Advanced Algorithms

Succinct Data Structures
Indexable Dictionaries and Trees

Jonathan Klawitter · WS20
Data structures

A **data structure** is a concept to
- store,
- organize, and
- manage data.
As such, it is a collection of
- **data values**,
- their **relations**, and
- the **operations** that can applied to the data.

Remarks.
- We look at data structures as a designer/implementer
 (and not necessarily as a user).
- To define a data structure and to implement it are two different tasks.

⇒
- What do we represent?
- How much space is required?
- Dynamic or static?
- Which operations are defined?
- How fast are they?
Succinct data structures

Goal.
■ Use space “close” to information-theoretical minimum,
■ but still support time-efficient operations.

Let L be the information-theoretical lower bound to represent a class of objects.
Then a data structure, which still supports time-efficient operations, is called
■ implicit, if it takes $L + O(1)$ bits of space;
■ succinct, if it takes $L + o(L)$ bits of space;
■ compact, if it takes $O(L)$ bits of space.
Succinct data structures

Goal.
■ Use space “close” to information-theoretical minimum,
■ but still support time-efficient operations.

Let L be the information-theoretical lower bound to represent a class of objects. Then a data structure, which still supports time-efficient operations, is called

■ implicit, if it takes $L + O(1)$ bits of space;
■ succinct, if it takes $L + o(L)$ bits of space;
■ compact, if it takes $O(L)$ bits of space.

Examples?
Examples for implicit data structures

- **arrays** to represent lists
 - but why not linked lists?

- **1-dim arrays** to represent multi-dimensional arrays

- **sorted arrays** to represent sorted lists
 - but why not binary search trees?

- **arrays** to represent complete binary trees and heaps

- **1-dim arrays** to represent multi-dimensional arrays

And unbalanced trees?

\[
\begin{align*}
\text{leftChild}(i) &= 2i \\
\text{rightChild}(i) &= 2i + 1 \\
\text{parent}(i) &= \lfloor \frac{i}{2} \rfloor
\end{align*}
\]
Succinct indexable dictionary

Represent a subset $S \subset [n]$ and support $O(1)$-time operations:

- $\text{member}(i)$ returns if $i \in S$
- $\text{rank}(i) = \# 1's$ at or before position i
- $\text{select}(j) =$ position of jth 1 bit
- predecessor and successor can be answered using rank and select

How many different subsets of $[n]$ are there? 2^n

How many bits of space do we need to distinguish them?

$\log 2^n = n \text{ bits}$
Succinct indexable dictionary

Represent S with a bit vector b of length n where

$$b[i] = \begin{cases} 1 & \text{if } i \in S \\ 0 & \text{otherwise} \end{cases}$$

plus $o(n)$-space structures to answer in $O(1)$ time

- $\text{rank}(i) = \# \ 1's \ at \ or \ before \ position \ i$
- $\text{select}(j) = \text{position of } j\text{th } 1 \text{ bit}$

$$S = \{3, 4, 6, 8, 9, 14\} \text{ where } n = 15$$

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

$\text{select}(5) = 9$

$\text{rank}(9) = 5$
Succinct indexable dictionary

Represent S with a bit vector b of length n where

$$b[i] = \begin{cases} 1 & \text{if } i \in S \\ 0 & \text{otherwise} \end{cases}$$

plus $o(n)$-space structures to answer in $O(1)$ time

- $\text{rank}(i) = \# 1\text{'s at or before position } i$
- $\text{select}(j) = \text{position of } j\text{th 1 bit}$

$S = \{3, 4, 6, 8, 9, 14\}$ where $n = 15$

$\text{rank}(9) = 5 = \text{rank}(12)$
$\text{rank}(15) = 6$

Exercise: Use them to answer predecessor and successor.

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>13</th>
<th>14</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Rank in $o(n)$ bits

1. Split into $(\log^2 n)$-bit **chunks**
 and store cumulative rank: each $\log n$ bits

$$\Rightarrow O\left(\frac{n}{\log^2 n} \log n\right) = O\left(\frac{n}{\log n}\right) \subseteq o(n) \text{ bits}$$
Rank in $o(n)$ bits

1. Split into $(\log^2 n)$-bit chunks
 and store cumulative rank: each $\log n$ bits
 \[\Rightarrow O\left(\frac{n}{\log^2 n} \log n\right) = O\left(\frac{n}{\log n}\right) \subseteq o(n) \text{ bits} \]

2. Split chunks into $(\frac{1}{2} \log n)$-bit subchunks
 and store cumulative rank within chunk: $2 \log \log n$ bits
 \[\Rightarrow O\left(\frac{n}{\log n} \log \log n\right) \subseteq o(n) \text{ bits} \]
Rank in $o(n)$ bits

1. Split into $(\log^2 n)$-bitchunks and store cumulative rank: each $\log n$ bits
 \[\Rightarrow O\left(\frac{n}{\log^2 n} \log n\right) = O\left(\frac{n}{\log n}\right) \subseteq o(n) \text{ bits} \]

2. Split chunks into $(\frac{1}{2} \log n)$-bit subchunks and store cumulative rank within chunk: $2 \log \log n$ bits
 \[\Rightarrow O\left(\frac{n}{\log n} \log \log n\right) \subseteq o(n) \text{ bits} \]

3. Use lookup table for bitstrings of length $(\frac{1}{2} \log n)$
 \[\Rightarrow O\left(\sqrt{n \log n \log \log n}\right) \subseteq o(n) \text{ bits} \]
Rank in $o(n)$ bits

1. Split into $(\log^2 n)$-bit **chunks**
 and store cumulative rank: each $\log n$ bits
 $$\Rightarrow O\left(\frac{n}{\log^2 n} \log n\right) = O\left(\frac{n}{\log n}\right) \subseteq o(n) \text{ bits}$$

2. Split **chunks** into $(\frac{1}{2} \log n)$-bit **subchunks**
 and store cumulative rank within **chunk**: $2 \log \log n$ bits
 $$\Rightarrow O\left(\frac{n}{\log n} \log \log n\right) \subseteq o(n) \text{ bits}$$

3. Use **lookup table** for bitstrings of length $(\frac{1}{2} \log n)$
 $$\Rightarrow O\left(\sqrt{n} \log n \log \log n\right) \subseteq o(n) \text{ bits}$$

4. rank = rank of **chunk**
 + relative rank of **subchunk** within **chunk**
 + relative rank of element within **subchunk**
Rank in $o(n)$ bits + $O(1)$ time

1. Split into $(\log^2 n$)-bit chunks and store cumulative rank: each log n bits
$$\Rightarrow O\left(\frac{n}{\log^2 n} \log n\right) = O\left(\frac{n}{\log n}\right) \subseteq o(n) \text{ bits}$$

2. Split chunks into $(\frac{1}{2} \log n$)-bit subchunks and store cumulative rank within chunk: 2 log log n bits
$$\Rightarrow O\left(\frac{n}{\log n} \log \log n\right) \subseteq o(n) \text{ bits}$$

3. Use lookup table for bitstrings of length $(\frac{1}{2} \log n)$
$$\Rightarrow O(\sqrt{n \log n \log \log n}) \subseteq o(n) \text{ bits}$$

4. rank = rank of chunk + relative rank of subchunk within chunk + relative rank of element within subchunk
$$\Rightarrow O(1) \text{ time}$$
Select in $o(n)$ bits

1. Store indices of every $(\log n \log \log n)$th 1 bit in array

\[
\Rightarrow O\left(\frac{n}{\log n \log \log n} \log n\right) = O\left(\frac{n}{\log \log n}\right) \subseteq o(n) \text{ bits}
\]
Select in $o(n)$ bits

1. Store indices of every $(\log n \log \log n)$th 1 bit in array

$$\Rightarrow O\left(\frac{n}{\log n \log \log n} \log n\right) = O\left(\frac{n}{\log \log n}\right) \subseteq o(n) \text{ bits}$$

2. Within group of $(\log n \log \log n)$ 1 bits of length r bits:
 - if $r \geq (\log n \log \log n)^2$
 - then store indices of 1 bits in group in array

$$\Rightarrow O\left(\frac{n}{(\log n \log \log n)^2} (\log n \log \log n) \log n\right) \subseteq O\left(\frac{n}{\log \log n}\right)$$
Select in $o(n)$ bits

1. Store indices of every $(\log n \log \log n)$th 1 bit in array

 $$\Rightarrow O\left(\frac{n}{\log n \log \log n} \log n\right) = O\left(\frac{n}{\log \log n}\right) \subseteq o(n) \text{ bits}$$

2. Within group of $(\log n \log \log n)$ 1 bits of length r bits:

 if $r \geq (\log n \log \log n)^2$

 then store indices of 1 bits in group in array

 $$\Rightarrow O\left(\frac{n}{(\log n \log \log n)^2} (\log n \log \log n) \log n\right) \subseteq O\left(\frac{n}{\log \log n}\right)$$

 else problem is reduced to bitstrings of length $r < (\log n \log \log n)^2$

3. Repeat 1. and 2. on reduced bitstrings
Select in $o(n)$ bits

3. Repeat 1. and 2. on reduced bitstrings ($r < (\log n \log \log n)^2$):

1’ Store relative indices of every $(\log \log n)^2$th 1 bit in array

$$\Rightarrow O\left(\frac{n}{(\log \log n)^2} \log \log n\right) = O\left(\frac{n}{\log \log n}\right) \text{ bits}$$
Select in $o(n)$ bits

3. Repeat 1. and 2. on reduced bitstrings ($r < (\log n \log \log n)^2$):

1' Store relative indices of every $(\log \log n)^2$th 1 bit in array

$$\Rightarrow O\left(\frac{n}{(\log \log n)^2} \log \log n\right) = O\left(\frac{n}{\log \log n}\right) \text{ bits}$$

2' Within group of $(\log \log n)^2$th 1 bits of length r' bits:

if $r' \geq (\log \log n)^4$

then store relative indices of 1 bits in subgroup in array

$$\Rightarrow O\left(\frac{n}{(\log \log n)^4} (\log \log n)^2 \log \log n\right) = O\left(\frac{n}{\log \log n}\right) \text{ bits}$$
Select in $o(n)$ bits + $O(1)$ time

3. Repeat 1. and 2. on reduced bitstrings ($r < (\log n \log \log n)^2$):

1’ Store relative indices of every $(\log \log n)^2$th 1 bit in array

\[\Rightarrow O\left(\frac{n}{(\log \log n)^2} \log \log n\right) = O\left(\frac{n}{\log \log n}\right) \text{ bits} \]

2’ Within group of $(\log \log n)^2$th 1 bits of length r' bits:

if $r' \geq (\log \log n)^4$

then store relative indices of 1 bits in subgroup in array

\[\Rightarrow O\left(\frac{n}{(\log \log n)^4} (\log \log n)^2 \log \log n\right) = O\left(\frac{n}{\log \log n}\right) \text{ bits} \]

else problem is reduced to bitstrings of length $r' < (\log \log n)^4$

4. Use lookup table for bitstrings of length $r' \leq (\log \log n)^4 \leq \frac{1}{2} \log n$

\[\Rightarrow O\left(\sqrt{n \log n \log \log n}\right) = o(n) \text{ bits} \]
Succinct representation of binary trees

Number of binary trees on \(n \) vertices: \(C_n = \frac{1}{n+1} \binom{2n}{n} \)

\[
\log C_n = 2n + o(n) \quad \text{(by Stirling’s approximation)}
\]

\(\Rightarrow \) We can use \(2n + o(n) \) bits to represent binary trees.

Difficulty is when binary tree is not full.
Succinct representation of binary trees

Size.
- $2n + 1$ bits for b
- $o(n)$ for rank and select

Operations.
- $\text{parent}(i) = \text{select}(\lfloor \frac{i}{2} \rfloor)$
- $\text{leftChild}(i) = 2 \text{rank}(i)$
- $\text{rightChild}(i) = 2 \text{rank}(i) + 1$
- $\text{rank}(i)$ is index for array storing actual values

Idea.
- Add external nodes
- Read internal nodes as 1
- Read external nodes as 0
- Use rank and select

Proof is exercise.
Succinct representation of trees - **LOUDS**

LOUDS = Level Order Unary Degree Sequence

- Unary decoding of outdegree
- Gives LOUDS sequence

```
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
1 0 1 1 1 0 1 1 0 0 1 0 1 0 1 1 0 0 0 0
```

Size.
- Each vertex (except root) is represented twice, namely with a 1 and with a 0
- \(o(n) \) bits for rank and select

\[\Rightarrow 2n + o(n) \text{ bits} \]
Succinct representation of trees - LOUDS

LOUDS = Level Order Unary Degree Sequence

Operations.
- Let i be index of 1 in louds sequence.
- $\text{rank}(i)$ is index for array storing vertex objects/values.
Succinct representation of trees - **LOUDS**

LOUDS = Level Order Unary Degree Sequence

- **unary decoding of outdegree**
- gives **LOUDS** sequence

- **firstChild**(i) = select$_0$(rank$_1$(i)) + 1
- **firstChild**(8) = select$_0$(rank$_1$(8)) + 1 = select$_0$(6) + 1 = $14 + 1 = 15$

- **nextSibling**(i) = $i + 1$

- **parent**(i) = select$_1$(rank$_0$(i))
- **parent**(8) = select$_1$(rank$_0$(8)) = select$_1$(2) = 3

Exercise: child(i, j) with validity check
Discussion

- Succinct data structures are
 - space efficient
 - support fast operations
 but
 - are mostly static (dynamic at extra cost),
 - number of operations are limited,
 - complex → harder to implement

- Rank and select form basis for many succinct representations
Literature

Main reference:
- Lecture 17 of Advanced Data Structures (MIT, Fall'17) by Erik Demaine
- [Jac '89] “Space efficient Static Trees and Graphs”

Recommendations:
- Lecture 18 of Demaine’s course on compact & succinct arrays & trees