Visualization of Graphs

Lecture 6:
Upward Planar Drawings

Part I:
Characterization

Jonathan Klawitter
Upward Planar Drawings – Motivation

- What may the direction of edges in a digraph represent?
 - Time
 - Flow
 - Hierarchy
 - . . .

- Would be nice to have general direction preserved in drawing.
A directed graph $G = (V, E)$ is **upward planar** when it admits a drawing Γ that is
- planar and
- where each edge is drawn as an upward, y-monotone curve.
Upward Planarity – Necessary Conditions

- For a digraph G to be upward planar, it has to be:
 - planar
 - acyclic
 - bimodal

- ...but these conditions are not sufficient.
Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Additionally:
- Embedded such that s and t are on the outerface f_0.
- Acyclic digraph with a single source s and single sink t

or:
- No crossings

$$(s, t)$$ exists.
Upward Planarity – Characterization

Theorem 1. [Kelly 1987, Di Battista & Tamassia 1988]
For a digraph G the following statements are equivalent:
1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Proof.

(2) ⇒ (1) By definition. (1) ⇔ (3) Example:
(3) ⇒ (2) Triangulate & construct drawing:

Claim.
Can draw in prespecified triangle.
Induction on n.

Case 1: chord

Case 2: no chord
Visualization of Graphs

Lecture 6:
Upward Planar Drawings

Part II:
Assignment Problem

Jonathan Klawitter
Upward Planarity – Complexity

Theorem. [Garg, Tamassia, 1995]
For a planar acyclic digraph it is in general NP-hard to decide whether it is upward planar.

Theorem. [Hutton, Libow, 1996]
For a single-source acyclic digraph it can be tested in $O(n)$ time whether it is upward planar.

Corollary.
For a triconnected planar digraph it can be tested in $O(n^2)$ time whether it is upward planar.

Theorem. [Bertolazzi et al., 1994]
For a combinatorially embedded planar digraph it can be tested in $O(n^2)$ time whether it is upward planar.
The Problem

Fixed Embedding Upward Planarity Testing.
Let $G = (V, E)$ be a plane digraph with set of faces F and outer face f_0.
Test whether G is upward planar (wrt to F, f_0).

Idea.

- Find property that any upward planar drawing of G satisfies.
- Formalise property.
- Find algorithm to test property.
Angles, Local Sources & Sinks

Definitions.

- A vertex \(v \) is a **local source** wrt to a face \(f \) if \(v \) has two outgoing edges on \(\partial f \).
- A vertex \(v \) is a **local sink** wrt to a face \(f \) if \(v \) has two incoming edges on \(\partial f \).
- An angle \(\alpha \) at a local source / sink is **large** when \(\alpha > \pi \) and **small** otherwise.
- \(L(v) \) = \# large angles at \(v \)
- \(L(f) \) = \# large angles in \(f \)
- \(S(v) \) & \(S(f) \) for \# small angles
- \(A(f) \) = \# local sources wrt to \(f \)
 = \# local sinks wrt to \(f \)

Lemma 1.

\[
L(f) + S(f) = 2A(f)
\]
Assignment Problem

- Vertex v is a **global source** at faces f_1 and f_2.
- Does v have a **large** angle in f_1 or f_2?

![Diagram](attachment:image.png)
Visualization of Graphs

Lecture 6:
Upward Planar Drawings

Part III:
Angle Relations

Jonathan Klawitter
Angle Relations

Lemma 2.

\[
L(f) - S(f) = \begin{cases}
-2, & f \neq f_0 \\
+2, & f = f_0
\end{cases}
\]

- \(L(f) \geq 1\)

Split \(f\) with edge from a large angle at a “low” sink \(u\) to

- sink \(v\) with small/large angle:

\[
L(f) - S(f) = L(f_1) + L(f_2) + 1 - (S(f_1) + S(f_2) - 1) = -2
\]

Proof by induction.

- \(L(f) = 0\) \(\Rightarrow S(f) = 2\)
Angle Relations

Lemma 2.

\[
L(f) - S(f) = \begin{cases}
-2, & f \neq f_0 \\
+2, & f = f_0
\end{cases}
\]

Proof by induction.

- \(L(f) = 0 \) \(\Rightarrow S(f) = 2 \)

- \(L(f) \geq 1 \)

Split \(f \) with edge from a large angle at a “low” sink \(u \) to

- sink \(v \) with small/large angle:

\[
L(f) - S(f) = \left(L(f_1) + L(f_2) + 2 \right) - \left(S(f_1) + S(f_2) \right) \\
= -2
\]
Angle Relations

Lemma 2.

\[L(f) - S(f) = \begin{cases}
-2, & f \neq f_0 \\
+2, & f = f_0
\end{cases} \]

Proof by induction.

- \(L(f) = 0 \) \implies S(f) = 2

\(L(f) \geq 1 \)

Split \(f \) with edge from a large angle at a “low” sink \(u \) to source \(v \) with small/large angle:

\[L(f) = \begin{cases}
-2, & f \neq f_0 \\
+2, & f = f_0
\end{cases} \]
Angle Relations

Lemma 2.
\[L(f) - S(f) = \begin{cases}
-2, & f \neq f_0 \\
+2, & f = f_0
\end{cases} \]

Proof by induction.
- **Step 1:** \(L(f) = 0 \) \Rightarrow \(S(f) = 2 \)

- **Step 2:** \(L(f) \geq 1 \)

Split \(f \) with edge from a large angle at a “low” sink \(u \) to source \(v \) with small/large angle:

- \(L(f) - S(f) = L(f_1) + L(f_2) + 2 - (S(f_1) + S(f_2)) = -2 \)
Angle Relations

Lemma 2.

\[
L(f) - S(f) = \begin{cases}
-2, & f \neq f_0 \\
+2, & f = f_0
\end{cases}
\]

Proof by induction.

- \(L(f) = 0 \) \(\Rightarrow S(f) = 2 \)

\(-L(f) \geq 1\)

Split \(f \) with edge from a large angle at a “low” sink \(u \) to

- vertex \(v \) that is neither source nor sink:

\[
L(f) - S(f) = L(f_1) + L(f_2) + 1 - (S(f_1) + S(f_2) - 1) = -2
\]

- Otherwise “high” source \(u \) exists.
Number of Large Angles

Lemma 3.
In every upward planar drawing of G holds that
- for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex}, \\ 1 & v \text{ source / sink}; \end{cases}$
- for each face f: $L(f) = \begin{cases} A(f) - 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases}$

Proof. Lemma 1: $L(f) + S(f) = 2A(f)$
Lemma 2: $L(f) - S(f) = \pm 2$.
$\Rightarrow 2L(f) = 2A(f) \pm 2.$
Assignment of Large Angles to Faces

Let S and T be the sets of sources and sinks, respectively.

Definition.
A consistent assignment $\Phi: S \cup T \rightarrow F$ is a mapping where

$$\Phi: v \mapsto \text{incident face, where } v \text{ forms large angle}$$

such that

$$|\Phi^{-1}(f)| = L(f) = \begin{cases} A(f) - 1 & \text{if } f \neq f_0, \\ A(f) + 1 & \text{if } f = f_0. \end{cases}$$
Example of Angle to Face Assignment

- \(A(f) \) # sources / sinks of \(f \)
- \(L(f) \) # large angles of \(f \)

assignment \(\Phi : S \cup T \rightarrow F \)

- \(A(f) = 1 \)
- \(L(f) = 2 \)
- \(A(f) = 3 \)
- \(L(f) = 1 \)
- \(A(f) = 1 \)
- \(L(f) = 0 \)
- \(A(f) = 2 \)
- \(L(f) = 1 \)
- \(A(f) = 2 \)
- \(L(f) = 1 \)
- \(A(f) = 1 \)
- \(L(f) = 0 \)
- \(A(f) = 2 \)
- \(L(f) = 0 \)

- \(A(f) = 3 \)
- \(L(f) = 0 \)
- \(A(f) = 1 \)
- \(L(f) = 4 \)
- \(A(f) = 1 \)
- \(L(f) = 1 \)
- \(A(f) = 1 \)
- \(L(f) = 1 \)
- \(A(f) = 1 \)
- \(L(f) = 1 \)
Visualization of Graphs

Lecture 6:
Upward Planar Drawings

Part IV:
Refinement Algorithm

Jonathan Klawitter
Theorem 3.
Let $G = (V, E)$ be an acyclic plane digraph with embedding given by F, f_0.
Then G is upward planar (respecting F, f_0) if and only if G is bimodal and there exists consistent assignment Φ.

Proof.
⇒: As constructed before.
⇐: Idea:
- Construct planar st-digraph that is supergraph of G.
- Apply equivalence from Theorem 1.
Refinement Algorithm – $\Phi, F, f_0 \rightarrow \text{st-digraph}$

Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f.

- **Goal:** Add edges to break large angles (sources and sinks).
- **For** $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
 - x source \Rightarrow insert edge (z, x)

For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
- x source \Rightarrow insert edge (z, x)

![Diagram showing the process of refining a digraph with sources and sinks]
Refinement Algorithm – $\Phi, F, f_0 \rightarrow$ st-digraph

Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
 - x source \Rightarrow insert edge (z, x)
 - x sink \Rightarrow insert edge (x, z).

Goal: Add edges to break large angles (sources and sinks).

For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:

- x source \Rightarrow insert edge (z, x)
- x sink \Rightarrow insert edge (x, z).
Refinement Algorithm – \(\Phi, F, f_0 \rightarrow \text{st-digraph} \)

Let \(f \) be a face. Consider the clockwise angle sequence \(\sigma_f \) of \(L/S \) on local sources and sinks of \(f \).

- Goal: Add edges to break large angles (sources and sinks).
- For \(f \neq f_0 \) with \(|\sigma_f| \geq 2 \) containing \(\langle L, S, S \rangle \) at vertices \(x, y, z \):
 - \(x \text{ source} \Rightarrow \text{insert edge } (z, x) \)
 - \(x \text{ sink} \Rightarrow \text{insert edge } (x, z) \).
- Refine outer face \(f_0 \).

- Refine all faces. \(\Rightarrow G \) is contained in a planar st-digraph.
- Planarity, acyclicity, bimodality are invariants under construction.
Refinement Example
Refinement Example
Refinement Example
Result Upward Planarity Test

Theorem 2. [Bertolazzi et al., 1994]
For a combinatorially embedded planar digraph G it can be tested in $O(n^2)$ time whether it is upward planar.

Proof.
- Test for bimodality.
- Test for a consistent assignment Φ (via flow network).
- If G bimodal and Φ exists, refine G to plane st-digraph H.
- Draw H upward planar.
- Deleted edges added in refinement step.
Visualization of Graphs

Lecture 6:
Upward Planar Drawings

Part V:
Finding a Consistent Assignment

Jonathan Klawitter
Finding a Consistent Assignment

Idea.
Flow \((v, f) = 1\) from global source / sink \(v\) to the incident face \(f\) its large angle gets assigned to.

Flow network.
\(N_{F, f_0}(G) = ((W, E'); b; \ell; u)\)
- \(W = \{v \in V \mid v \text{ source or sink}\} \cup F\)
- \(E' = \{(v, f) \mid v \text{ incident to } f\}\)
- \(\ell(e) = 0 \forall e \in E'\)
- \(u(e) = 1 \forall e \in E'\)
- \(b(w) = \begin{cases} 1 & \forall w \in W \cap V \\ -(A(w) - 1) & \forall w \in F \setminus \{f_0\} \\ -(A(w) + 1) & w = f_0 \end{cases} \)

Example.

![Flow network diagram](image)
Discussion

- There exist fixed-parameter tractable algorithms to test upward planarity of general digraphs with the parameter being the number of triconnected components. [Healy, Lynch 2005, Didimo et al. 2009]

- Finding assignment in Theorem 2 can be sped up to $O(n + r^{1.5})$ where $r = \# \text{ sources} / \text{ sinks}$. [Abbasi, Healy, Rextin 2010]

- Many related concepts have been studied: quasi-planarity, upward drawings of mixed graphs, upward planarity on cylinder/torus, ...
Literature

- [GD Ch. 6] for detailed explanation

Organized papers referenced:

- [Kelly ’87] Fundamentals of Planar Ordered Sets
- [Di Battista, Tamassia ’88] Algorithms for Plane Representations of Acyclic Digraphs
- [Hutton, Lubiw ’96] Upward Planar Drawing of Single-Source Acyclic Digraphs
- [Bertolazzi, Di Battista, Mannino, Tamassia ’94] Upward Drawings of Triconnected Digraphs
- [Healy, Lynch ’05] Building Blocks of Upward Planar Digraphs
- [Didimo, Giardano, Liotta ’09] Upward Spirality and Upward Planarity Testing
- [Abbasi, Healy, Rextin ’10] Improving the running time of embedded upward planarity testing