
- Fixed Linear Crossing Number
- In book embeddings
Other Crossing Numbers

- Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)
- One-sided crossing minimization ...
- Fixed Linear Crossing Number
- In book embeddings
- Crossings of edge bundles
Other Crossing Numbers

- Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)
- One-sided crossing minimization . . .
- Fixed Linear Crossing Number
- In book embeddings
- Crossings of edge bundles
- On other surfaces, like on donuts
Other Crossing Numbers

- Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)
- One-sided crossing minimization . . .
- Fixed Linear Crossing Number
- In book embeddings
- Crossings of edge bundles
- On other surfaces, like on donuts
- Weighted crossings
Other Crossing Numbers

- Schaefer [Schae20] offers a huge survey on different crossings numbers (and more precise definitions)
- One-sided crossing minimization . . .
- Fixed Linear Crossing Number
- In book embeddings
- Crossings of edge bundles
- On other surfaces, like on donuts
- Weighted crossings
- Crossing minimization is NP-hard for most of the variants
Definition. For a graph G, the **rectilinear (straight-line) crossing number** $\overline{cr}(G)$ is the smallest number of crossings in a straight-line drawing of G.
Rectilinear Crossing Number

Definition.
For a graph G, the *rectilinear (straight-line) crossing number* $\overline{cr}(G)$ is the smallest number of crossings in a straight-line drawing of G.

Separation.
$cr(K_8) = 18$, but $\overline{cr}(K_8) = 19$.
Rectilinear Crossing Number

Definition.
For a graph G, the **rectilinear (straight-line) crossing number** $\overline{cr}(G)$ is the smallest number of crossings in a straight-line drawing of G.

Separation.
$cr(K_8) = 18$, but $\overline{cr}(K_8) = 19$.

Even more . . .

Lemma 1. [Bienstock, Dean '93]
For $k \geq 4$, there exists a graph G_k with $cr(G_k) = 4$ and $\overline{cr}(G_k) \geq k$.
Rectilinear Crossing Number

Definition.
For a graph G, the **rectilinear (straight-line) crossing number** $\overline{cr}(G)$ is the smallest number of crossings in a straight-line drawing of G.

Even more . . .

Lemma 1. [Bienstock, Dean '93]
For $k \geq 4$, there exists a graph G_k with $cr(G_k) = 4$ and $\overline{cr}(G_k) \geq k$.

Separation.
$cr(K_8) = 18$, but $\overline{cr}(K_8) = 19$.

![Graph G_1](image)
Rectilinear Crossing Number

Definition.
For a graph G, the **rectilinear (straight-line) crossing number** $\overline{cr}(G)$ is the smallest number of crossings in a straight-line drawing of G.

Separation.
$cr(K_8) = 18$, but $\overline{cr}(K_8) = 19$.

Even more . . .

Lemma 1. [Bienstock, Dean '93]
For $k \geq 4$, there exists a graph G_k with $cr(G_k) = 4$ and $\overline{cr}(G_k) \geq k$.

- Each straight-line drawing of G_1 has at least one crossing of the following types:
Rectilinear Crossing Number

Definition.
For a graph G, the **rectilinear (straight-line) crossing number** $\overline{cr}(G)$ is the smallest number of crossings in a straight-line drawing of G.

Separation.
$cr(K_8) = 18$, but $\overline{cr}(K_8) = 19$.

Even more . . .

Lemma 1. [Bienstock, Dean '93]
For $k \geq 4$, there exists a graph G_k with $cr(G_k) = 4$ and $\overline{cr}(G_k) \geq k$.

- Each straight-line drawing of G_1 has at least one crossing of the following types:
- From G_1 to G_k do
Visualization of Graphs

Lecture 11:
The Crossing Lemma
and its Applications

Part III:
First Bounds

Jonathan Klawitter
Bounds for Complete Graphs

Theorem. [Guy '60]

\[
\text{cr}(K_n) \leq \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor = \frac{3}{8} \binom{n}{4} + O(n^3)
\]
Bounds for Complete Graphs

Theorem. [Guy ’60]

\[
\text{cr}(K_n) \leq \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n - 1}{2} \right\rfloor \left\lfloor \frac{n - 2}{2} \right\rfloor \left\lfloor \frac{n - 3}{2} \right\rfloor = \frac{3}{8} \binom{n}{4} + O(n^3)
\]
Bounds for Complete Graphs

Theorem. [Guy '60]

\[\text{cr}(K_n) \leq \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor = \frac{3}{8} \binom{n}{4} + O(n^3) \]
Bounds for Complete Graphs

Theorem. [Guy ‘60]

\[\text{cr}(K_n) \leq \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor = \frac{3}{8} \binom{n}{4} + O(n^3) \]
Bounds for Complete Graphs

Theorem. [Guy ‘60]

\[
\text{cr}(K_n) \leq \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor = \frac{3}{8} \binom{n}{4} + O(n^3)
\]
Bounds for Complete Graphs

Theorem. [Guy ’60]

\[\text{cr}(K_n) \leq \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor = \frac{3}{8} \binom{n}{4} + O(n^3) \]
Bounds for Complete Graphs

Theorem. [Guy ’60]

\[\text{cr}(K_n) \leq \frac{1}{4} \left\lfloor n \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor = \frac{3}{8} \binom{n}{4} + O(n^3)\]

Sylvester’s four-point problem
Bounds for Complete Graphs

<table>
<thead>
<tr>
<th>Theorem.</th>
<th>Conjecture.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{cr}(K_n) \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{n-2}{2} \right\rceil \left\lceil \frac{n-3}{2} \right\rceil \right) = \frac{3}{8} \binom{n}{4} + O(n^3))</td>
<td></td>
</tr>
</tbody>
</table>

[Guy ’60]

Sylvester’s four-point problem
Bounds for Complete Graphs

Theorem. [Guy '60]

\[
\text{cr}(K_n) \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n - 1}{2} \right\rceil \left\lceil \frac{n - 2}{2} \right\rceil \left\lceil \frac{n - 3}{2} \right\rceil = \frac{3}{8} \binom{n}{4} + O(n^3)
\]

Bound is sharp for \(n \leq 12 \).
Bounds for Complete Graphs

Theorem. Conjecture. \[[Guy '60]\]

\[
\text{cr}(K_n) \leq \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor = \frac{3}{8} \binom{n}{4} + O(n^3)
\]

Bound is sharp for \(n \leq 12 \).

Theorem. \[[Zarankiewicz '54, Urbaník '55]\]

\[
\text{cr}(K_{m,n}) \leq \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{m}{2} \right\rfloor \left\lfloor \frac{m-1}{2} \right\rfloor
\]

Sylvester’s four-point problem
Bounds for Complete Graphs

Theorem. [Guy ’60]

\[
\text{cr}(K_n) \leq \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n - 1}{2} \right\rfloor \left\lfloor \frac{n - 2}{2} \right\rfloor \left\lfloor \frac{n - 3}{2} \right\rfloor = \frac{3}{8} \binom{n}{4} + O(n^3)
\]

Bound is sharp for \(n \leq 12 \).

Theorem. [Zarankiewicz ’54, Urbaník ’55]

\[
\text{cr}(K_{m,n}) \leq \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n - 1}{2} \right\rfloor \left\lfloor \frac{m}{2} \right\rfloor \left\lfloor \frac{m - 1}{2} \right\rfloor
\]

Turán’s brick factory problem (1944)

Sylvester’s four-point problem

Pál Turán
*1910 – 1976
Budapest, Hungary

© TruckinTim
 Bounds for Complete Graphs

Theorem. Conjecture.

\[
\text{cr}(K_n) \leq \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor = \frac{3}{8} \left(\binom{n}{4} \right) + O(n^3)
\]

Bound is sharp for \(n \leq 12 \).

Theorem. Conjecture.

\[
\text{cr}(K_{m,n}) \leq \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{m}{2} \right\rfloor \left\lfloor \frac{m-1}{2} \right\rfloor
\]

Turán’s brick factory problem (1944)

Sylvester’s four-point problem

Pál Turán
*1910 – 1976
Budapest, Hungary

© TruckinTim
Bounds for Complete Graphs

Theorem. Conjecture. [Guy '60]

\[
\text{cr}(K_n) \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{n-2}{2} \right\rceil \left\lceil \frac{n-3}{2} \right\rceil = \frac{3}{8} \binom{n}{4} + O(n^3)
\]

Bound is sharp for \(n \leq 12 \).

Theorem. Conjecture. [Zarankiewicz '54, Urbaník '55]

\[
\text{cr}(K_{m,n}) \leq \frac{1}{4} \left\lceil \frac{n}{2} \right\rceil \left\lceil \frac{n-1}{2} \right\rceil \left\lceil \frac{m}{2} \right\rceil \left\lceil \frac{m-1}{2} \right\rceil
\]

Theorem. [Lovász et al. '04, Aichholzer et al. '06]

\[
\left(\frac{3}{8} + \varepsilon \right) \binom{n}{4} + O(n^3) < \text{cr}(K_n) < 0.3807 \binom{n}{4} + O(n^3)
\]

Sylvester's four-point problem
Bounds for Complete Graphs

Theorem. Conjecture. [Guy ’60]

\[\text{cr}(K_n) \leq \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor = \frac{3}{8} \binom{n}{4} + O(n^3) \]

Bound is sharp for \(n \leq 12 \).

Theorem. Conjecture. [Zarankiewicz ’54, Urbaník ’55]

\[\text{cr}(K_{m,n}) \leq \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{m}{2} \right\rfloor \left\lfloor \frac{m-1}{2} \right\rfloor \]

Theorem. [Lovász et al. ’04, Aichholzer et al. ’06]

\[\left(\frac{3}{8} + \varepsilon \right) \binom{n}{4} + O(n^3) < \text{cr}(K_n) < 0.3807 \binom{n}{4} + O(n^3) \]

Exact numbers are known for \(n \leq 27 \).

Sylvester’s four-point problem
Bounds for Complete Graphs

Theorem. \[\text{cr}(K_n) \leq \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{n-2}{2} \right\rfloor \left\lfloor \frac{n-3}{2} \right\rfloor = \frac{3}{8} \binom{n}{4} + O(n^3) \]

Bound is sharp for \(n \leq 12 \).

Theorem. \[\text{cr}(K_{m,n}) \leq \frac{1}{4} \left\lfloor \frac{n}{2} \right\rfloor \left\lfloor \frac{n-1}{2} \right\rfloor \left\lfloor \frac{m}{2} \right\rfloor \left\lfloor \frac{m-1}{2} \right\rfloor \]

Theorem. \[\left(\frac{3}{8} + \varepsilon \right) \binom{n}{4} + O(n^3) < \text{cr}(K_n) < 0.3807 \binom{n}{4} + O(n^3) \]

Exact numbers are known for \(n \leq 27 \).

Check out http://www.ist.tugraz.at/staff/aichholzer/crossings.html!

Sylvester's four-point problem
First Lower Bounds on $\text{cr}(G)$

Lemma 2.
For a graph G with n vertices and m edges,

$$\text{cr}(G) \geq m - 3n + 6.$$
First Lower Bounds on $\text{cr}(G)$

Lemma 2.
For a graph G with n vertices and m edges,

$$\text{cr}(G) \geq m - 3n + 6.$$

Proof.
- Consider a drawing of G with $\text{cr}(G)$ crossings.
First Lower Bounds on $cr(G)$

Lemma 2. For a graph G with n vertices and m edges,

$$cr(G) \geq m - 3n + 6.$$

Proof.
- Consider a drawing of G with $cr(G)$ crossings.
- Obtain a graph H by turning crossings into dummy vertices.
First Lower Bounds on $\text{cr}(G)$

Lemma 2.
For a graph G with n vertices and m edges,

$$\text{cr}(G) \geq m - 3n + 6.$$

Proof.
- Consider a drawing of G with $\text{cr}(G)$ crossings.
- Obtain a graph H by turning crossings into dummy vertices.
- H has $n + \text{cr}(G)$ vertices and $m + 2\text{cr}(G)$ edges.
First Lower Bounds on $cr(G)$

Lemma 2.
For a graph G with n vertices and m edges,

$$cr(G) \geq m - 3n + 6.$$

Proof.
- Consider a drawing of G with $cr(G)$ crossings.
- Obtain a graph H by turning crossings into dummy vertices.
- H has $n + cr(G)$ vertices and $m + 2cr(G)$ edges.
- H is planar, so

$$m + 2cr(G) \leq 3(n + cr(G)) - 6.$$
First Lower Bounds on $\text{cr}(G)$

Lemma 3.
For a graph G with n vertices and m edges,

$$\text{cr}(G) \geq r \left(\frac{\lfloor m/r \rfloor}{2} \right) \in \Omega \left(\frac{m^2}{n} \right)$$

where $r \leq 3n - 6$ is the maximum number of edges in a planar subgraph of G.
First Lower Bounds on $\text{cr}(G)$

Lemma 3.
For a graph G with n vertices and m edges,

$$\text{cr}(G) \geq r \left(\frac{\lfloor m/r \rfloor}{2} \right) \in \Omega \left(\frac{m^2}{n} \right)$$

where $r \leq 3n - 6$ is the maximum number of edges in a planar subgraph of G.

Proof.
- Take $\lfloor m/r \rfloor$ edge-disjoint subgraphs of G with r edges.
First Lower Bounds on $\text{cr}(G)$

Lemma 3.
For a graph G with n vertices and m edges,

$$\text{cr}(G) \geq r \left(\frac{\lfloor m/r \rfloor}{2} \right) \in \Omega \left(\frac{m^2}{n} \right)$$

where $r \leq 3n - 6$ is the maximum number of edges in a planar subgraph of G.

Proof.
- Take $\lfloor m/r \rfloor$ edge-disjoint subgraphs of G with r edges.
- In the best case, they are all planar.
First Lower Bounds on \(\text{cr}(G) \)

Lemma 3.
For a graph \(G \) with \(n \) vertices and \(m \) edges,

\[
\text{cr}(G) \geq r \left(\left\lfloor \frac{m}{r} \right\rfloor \right)^2 \in \Omega \left(\frac{m^2}{n} \right)
\]

where \(r \leq 3n - 6 \) is the maximum number of edges in a planar subgraph of \(G \).

Proof.
- Take \(\left\lfloor \frac{m}{r} \right\rfloor \) edge-disjoint subgraphs of \(G \) with \(r \) edges.
- In the best case, they are all planar.
- For each pair \(G_i, G_j \), any edge of \(G_j \) induces at least one crossings with \(G_i \).
 (If not, swap edges to reduce \(\text{cr}(G_i) \).)
First Lower Bounds on \(\text{cr}(G) \)

Lemma 3.
For a graph \(G \) with \(n \) vertices and \(m \) edges,

\[
\text{cr}(G) \geq r \left(\frac{\lfloor m/r \rfloor}{2} \right) \in \Omega \left(\frac{m^2}{n} \right)
\]

where \(r \leq 3n - 6 \) is the maximum number of edges in a planar subgraph of \(G \).

Proof.
- Take \(\lfloor m/r \rfloor \) edge-disjoint subgraphs of \(G \) with \(r \) edges.
- In the best case, they are all planar.
- For each pair \(G_i, G_j \), any edge of \(G_j \) induces at least one crossings with \(G_i \).
 (If not, swap edges to reduce \(\text{cr}(G_i) \).)

Consider this bound for graphs with \(\Theta(n) \) and \(\Theta(n^2) \) many edges.
Visualization of Graphs

Lecture 11:
The Crossing Lemma and its Applications

Part IV:
The Crossing Lemma

Jonathan Klawitter
The Crossing Lemma

- 1973 Erdős and Guy conjectured that $\text{cr}(G) \in \Omega\left(\frac{m^3}{n^2}\right)$.
The Crossing Lemma

- 1973 Erdős and Guy conjectured that $\text{cr}(G) \in \Omega\left(\frac{m^3}{n^2}\right)$.

- In 1982 Leighton and, independently, Ajtai, Chávtal, Newborn and Szemerédi showed that

 $$\text{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}.$$
The Crossing Lemma

- 1973 Erdős and Guy conjectured that $cr(G) \in \Omega\left(\frac{m^3}{n^2}\right)$.

- In 1982 Leighton and, independently, Ajtai, Chávtal, Newborn and Szemerédi showed that

$$cr(G) \geq \frac{1}{64} \frac{m^3}{n^2}.$$

- Bound is asymptotically sharp.
The Crossing Lemma

- 1973 Erdős and Guy conjectured that $\text{cr}(G) \in \Omega\left(\frac{m^3}{n^2}\right)$.

- In 1982 Leighton and, independently, Ajtai, Chávtal, Newborn and Szemerédi showed that

$$\text{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}.$$

- Bound is asymptotically sharp.

- Result stayed hardly known until Székely in 1997 demonstrated its usefulness.
The Crossing Lemma

- 1973 Erdős and Guy conjectured that $\text{cr}(G) \in \Omega\left(\frac{m^3}{n^2}\right)$.

- In 1982 Leighton and, independently, Ajtai, Chávtal, Newborn and Szemerédi showed that

$$\text{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}.$$

- Bound is asymptotically sharp.

- Result stayed hardly known until Székely in 1997 demonstrated its usefulness.

- We look at a proof “from THE BOOK” by Chazelle, Sharir and Welz.
The Crossing Lemma

- 1973 Erdős and Guy conjectured that $\text{cr}(G) \in \Omega\left(\frac{m^3}{n^2}\right)$.

- In 1982 Leighton and, independently, Ajtai, Chávtal, Newborn and Szemerédi showed that

 $$\text{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}.$$

- Bound is asymptotically sharp.

- Result stayed hardly known until Székely in 1997 demonstrated its usefulness.

- We look at a proof “from THE BOOK” by Chazelle, Sharir and Welz.

- Factor $\frac{1}{64}$ was later (with intermediate steps) improved to $\frac{1}{29}$ by Ackerman in 2013.
The Crossing Lemma

Crossing Lemma.
For a graph G with n vertices and m edges, $m \geq 4n$,
\[
\text{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}.
\]
The Crossing Lemma

Crossing Lemma.
For a graph \(G \) with \(n \) vertices and \(m \) edges, \(m \geq 4n \),
\[
\text{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}.
\]

Proof.
- Consider a minimal embedding of \(G \).
The Crossing Lemma

Crossing Lemma.
For a graph G with n vertices and m edges, $m \geq 4n$,
\[\text{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}. \]

Proof.
- Consider a minimal embedding of G.
- Let p be a number in $(0, 1)$.
The Crossing Lemma

Crossing Lemma.
For a graph G with n vertices and m edges, $m \geq 4n$,
$$\text{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}.$$

Proof.
- Consider a minimal embedding of G.
- Let p be a number in $(0, 1)$.
- Keep every vertex of G independently with probability p.
The Crossing Lemma

Crossing Lemma.
For a graph G with n vertices and m edges, $m \geq 4n$,
$$\text{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}.$$

Proof.
- Consider a minimal embedding of G.
- Let p be a number in $(0, 1)$.
- Keep every vertex of G independently with probability p.
- Let G_p be the remaining graph.
- Let n_p, m_p, X_p be the random variables counting the number of vertices/edges/crossings of G_p.

The Crossing Lemma

Crossing Lemma.
For a graph G with n vertices and m edges, $m \geq 4n$,
\[
cr(G) \geq \frac{1}{64} \frac{m^3}{n^2}.
\]

Proof.
- Consider a minimal embedding of G.
- Let p be a number in $(0, 1)$.
- Keep every vertex of G independently with probability p.
- Let G_p be the remaining graph.
- Let n_p, m_p, X_p be the random variables counting the number of vertices/edges/crossings of G_p.
- By Lem 2, $\mathbb{E}(X_p - m_p + 3n_p) \geq 0$.
The Crossing Lemma

Crossing Lemma. For a graph \(G \) with \(n \) vertices and \(m \) edges, \(m \geq 4n \),
\[
\text{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}.
\]

Proof.

- Consider a minimal embedding of \(G \).
- Let \(p \) be a number in (0, 1).
- Keep every vertex of \(G \) independently with probability \(p \).
- Let \(G_p \) be the remaining graph.
- Let \(n_p, m_p, X_p \) be the random variables counting the number of vertices/edges/crossings of \(G_p \).
- By Lem 2, \(\mathbb{E}(X_p - m_p + 3n_p) \geq 0 \).

\[
\mathbb{E}(n_p) = \quad \text{and } \mathbb{E}(m_p) =
\]
The Crossing Lemma

Crossing Lemma. For a graph G with n vertices and m edges, $m \geq 4n$,
$$\text{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}.$$

Proof.

- Consider a minimal embedding of G.
- Let p be a number in $(0, 1)$.
- Keep every vertex of G independently with probability p.
- Let G_p be the remaining graph.
- Let n_p, m_p, X_p be the random variables counting the number of vertices/edges/crossings of G_p.
- By Lem 2, $\mathbb{E}(X_p - m_p + 3n_p) \geq 0$.

\[
\mathbb{E}(n_p) = pn \quad \text{and} \quad \mathbb{E}(m_p) = \]

The Crossing Lemma

Crossing Lemma.
For a graph G with n vertices and m edges, $m \geq 4n$,
\[\text{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}. \]

Proof.

- Consider a minimal embedding of G.
- Let p be a number in $(0, 1)$.
- Keep every vertex of G independently with probability p.
- Let G_p be the remaining graph.
- Let n_p, m_p, X_p be the random variables counting the number of vertices/edges/crossings of G_p.
- By Lem 2, $\mathbb{E}(X_p - m_p + 3n_p) \geq 0$.

\[\mathbb{E}(n_p) = pn \quad \text{and} \quad \mathbb{E}(m_p) = p^2 m \]
The Crossing Lemma

Crossing Lemma.
For a graph G with n vertices and m edges, $m \geq 4n$,
$$\text{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}.$$

Proof.
- Consider a minimal embedding of G.
- Let p be a number in $(0, 1)$.
- Keep every vertex of G independently with probability p.
- Let G_p be the remaining graph.
- Let n_p, m_p, X_p be the random variables counting the number of vertices/edges/crossings of G_p.
- By Lem 2, $\mathbb{E}(X_p - m_p + 3n_p) \geq 0$.

\[
\begin{align*}
\mathbb{E}(n_p) &= pn \quad \text{and} \quad \mathbb{E}(m_p) = p^2 m \\
\mathbb{E}(X_p) &=
\end{align*}
\]
The Crossing Lemma

Crossing Lemma.
For a graph G with n vertices and m edges, $m \geq 4n$,
\[\text{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}. \]

Proof.
- Consider a minimal embedding of G.
- Let p be a number in $(0, 1)$.
- Keep every vertex of G independently with probability p.
- Let G_p be the remaining graph.
- Let n_p, m_p, X_p be the random variables counting the number of vertices/edges/crossings of G_p.
- By Lem 2, $\mathbb{E}(X_p - m_p + 3n_p) \geq 0$.

\[\mathbb{E}(n_p) = pn \text{ and } \mathbb{E}(m_p) = p^2 m \]
\[\mathbb{E}(X_p) = p^4 \text{cr}(G) \]
The Crossing Lemma

Crossing Lemma.
For a graph G with n vertices and m edges, $m \geq 4n$,
$$\text{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}.$$

Proof.
- Consider a minimal embedding of G.
- Let p be a number in $(0, 1)$.
- Keep every vertex of G independently with probability p.
- Let G_p be the remaining graph.
- Let n_p, m_p, X_p be the random variables counting the number of vertices/edges/crossings of G_p.
- By Lem 2, $\mathbb{E}(X_p - m_p + 3n_p) \geq 0$.

- $\mathbb{E}(n_p) = pn$ and $\mathbb{E}(m_p) = p^2m$
- $\mathbb{E}(X_p) = p^4\text{cr}(G)$
- $0 \leq \mathbb{E}(X_p) - \mathbb{E}(m_p) + 3\mathbb{E}(n_p)$
The Crossing Lemma

Crossing Lemma.
For a graph G with n vertices and m edges, $m \geq 4n$,
$$\text{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}.$$

Proof.

- Consider a minimal embedding of G.
- Let p be a number in $(0, 1)$.
- Keep every vertex of G independently with probability p.
- Let G_p be the remaining graph.
- Let n_p, m_p, X_p be the random variables counting the number of vertices/edges/crossings of G_p.
- By Lem 2, $\mathbb{E}(X_p - m_p + 3n_p) \geq 0$.

- $\mathbb{E}(n_p) = pn$ and $\mathbb{E}(m_p) = p^2m$
- $\mathbb{E}(X_p) = p^4\text{cr}(G)$
- $0 \leq \mathbb{E}(X_p) - \mathbb{E}(m_p) + 3\mathbb{E}(n_p)$
 $= p^4\text{cr}(G) - p^2m + 3pn$
The Crossing Lemma

Crossing Lemma.
For a graph G with n vertices and m edges, $m \geq 4n$,
$$\text{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}.$$

Proof.
- Consider a minimal embedding of G.
- Let p be a number in $(0, 1)$.
- Keep every vertex of G independently with probability p.
- Let G_p be the remaining graph.
- Let n_p, m_p, X_p be the random variables counting the number of vertices/edges/crossings of G_p.
- By Lem 2, $\mathbb{E}(X_p - m_p + 3n_p) \geq 0$.
- $\mathbb{E}(n_p) = pn$ and $\mathbb{E}(m_p) = p^2 m$
- $\mathbb{E}(X_p) = p^4 \text{cr}(G)$
- $0 \leq \mathbb{E}(X_p) - \mathbb{E}(m_p) + 3\mathbb{E}(n_p)$
 $= p^4 \text{cr}(G) - p^2 m + 3pn$
- $\text{cr}(G) \geq \frac{p^2 m - 3pn}{p^4}$
The Crossing Lemma

Crossing Lemma.
For a graph G with n vertices and m edges, $m \geq 4n$,
$$cr(G) \geq \frac{1}{64} \frac{m^3}{n^2}.$$

Proof.
- Consider a minimal embedding of G.
- Let p be a number in $(0, 1)$.
- Keep every vertex of G independently with probability p.
- Let G_p be the remaining graph.
- Let n_p, m_p, X_p be the random variables counting the number of vertices/edges/crossings of G_p.
- By Lem 2, $\mathbb{E}(X_p - m_p + 3n_p) \geq 0$.
- $\mathbb{E}(n_p) = pn$ and $\mathbb{E}(m_p) = p^2 m$
- $\mathbb{E}(X_p) = p^4 cr(G)$
- $0 \leq \mathbb{E}(X_p) - \mathbb{E}(m_p) + 3\mathbb{E}(n_p)$
 $= p^4 cr(G) - p^2 m + 3pn$
- $cr(G) \geq \frac{p^2 m - 3pn}{p^4} = \frac{m}{p^2} - \frac{3n}{p^3}$
The Crossing Lemma

Crossing Lemma.
For a graph G with n vertices and m edges, $m \geq 4n$,
\[
\text{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}.
\]

Proof.

- Consider a minimal embedding of G.
- Let p be a number in $(0, 1)$.
- Keep every vertex of G independently with probability p.
- Let G_p be the remaining graph.
- Let n_p, m_p, X_p be the random variables counting the number of vertices/edges/crossings of G_p.
- By Lem 2, $\mathbb{E}(X_p - m_p + 3n_p) \geq 0$.

- $\mathbb{E}(n_p) = pn$ and $\mathbb{E}(m_p) = p^2m$
- $\mathbb{E}(X_p) = p^4\text{cr}(G)$
- $0 \leq \mathbb{E}(X_p) - \mathbb{E}(m_p) + 3\mathbb{E}(n_p) = p^4\text{cr}(G) - p^2m + 3pn$
- $\text{cr}(G) \geq \frac{p^2m - 3pn}{p^4} = \frac{m}{p^2} - \frac{3n}{p^3}$
- Set $p = \frac{4n}{m}$.

Crossing Lemma.
For a graph G with n vertices and m edges, $m \geq 4n$,
\[
\text{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}.
\]
The Crossing Lemma

Crossing Lemma.
For a graph G with n vertices and m edges, $m \geq 4n$,
$$\text{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}.$$

Proof.
- Consider a minimal embedding of G.
- Let p be a number in $(0, 1)$.
- Keep every vertex of G independently with probability p.
- Let G_p be the remaining graph.
- Let n_p, m_p, X_p be the random variables counting the number of vertices/edges/crossings of G_p.
- By Lem 2, $\mathbb{E}(X_p - m_p + 3n_p) \geq 0$.
- $\mathbb{E}(n_p) = pn$ and $\mathbb{E}(m_p) = p^2m$
- $\mathbb{E}(X_p) = p^4\text{cr}(G)$
- $0 \leq \mathbb{E}(X_p) - \mathbb{E}(m_p) + 3\mathbb{E}(n_p) = p^4\text{cr}(G) - p^2m + 3pn$
- $\text{cr}(G) \geq \frac{p^2m - 3pn}{p^4} = \frac{m}{p^2} - \frac{3n}{p^3}$
- Set $p = \frac{4n}{m}$.
- $\text{cr}(G) \geq$
The Crossing Lemma

Crossing Lemma. For a graph G with n vertices and m edges, $m \geq 4n$,
\[
\text{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}.
\]

Proof.

- Consider a minimal embedding of G.
- Let p be a number in $(0, 1)$.
- Keep every vertex of G independently with probability p.
- Let G_p be the remaining graph.
- Let n_p, m_p, X_p be the random variables counting the number of vertices/edges/crossings of G_p.
- By Lem 2, $\mathbb{E}(X_p - m_p + 3n_p) \geq 0$.

\[
\begin{align*}
\mathbb{E}(n_p) &= pn \quad \text{and} \quad \mathbb{E}(m_p) = p^2 m \\
\mathbb{E}(X_p) &= p^4 \text{cr}(G) \\
0 &\leq \mathbb{E}(X_p) - \mathbb{E}(m_p) + 3\mathbb{E}(n_p) \\
&= p^4 \text{cr}(G) - p^2 m + 3pn \\
\text{cr}(G) &\geq \frac{p^2 m - 3pn}{p^4} = \frac{m}{p^2} - \frac{3n}{p^3} \\
\text{Set } p &= \frac{4n}{m}. \\
\text{cr}(G) &\geq \frac{m^3}{16n^2} - \frac{3m^3}{64n^2}
\end{align*}
\]
The Crossing Lemma

Crossing Lemma.
For a graph G with n vertices and m edges, $m \geq 4n$,
\[\text{cr}(G) \geq \frac{1}{64} \frac{m^3}{n^2}. \]

Proof.
- Consider a minimal embedding of G.
- Let p be a number in $(0, 1)$.
- Keep every vertex of G independently with probability p.
- Let G_p be the remaining graph.
- Let n_p, m_p, X_p be the random variables counting the number of vertices/edges/crossings of G_p.
- By Lem 2, $\mathbb{E}(X_p - m_p + 3n_p) \geq 0$.
- $\mathbb{E}(n_p) = pn$ and $\mathbb{E}(m_p) = p^2 m$
- $\mathbb{E}(X_p) = p^4 \text{cr}(G)$
- $0 \leq \mathbb{E}(X_p) - \mathbb{E}(m_p) + 3\mathbb{E}(n_p)$
 $= p^4 \text{cr}(G) - p^2 m + 3pn$
- $\text{cr}(G) \geq \frac{p^2 m - 3pn}{p^4} = \frac{m}{p^2} - \frac{3n}{p^3}$
- Set $p = \frac{4n}{m}$.
- $\text{cr}(G) \geq \frac{m^3}{16n^2} - \frac{3m^3}{64n^2} = \frac{1}{64} \frac{m^3}{n^2}$
Visualization of Graphs

Lecture 11:
The Crossing Lemma
and its Applications

Part V:
Applications

Jonathan Klawitter
Application 1: Point-Line Incidences

- For points $P \subset \mathbb{R}^2$ and lines \mathcal{L},
 \[I(P, \mathcal{L}) = \text{number of point-line incidences in } (P, \mathcal{L}). \]
Application 1: Point-Line Incidences

- For points $P \subset \mathbb{R}^2$ and lines \mathcal{L}, $I(P, \mathcal{L}) = \text{number of point-line incidences in } (P, \mathcal{L})$.
Application 1: Point-Line Incidences

- For points $P \subset \mathbb{R}^2$ and lines \mathcal{L},
 $I(P, \mathcal{L}) = \text{number of point-line incidences in } (P, \mathcal{L})$.

![Diagram](image.png)
Application 1: Point-Line Incidences

- For points $P \subset \mathbb{R}^2$ and lines \mathcal{L},
 $I(P, \mathcal{L}) =$ number of point-line incidences in (P, \mathcal{L}).

\[\Rightarrow I(P, \mathcal{L}) = \]
Application 1: Point-Line Incidences

- For points $P \subset \mathbb{R}^2$ and lines \mathcal{L}, $I(P, \mathcal{L}) = \text{number of point-line incidences in } (P, \mathcal{L})$.

$\Rightarrow I(P, \mathcal{L}) =$
Application 1: Point-Line Incidences

- For points $P \subset \mathbb{R}^2$ and lines \mathcal{L}, $I(P, \mathcal{L}) = \text{number of point-line incidences in } (P, \mathcal{L})$.

\[
\Rightarrow I(P, \mathcal{L}) = 10
\]
Application 1: Point-Line Incidences

- For points $P \subset \mathbb{R}^2$ and lines \mathcal{L},
 $I(P, \mathcal{L})$ = number of point-line incidences in (P, \mathcal{L}).

 ![Diagram](image)

 ⇒ $I(P, \mathcal{L}) = 10$

- Define $I(n, k) = \max_{|P|=n, |\mathcal{L}|=k} I(P, \mathcal{L})$.

 $\Rightarrow I(P, \mathcal{L}) = 10$
Application 1: Point-Line Incidences

- For points $P \subset \mathbb{R}^2$ and lines \mathcal{L}, $I(P, \mathcal{L}) = \text{number of point-line incidences in } (P, \mathcal{L})$.

- Define $I(n, k) = \max_{|P|=n, |\mathcal{L}|=k} I(P, \mathcal{L})$.

- For example: $I(4, 4) =$
Application 1: Point-Line Incidences

- For points $P \subset \mathbb{R}^2$ and lines \mathcal{L}, $I(P, \mathcal{L})$ = number of point-line incidences in (P, \mathcal{L}).

- Define $I(n, k) = \max_{|P|=n, |\mathcal{L}|=k} I(P, \mathcal{L})$.

- For example: $I(4, 4) = 3$.
Application 1: Point-Line Incidences

- For points $P \subset \mathbb{R}^2$ and lines \mathcal{L}, $I(P, \mathcal{L}) = \text{number of point-line incidences in } (P, \mathcal{L})$.

\[\Rightarrow I(P, \mathcal{L}) = 10 \]

- Define $I(n, k) = \max_{|P|=n, |\mathcal{L}|=k} I(P, \mathcal{L})$.

- For example: $I(4, 4) =$

\[\begin{array}{c|c|c|c}
3 & 3 & 2 & 2 \\
\hline
8 & & & \\
\end{array} \]
Application 1: Point-Line Incidences

- For points \(P \subset \mathbb{R}^2 \) and lines \(\mathcal{L} \),
 \[I(P, \mathcal{L}) = \text{number of point-line incidences in } (P, \mathcal{L}). \]

\[\Rightarrow I(P, \mathcal{L}) = 10 \]

- Define \(I(n, k) = \max_{|P|=n, |\mathcal{L}|=k} I(P, \mathcal{L}) \).

- For example: \(I(4, 4) = \)
 \[3 \quad 8 \quad 9 \]
Application 1: Point-Line Incidences

- For points $P \subset \mathbb{R}^2$ and lines \mathcal{L}, $I(P, \mathcal{L}) =$ number of point-line incidences in (P, \mathcal{L}).

$$\Rightarrow I(P, \mathcal{L}) = 10$$

- Define $I(n, k) = \max_{|P|=n, |\mathcal{L}|=k} I(P, \mathcal{L})$.

- For example: $I(4, 4) = 9$
Application 1: Point-Line Incidences

- For points $P \subset \mathbb{R}^2$ and lines \mathcal{L}, $I(P, \mathcal{L})$ = number of point-line incidences in (P, \mathcal{L}).

- Define $I(n, k) = \max_{|P|=n, |\mathcal{L}|=k} I(P, \mathcal{L})$.

- For example: $I(4, 4) = 9$

Theorem 1. [Szemerédi, Trotter '83, Székely '97]

$I(n, k) \leq 2.7n^{2/3}k^{2/3} + 6n + 2k$.
Application 1: Point-Line Incidences

- For points \(P \subset \mathbb{R}^2 \) and lines \(\mathcal{L} \),
 \[I(P, \mathcal{L}) = \text{number of point-line incidences in } (P, \mathcal{L}). \]

- Define \(I(n, k) = \max_{|P|=n, |\mathcal{L}|=k} I(P, \mathcal{L}) \).

- For example: \(I(4, 4) = 9 \)

\[\Rightarrow I(P, \mathcal{L}) = 10 \]

Theorem 1.
[Szemerédi, Trotter '83, Székely '97]
\[I(n, k) \leq c(n^{2/3}k^{2/3} + n + k). \]
Application 1: Point-Line Incidences

- For points $P \subset \mathbb{R}^2$ and lines L, $I(P, L)$ is the number of point-line incidences in (P, L).

\[\Rightarrow I(P, L) = 10 \]

- Define $I(n, k) = \max_{|P|=n, |L|=k} I(P, L)$.

- For example: $I(4, 4) = 9$

Theorem 1.
[Szemerédi, Trotter '83, Székely '97] $I(n, k) \leq c(n^{2/3}k^{2/3} + n + k)$.

Proof.
Application 1: Point-Line Incidences

- For points $P \subset \mathbb{R}^2$ and lines \mathcal{L}, $I(P, \mathcal{L}) = \text{number of point-line incidences in } (P, \mathcal{L})$.

- Define $I(n, k) = \max_{|P|=n, |\mathcal{L}|=k} I(P, \mathcal{L})$.

- For example: $I(4, 4) = 9$

Theorem 1.
[Szemerédi, Trotter '83, Székely '97]
$I(n, k) \leq c(n^{2/3}k^{2/3} + n + k)$.

Proof.

Example incidence count:
$\Rightarrow I(P, \mathcal{L}) = 10$
Application 1: Point-Line Incidences

- For points \(P \subset \mathbb{R}^2 \) and lines \(\mathcal{L} \),
 \(I(P, \mathcal{L}) = \) number of point-line incidences in \((P, \mathcal{L})\).

\[
\Rightarrow I(P, \mathcal{L}) = 10
\]

- Define \(I(n, k) = \max_{|P|=n, |\mathcal{L}|=k} I(P, \mathcal{L}) \).

- For example: \(I(4, 4) = 9 \)

\[\begin{align*}
&\text{Theorem 1.} \\
&[\text{Szemerédi, Trotter '83, Székely '97}] \\
&I(n, k) \leq c(n^{2/3}k^{2/3} + n + k).
\]

\[\text{Proof.} \]
\[\text{cr}(G) \leq k^2\]
Application 1: Point-Line Incidences

- For points $P \subset \mathbb{R}^2$ and lines \mathcal{L}, $I(P, \mathcal{L}) = \text{number of point-line incidences in } (P, \mathcal{L})$.

- Define $I(n, k) = \max_{|P|=n, |\mathcal{L}|=k} I(P, \mathcal{L})$.

- For example: $I(4, 4) = 9$

Theorem 1.
[Szemerédi, Trotter '83, Székely '97] $I(n, k) \leq c(n^{2/3}k^{2/3} + n + k)$.

Proof.
- $\# \text{ points on } l = 1 + \# \text{ edges on } l$
- $\text{cr}(G) \leq k^2$
Application 1: Point-Line Incidences

- For points $P \subset \mathbb{R}^2$ and lines \mathcal{L}, $I(P, \mathcal{L}) =$ number of point-line incidences in (P, \mathcal{L}).
- Define $I(n, k) = \max_{|P|=n, |\mathcal{L}|=k} I(P, \mathcal{L})$.
- For example: $I(4, 4) = 9$

\[
\Rightarrow I(P, \mathcal{L}) = 10
\]

Theorem 1.
[Szemerédi, Trotter ’83, Székely ’97] $I(n, k) \leq c(n^{2/3}k^{2/3} + n + k)$.

Proof.

- $\#$ points on $l = 1 + \#$ edges on l
- $I(n, k) - k \leq m$
- $\text{cr}(G) \leq k^2$
Application 1: Point-Line Incidences

For points $P \subset \mathbb{R}^2$ and lines \mathcal{L}, $I(P, \mathcal{L}) = \text{number of point-line incidences in } (P, \mathcal{L})$.

Define $I(n, k) = \max_{|P|=n, |\mathcal{L}|=k} I(P, \mathcal{L})$.

For example: $I(4, 4) = 9$

\[\Rightarrow I(P, \mathcal{L}) = 10 \]

Proof.

$\# \text{ points on } l = 1 + \# \text{ edges on } l$

$I(n, k) - k \leq m$

Crossing Lemma: $\frac{1}{64} \frac{m^3}{n^2} \leq \text{cr}(G)$
Application 1: Point-Line Incidences

- For points $P \subset \mathbb{R}^2$ and lines \mathcal{L}, $I(P, \mathcal{L}) =$ number of point-line incidences in (P, \mathcal{L}).

- Define $I(n, k) = \max_{|P|=n, |\mathcal{L}|=k} I(P, \mathcal{L})$.

- For example: $I(4, 4) = 9$

\[\Rightarrow I(P, \mathcal{L}) = 10 \]

Theorem 1.
[Szemerédi, Trotter ’83, Székely ’97] $I(n, k) \leq c(n^{2/3}k^{2/3} + n + k)$.

Proof.

- # points on $l = 1 + $ # edges on l
- $I(n, k) - k \leq m$
- Crossing Lemma: $\frac{1}{64} \frac{m^3}{n^2} \leq \text{cr}(G)$
- $c'(I(n, k) - k)^3/n^2 \leq \text{cr}(G)$
Application 1: Point-Line Incidences

- For points $P \subset \mathbb{R}^2$ and lines \mathcal{L}, $I(P, \mathcal{L})$ = number of point-line incidences in (P, \mathcal{L}).

- Define $I(n, k) = \max_{|P|=n, |\mathcal{L}|=k} I(P, \mathcal{L})$.

- For example: $I(4, 4) = 9$

$\Rightarrow I(P, \mathcal{L}) = 10$

Theorem 1. [Szemerédi, Trotter '83, Székely '97] $I(n, k) \leq c(n^{2/3}k^{2/3} + n + k)$.

Proof.

- $\#$ points on $l = 1 + \#$ edges on l
- $I(n, k) - k \leq m$
- Crossing Lemma: $\frac{1}{64} \frac{m^3}{n^2} \leq \text{cr}(G)$
- $c'(I(n, k) - k)^3/n^2 \leq \text{cr}(G) \leq k^2$
Application 1: Point-Line Incidences

- For points \(P \subset \mathbb{R}^2 \) and lines \(\mathcal{L} \),
 \(I(P, \mathcal{L}) = \) number of point-line incidences in \((P, \mathcal{L})\).

\[\Rightarrow I(P, \mathcal{L}) = 10 \]

- Define \(I(n, k) = \max_{|P|=n, |\mathcal{L}|=k} I(P, \mathcal{L}) \).

- For example: \(I(4, 4) = 9 \)

Theorem 1. [Szemerédi, Trotter '83, Székely '97]
\[I(n, k) \leq c(n^{2/3}k^{2/3} + n + k). \]

Proof.

- \# points on \(l = 1 + \# \) edges on \(l \)
- \(I(n, k) - k \leq m \)
- Crossing Lemma: \(\frac{1}{64} \frac{m^3}{n^2} \leq \text{cr}(G) \)
- \(c'(I(n, k) - k)^3 / n^2 \leq \text{cr}(G) \leq k^2 \)
- if \(m \not\geq 4n \), then \(I(n, k) - k \leq 4n \)
Application 2: Unit Distances

For points $P \subset \mathbb{R}^2$ define

- $U(P) =$ number of pairs in P at unit distance and
- $U(n) = \max_{|P|=n} U(P)$.
Application 2: Unit Distances

For points $P \subset \mathbb{R}^2$ define

- $U(P) = \text{number of pairs in } P \text{ at unit distance and}$
- $U(n) = \max_{|P|=n} U(P)$.

Theorem 2.

[Spencer, Szemerédi, Trotter '84, Székely '97]

$U(n) < 6.7n^{4/3}$
Application 2: Unit Distances

For points $P \subset \mathbb{R}^2$ define

- $U(P)$ = number of pairs in P at unit distance and
- $U(n) = \max_{|P|=n} U(P)$.

Theorem 2.

[Spencer, Szemerédi, Trotter '84, Székely '97]

$U(n) < 6.7n^{4/3}$

Proof.
Application 2: Unit Distances

For points $P \subset \mathbb{R}^2$ define

- $U(P) =$ number of pairs in P at unit distance and
- $U(n) = \max_{|P|=n} U(P)$.

Theorem 2.

[Spencer, Szemerédi, Trotter '84, Székely '97]

$U(n) < 6.7n^{4/3}$

Proof.
Application 2: Unit Distances

For points $P \subset \mathbb{R}^2$ define

- $U(P)$ = number of pairs in P at unit distance and
- $U(n) = \max_{|P|=n} U(P)$.

Theorem 2.
[Spencer, Szemerédi, Trotter '84, Székely '97]
$U(n) < 6.7n^{4/3}$

Proof.
Application 2: Unit Distances

For points $P \subset \mathbb{R}^2$ define

- $U(P) =$ number of pairs in P at unit distance and
- $U(n) = \max_{|P|=n} U(P)$.

Theorem 2.
[Spencer, Szemerédi, Trotter '84, Székely '97]

$U(n) < 6.7n^{4/3}$

Proof.
Application 2: Unit Distances

For points $P \subset \mathbb{R}^2$ define

- $U(P)$ = number of pairs in P at unit distance and
- $U(n) = \max_{|P|=n} U(P)$.

Theorem 2.
[Spencer, Szemerédi, Trotter '84, Székely '97]
$U(n) < 6.7n^{4/3}$

Proof.
Application 2: Unit Distances

For points $P \subset \mathbb{R}^2$ define

- $U(P) =$ number of pairs in P at unit distance and
- $U(n) = \max_{|P|=n} U(P)$.

Theorem 2.
[Spencer, Szemerédi, Trotter '84, Székely '97]

$U(n) < 6.7n^{4/3}$

Proof.
Application 2: Unit Distances

For points $P \subset \mathbb{R}^2$ define

- $U(P)$ = number of pairs in P at unit distance and
- $U(n) = \max_{|P|=n} U(P)$.

Theorem 2.
[Spencer, Szemerédi, Trotter '84, Székely '97]
$U(n) < 6.7n^{4/3}$

Proof.

$$U(P) \leq c'm$$
Application 2: Unit Distances

For points $P \subset \mathbb{R}^2$ define

- $U(P)$ = number of pairs in P at unit distance and
- $U(n) = \max_{|P| = n} U(P)$.

Theorem 2.

[Spencer, Szemerédi, Trotter '84, Székely '97]

$U(n) < 6.7n^{4/3}$

Proof.

- $U(P) \leq c'm$
- $\text{cr}(G) \leq 2n^2$
Application 2: Unit Distances

For points $P \subset \mathbb{R}^2$ define

- $U(P) =$ number of pairs in P at unit distance and
- $U(n) = \max_{|P|=n} U(P)$.

Theorem 2.

[Spencer, Szemerédi, Trotter '84, Székely '97]

$U(n) < 6.7n^{4/3}$

Proof.

- $U(P) \leq c'm$
- $\text{cr}(G) \leq 2n^2$
- $c\frac{U(P)^3}{n^2} \leq \text{cr}(G) \leq 2n^2$
Application 3: Max. Num. of Crossings in Matchings

Given point set of n points
Application 3: Max. Num. of Crossings in Matchings

Given point set of n points
What is the max. number of crossings in any matching?
Application 3: Max. Num. of Crossings in Matchings

Given point set of n points
What is the max. number of crossings in any matching?
Application 3: Max. Num. of Crossings in Matchings

Given point set of \(n \) points
What is the max. number of crossings in any matching?

6 crossings
Application 3: Max. Num. of Crossings in Matchings

Given point set of n points
What is the max. number of crossings in any matching?
Point set spans drawing Γ of K_n

6 crossings
Application 3: Max. Num. of Crossings in Matchings

Given point set of \(n \) points
What is the max. number of crossings in any matching?
Point set spans drawing \(\Gamma \) of \(K_n \)
We will analyze the number of crossings in a \textbf{random} matching in \(\Gamma \)!
Application 3: Max. Num. of Crossings in Matchings

Given point set of n points
What is the max. number of crossings in any matching?
Point set spans drawing Γ of K_n
We will analyze the number of crossings in a random matching in Γ!
Number of crossings in $\Gamma \geq \overline{cr}(K_n)$
Application 3: Max. Num. of Crossings in Matchings

Given point set of \(n \) points
What is the max. number of crossings in any matching?
Point set spans drawing \(\Gamma \) of \(K_n \)
We will analyze the number of crossings in a random matching in \(\Gamma \)!

Number of crossings in \(\Gamma \) \(\geq \) \(\overline{cr}(K_n) > \frac{3}{8} \binom{n}{4} \)
Application 3: Max. Num. of Crossings in Matchings

Given point set of n points

What is the max. number of crossings in any matching?

Point set spans drawing Γ of K_n

We will analyze the number of crossings in a random matching in Γ!

Number of crossings in $\Gamma \geq \overline{cr}(K_n) > \frac{3}{8}\binom{n}{4}$

Number of edges in K_n: $\binom{n}{2}$
Application 3: Max. Num. of Crossings in Matchings

Given point set of n points
What is the max. number of crossings in any matching?
Point set spans drawing Γ of K_n
We will analyze the number of crossings in a random matching in Γ!

Number of crossings in $\Gamma \geq \bar{cr}(K_n) > \frac{3}{8} \binom{n}{4}$

Number of edges in K_n: $\binom{n}{2}$

Number of potential crossings (all pairs of edges): $\text{pot}(K_n) =$
Application 3: Max. Num. of Crossings in Matchings

Given point set of n points
What is the max. number of crossings in any matching?
Point set spans drawing Γ of K_n
We will analyze the number of crossings in a random matching in Γ!
Number of crossings in $\Gamma \geq \text{cr}(K_n) > \frac{3}{8}(\binom{n}{4})$
Number of edges in K_n: $\binom{n}{2}$
Number of potential crossings (all pairs of edges): $\text{pot}(K_n) = \binom{\binom{n}{2}}{2} \approx 3(\binom{n}{4})$
Application 3: Max. Num. of Crossings in Matchings

Given point set of n points
What is the max. number of crossings in any matching?

Point set spans drawing Γ of K_n
We will analyze the number of crossings in a random matching in Γ!

Number of crossings in $\Gamma \geq \text{cr}(K_n) > \frac{3}{8}\binom{n}{4}$

Number of edges in K_n: $\binom{n}{2}$

Number of potential crossings (all pairs of edges): $\text{pot}(K_n) = \binom{\binom{n}{2}}{2} \approx 3\binom{n}{4}$
Application 3: Max. Num. of Crossings in Matchings

Given point set of n points
What is the max. number of crossings in any matching?
Point set spans drawing Γ of K_n
We will analyze the number of crossings in a random matching in Γ!

Number of crossings in Γ \(\geq \text{cr}(K_n) > \frac{3}{8}(\binom{n}{4}) \)
Number of edges in K_n: \(\binom{n}{2} \)
Number of potential crossings (all pairs of edges): \(\text{pot}(K_n) = \binom{n}{2} \approx 3 \binom{n}{4} \)
Pick two random edges e_1, e_2
Application 3: Max. Num. of Crossings in Matchings

Given point set of \(n \) points
What is the max. number of crossings in any matching?
Point set spans drawing \(\Gamma \) of \(K_n \)
We will analyze the number of crossings in a random matching in \(\Gamma \! \)!

Number of crossings in \(\Gamma \) \(\geq \) \(\text{cr}(K_n) > \frac{3}{8}(\binom{n}{4}) \)
Number of edges in \(K_n \): \(\binom{n}{2} \)

Number of potential crossings (all pairs of edges): \(\text{pot}(K_n) = \binom{n}{2} \approx 3\binom{n}{4} \)

Pick two random edges \(e_1, e_2 \)

\(\text{Pr}[e_1 \text{ and } e_2 \text{ cross}] \geq \)
Application 3: Max. Num. of Crossings in Matchings

Given point set of n points

What is the max. number of crossings in any matching?

Point set spans drawing Γ of K_n

We will analyze the number of crossings in a random matching in Γ!

Number of crossings in $\Gamma \geq \overline{cr}(K_n) > \frac{3}{8} \binom{n}{4}$

Number of edges in K_n: $\binom{n}{2}$

Number of potential crossings (all pairs of edges): $\text{pot}(K_n) = \binom{n}{2} \approx 3 \binom{n}{4}$

Pick two random edges e_1, e_2

$$\Pr[e_1 \text{ and } e_2 \text{ cross}] \geq \frac{\overline{cr}(K_n)}{\text{pot}(K_n)}$$

6 crossings
Application 3: Max. Num. of Crossings in Matchings

Given point set of n points
What is the max. number of crossings in any matching?
Point set spans drawing Γ of K_n
We will analyze the number of crossings in a random matching in Γ!

Number of crossings in $\Gamma \geq \text{cr}(K_n) > \frac{3}{8} \binom{n}{4}$

Number of edges in K_n: $\binom{n}{2}$

Number of potential crossings (all pairs of edges): $\text{pot}(K_n) = \binom{n}{2} \approx 3 \binom{n}{4}$

Pick two random edges e_1, e_2

$\Pr[e_1 \text{ and } e_2 \text{ cross}] \geq \text{cr}(K_n)/\text{pot}(K_n) > \frac{1}{8}$
Application 3: Max. Num. of Crossings in Matchings

Given point set of n points
What is the max. number of crossings in any matching?
Point set spans drawing Γ of K_n
We will analyze the number of crossings in a random matching in Γ!

Number of crossings in $\Gamma \geq \overline{cr}(K_n) > \frac{3}{8}\binom{n}{4}$

Number of edges in K_n: $\binom{n}{2}$

Number of potential crossings (all pairs of edges): $\text{pot}(K_n) = \binom{\binom{n}{2}}{2} \approx 3\binom{n}{4}$

Pick two random edges e_1, e_2

$\Pr[e_1 \text{ and } e_2 \text{ cross}] \geq \frac{\overline{cr}(K_n)}{\text{pot}(K_n)} > \frac{1}{8}$

Fix matching M; it has $\leq n/2$ edges, so
Application 3: Max. Num. of Crossings in Matchings

Given point set of n points
What is the max. number of crossings in any matching?
Point set spans drawing Γ of K_n
We will analyze the number of crossings in a **random** matching in Γ!

Number of crossings in $\Gamma \geq \bar{c}\text{r}(K_n) > \frac{3}{8} \binom{n}{4}$

Number of edges in K_n: $\binom{n}{2}$

Number of *potential crossings* (all pairs of edges): $\text{pot}(K_n) = \binom{\binom{n}{2}}{2} = 3 \binom{n}{4}$

Pick two random edges e_1, e_2

$\text{Pr}[e_1 \text{ and } e_2 \text{ cross}] \geq \frac{\bar{c}\text{r}(K_n)}{\text{pot}(K_n)} > \frac{1}{8}$

Fix matching M; it has $\leq n/2$ edges, so $\binom{n/2}{2}$ pairs of edges
Application 3: Max. Num. of Crossings in Matchings

Given point set of \(n \) points
What is the max. number of crossings in any matching?
Point set spans drawing \(\Gamma \) of \(K_n \)
We will analyze the number of crossings in a random matching in \(\Gamma \)!

Number of crossings in \(\Gamma \) \(\geq \) \(\text{cr}(K_n) > \frac{3}{8} \binom{n}{4} \)
Number of edges in \(K_n \): \(\binom{n}{2} \)
Number of potential crossings (all pairs of edges): \(\text{pot}(K_n) = \binom{n/2}{2} \approx 3 \binom{n}{4} \)

Pick two random edges \(e_1, e_2 \)

\[\Pr[e_1 \text{ and } e_2 \text{ cross}] \geq \frac{\text{cr}(K_n)}{\text{pot}(K_n)} > \frac{1}{8} \]

Fix matching \(M \); it has \(\leq n/2 \) edges, so \(\binom{n/2}{2} = \frac{1}{8} n(n-2) \) pairs of edges
Application 3: Max. Num. of Crossings in Matchings

Given point set of \(n \) points
What is the max. number of crossings in any matching?
Point set spans drawing \(\Gamma \) of \(K_n \)
We will analyze the number of crossings in a random matching in \(\Gamma \! \)

Number of crossings in \(\Gamma \) \(\geq \overline{\text{cr}}(K_n) > \frac{3}{8} \binom{n}{4} \)

Number of edges in \(K_n \): \(\binom{n}{2} \)

Number of potential crossings (all pairs of edges): \(\text{pot}(K_n) = \binom{n/2}{2} \approx 3 \binom{n}{4} \)

Pick two random edges \(e_1, e_2 \)

\[\Pr[e_1 \text{ and } e_2 \text{ cross}] \geq \overline{\text{cr}}(K_n)/\text{pot}(K_n) > \frac{1}{8} \]

Fix matching \(M \); it has \(\leq n/2 \) edges, so \(\binom{n/2}{2} = \frac{1}{8} n(n - 2) \) pairs of edges

By linearity of expectations, exp. number of crossings in \(M \) is >
Application 3: Max. Num. of Crossings in Matchings

Given point set of n points
What is the max. number of crossings in any matching?
Point set spans drawing Γ of K_n
We will analyze the number of crossings in a random matching in Γ!

Number of crossings in $\Gamma \geq \overline{cr}(K_n) > \frac{3}{8}\binom{n}{4}$

Number of edges in K_n: $\binom{n}{2}$

Number of potential crossings (all pairs of edges): $\text{pot}(K_n) = \binom{n}{2} \approx 3\binom{n}{4}$

Pick two random edges e_1, e_2

$\Pr[e_1 \text{ and } e_2 \text{ cross}] \geq \overline{cr}(K_n)/\text{pot}(K_n) > \frac{1}{8}$

Fix matching M; it has $\leq n/2$ edges, so $\binom{n/2}{2} = \frac{1}{8}n(n-2)$ pairs of edges

By linearity of expectations, exp. number of crossings in M is $> \frac{1}{8}\binom{n/2}{2}$
Application 3: Max. Num. of Crossings in Matchings

Given point set of n points
What is the max. number of crossings in any matching?
Point set spans drawing Γ of K_n
We will analyze the number of crossings in a random matching in Γ!

Number of crossings in $\Gamma \geq \overline{cr}(K_n) > \frac{3}{8}(\frac{n}{4})$
Number of edges in K_n: $\binom{n}{2}$

Number of potential crossings (all pairs of edges): $pot(K_n) = \binom{\binom{n}{2}}{2} \approx 3\binom{n}{4}$

Pick two random edges e_1, e_2

Pr[e_1 and e_2 cross] $\geq \overline{cr}(K_n)/pot(K_n) > \frac{1}{8}$

Fix matching M; it has $\leq n/2$ edges, so $\binom{n/2}{2} = \frac{1}{8}n(n-2)$ pairs of edges

By linearity of expectations, exp. number of crossings in M is $> \frac{1}{8}\binom{n/2}{2} = \frac{1}{64}n(n-2)$
Literature

- [Aigner, Ziegler] Proofs from THE BOOK
- [Schaefer '20] The Graph Crossing Number and its Variants: A Survey
- Terrence Tao blog post “The crossing number inequality” from 2007
- [Garey, Johnson '83] Crossing number is NP-complete
- [Bienstock, Dean '93] Bounds for rectilinear crossing numbers
- [Székely '97] Crossing Numbers and Hard Erdös Problems in Discrete Geometry
- Documentary/Biography “N Is a Number: A Portrait of Paul Erdös”
- Exact computations of crossing numbers: http://crossings.uos.de