Advanced Algorithms

Rearrangement distance of phylogenetic trees

Kernelisation, fpt and approximation algorithm

Jonathan Klawitter · WS20
Phylogenetic trees

... represent the evolutionary history of a set of taxa.

- Leaves are labelled with taxa.
- Each taxon represents a species, population, individual organism, gene, chromosome,
- Edge lengths represent amount of time passed or genetic distance.
Phylogenetic trees

... represent the evolutionary history of a set of taxa.

- Leaves are labelled with taxa.
- Each taxon represents a species, population, individual organism, gene, chromosome, ...
- Edge lengths represent amount of time passed or genetic distance.
- Inference methods compute a phylogenetic tree based on some model and data.

by Jenna McCullough 2016
Phylogenetic trees

Let $X = \{1, 2, 3, \ldots n\}$.

A \textbf{(rooted, binary) phylogenetic tree} T is a rooted tree with the following properties:

- The unique \textbf{root} is labeled ρ and has outdegree 1.
- The leaves are bijectively labeled by X.
- All other vertices have indegree 1 and outdegree 2.

\textbf{Remarks.}

Here, in our definition

- vertices have \textbf{no heights} and
- the order of leaves does not matter.
Problem

For the same taxa, we may infer different phylogenetic trees because of the use of

- different inference methods,
- different models, or
- different data.

We want to be able to compare different phylogenetic trees. How?

Goal.
Define a metric on phylogenetic trees on X and devise algorithms to compute it.

Idea.
Count the number of rearrangement operations that are necessary to transform T into T'.
Subtree Prune & Regraft (SPR)

An **SPR** operation transforms one phylogenetic tree into another one.

- **Subtree**
 - An SPR operation transforms one phylogenetic tree into another one.
 - Note that an SPR operation is reversible.

- **Prune**
 - Subtree
 - Prune
 - Regraft

- **Regraft**
 - Spruce
 - Replant

- **Note**
 - An SPR operation is reversible.
SPR-graph

SPR induces the **SPR-graph** $G = (V, E)$:

- $V = \{ T \mid T \text{ is a phylogenetic tree on } X \}$
- $\{ T, T' \} \in E$ if T can be transformed into T' with a single SPR operation
SPR-distance

The **SPR-distance** $d_{SPR}(T, T')$ of T and T' is defined as the distance of T and T' in the SPR-graph G.

Lemma 1.
The SPR-graph G is connected.

Proof as exercise or in discussion.

Lemma 2.
The SPR-distance is a metric.

Proof. G is connected and undirected.

Goal.
Compute the SPR-distance $d_{SPR}(T, T')$.

... but G is huge!

$$|V(G)| = (2n - 3)!! = (2n - 3) \cdot (2n - 5) \cdot \ldots \cdot 5 \cdot 3$$
The **SPR-distance** $d_{SPR}(T, T')$ of T and T' is defined as the distance of T and T' in the SPR-graph G.

Lemma 1. The SPR-graph G is connected.

Proof as exercise or in discussion.

Lemma 2. The SPR-distance is a metric.

Proof. G is connected and undirected.

Goal. Compute the SPR-distance $d_{SPR}(T, T')$.

...but G is huge!

$$|V(G)| = (2n - 3)!! = (2n - 3) \cdot (2n - 5) \cdot \ldots \cdot 5 \cdot 3$$

- Can we rephrase the problem?
Maximum agreement forests

\[T \xrightarrow{\text{SPR}} T' \xrightarrow{\text{SPR}} T'' \]

\[F \text{ into } T \]

\[F \]

\[F \text{ into } T'' \]
Maximum agreement forests

An agreement forest \(F \) of \(T \) and \(T'' \) is a forest \(\{T_\rho, T_1, T_2, \ldots, T_k\} \) such that

- the label sets of the \(T_i \) partition \(X \cup \{\rho\} \),
- \(\rho \) is in the label set of \(T_\rho \), and
- there exist edge-disjoint embeddings of subdivisions of the \(T_i \)'s into \(T \) and \(T'' \) that cover all edges.

If \(k \) is minimal, \(F \) is a maximum agreement forest (MAF).
Characterisation

Let T and T' be two phylogenetic trees on X. Let $F = \{T_\rho, T_1, T_2, \ldots, T_k\}$ be a MAF of T and T'. Define

$$m(T, T') = k = |F| - 1.$$
Characterisation

Let T and T' be two phylogenetic trees on X.

Let $F = \{T_{\rho}, T_1, T_2, \ldots, T_k\}$ be a MAF of T and T'.

Define

$$m(T, T') = k = |F| - 1.$$

Theorem 3. $m(T, T') = d_{\text{SPR}}(T, T')$

Proof of “\leq” by induction on $d = d_{\text{SPR}}(T, T')$.

- Case $d = 1$ is easy. ✓
- Assume $m(T, T') \leq d_{\text{SPR}}(T, T')$ holds for all $d \leq \ell$.

![Diagram showing phylogenetic trees and MAF](image-url)
Characterisation

Let T and T' be two phylogenetic trees on X.
Let $F = \{T_\rho, T_1, T_2, \ldots, T_k\}$ be a MAF of T and T'.
Define
\[m(T, T') = k = |F| - 1. \]

Theorem 3. \(m(T, T') = d_{\text{SPR}}(T, T') \)

Proof of “≤” by induction on \(d = d_{\text{SPR}}(T, T') \).

- If \(d = \ell + 1 \), then there exists T'' with $d_{\text{SPR}}(T, T'') = \ell$ and $d_{\text{SPR}}(T'', T') = 1$.
- There exists MAF F' for T and T'' and MAF F'' for T'' and T'.

\[\begin{array}{c}
T \\
\rho \\
\ell \text{ SPR} \\
\rho \\
F' \\
\rho \\
\rho_1 \rho_2 \\
\rho \\
T'' \\
\rho \\
\rho_1 \rho_2 \\
\rho \\
T' \\
\rho \\
\rho_1 \rho_2 \\
\rho \\
F'' \\
\rho \\
\rho_1 \rho_2 \\
\rho \\
\end{array} \]
Characterisation

Let T and T' be two phylogenetic trees on X.
Let $F = \{T_\rho, T_1, T_2, \ldots, T_k\}$ be a MAF of T and T'.
Define
\[
m(T, T') = k = |F| - 1.
\]

Theorem 3. \(m(T, T') = d_{\text{SPR}}(T, T')\)

Proof of “\(\leq\)” by induction on \(d = d_{\text{SPR}}(T, T')\).
- If \(d = \ell + 1\), then there exists T'' with $d_{\text{SPR}}(T, T'') = \ell$ and $d_{\text{SPR}}(T'', T') = 1$.
- There exists MAF F' for T and T'' and MAF F'' for T'' and T'.

\[\begin{array}{cccccc}
T & T'' & F' & T'' & T' & F'' & F \\
\rho & \rho & \rho & \rho & \rho & \rho & \rho \\
\ell_{\text{SPR}} & & & & & & \\
\end{array}\]
Characterisation

Let T and T' be two phylogenetic trees on X. Let $F = \{T_\rho, T_1, T_2, \ldots, T_k\}$ be a MAF of T and T'. Define

$$m(T, T') = k = |F| - 1.$$

Theorem 3. $m(T, T') = d_{SPR}(T, T')$

Proof of "$\geq"$ by induction on $d = m(T, T')$.

- Case $d = 1$ is easy. ✓
- Assume $m(T, T') \geq d_{SPR}(T, T')$ holds for all $d \leq \ell$.

$$F$$

$$T$$

$$T'$$

ρ

ρ

ρ

ρ

ρ

ρ

SPR
Let T and T' be two phylogenetic trees on X. Let $F = \{T_\rho, T_1, T_2, \ldots, T_k\}$ be a MAF of T and T'. Define

$$m(T, T') = k = |F| - 1.$$

Theorem 3. $m(T, T') = d_{\text{SPR}}(T, T')$

Proof of “\geq” by induction on $d = m(T, T')$.

- Let F be a MAF of T and T' of size $\ell + 2$.
- There exists a T_i that can be pruned in T.
- Regraft T_i according to the embedding of F into $T' \Rightarrow T''$ & F'
- F' is an AF for T' and T''
- $\Rightarrow d_{\text{SPR}}(T'', T') \leq \ell$
- $d_{\text{SPR}}(T, T'') = 1$
- $d_{\text{SPR}}(T, T') \leq \ell + 1 = m(T, T')$
Theorem 4. [HJWZ ’96, BS ’05]
Computing $d_{\text{SPR}}(T, T')$ is NP-hard.

Proof is by reduction from Exact Cover by 3-Sets.

Plan.
- Construct kernel of the problem.
 - Replace T and T' with smaller S and S'.
 - We should be able to get $d_{\text{SPR}}(T, T')$ from $d_{\text{SPR}}(S, S')$.
- Show that size of the kernel depends on $d_{\text{SPR}}(T, T')$.
- Devise an fpt algorithm by computing d_{SPR} for kernel.
- Devise an approximation algorithm.
Kernelisation – Subtrees

Common subtree reduction.
- Replace any pendant subtree that occurs identically in both trees by a single leaf with a new label.

\[
T \quad T' \quad S \quad S'
\]

Lemma 5. Applying the common subtree reduction is safe; i.e. \(d_{SPR}(T, T') = d_{SPR}(S, S')\).

Proof.
- Suppose is covered by two trees of MAF
- then there is alternative MAF
Kernelisation – Chains

Chain reduction.
- Replace any chain of leaves that occurs identically in both trees by three new leaves.

Lemma 6. Applying chain reduction is safe; i.e. $d_{SPR}(T, T') = d_{SPR}(S, S')$.

Proof.
- Show there is a tree with abc-chain in a MAF of S and S'.
- Swap abc-chain with original chain for MAF of T and T'.
Kernelisation – Chains

Chain reduction.
■ Replace any chain of leaves that occurs identically in both trees by three new leaves.

Lemma 6. Applying chain reduction is safe; i.e. $d_{\text{SPR}}(T, T') = d_{\text{SPR}}(S, S')$.

Proof.
■ Consider embedding of a MAF F into S.

Case 1
■ Consider embedding of a MAF F into S.

Proof.
Kernelisation – Chains

Chain reduction.
- Replace any chain of leaves that occurs identically in both trees by three new leaves.

\[T \rightarrow T' \quad \text{and} \quad S \rightarrow S' \]

Lemma 6. Applying chain reduction is safe; i.e. \(d_{\text{SPR}}(T, T') = d_{\text{SPR}}(S, S') \).

Proof.
- Consider embedding of a MAF \(F \) into \(S \).

Case 2
Kernel size

Theorem 7.
Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then

$$|X'| \leq 28 \text{d}_{\text{SPR}}(T, T').$$

Proof. Let $F = \{T_\rho, T_1, \ldots, T_k\}$ be MAF for S and S'. Let $n(T_i)$ be $\#$ of T_j that T_i overlaps with in embedding of F into S. Claim 1. $\sum_{i=\rho}^k (n(T_i) + n'(T_i)) \leq 4k = 4 \text{d}_{\text{SPR}}(T, T').$

\[|V(H)| = k + 1 = |E(H)| + 1\]

\[\sum n(T_i) = 2|E(H)| \leq 2k\]
Kernel size

Theorem 7.
Reduce T and T' to S and S' by exhaustively applying the reduction rules. Let S and S' be on X'. Then

$$|X'| \leq 28 d_{SPR}(T, T').$$

Proof. Let $F = \{T_\rho, T_1, \ldots, T_k\}$ be MAF for S and S'. Let $n(T_i)$ be the number of T_j that T_i overlaps with in the embedding of F into S.

Claim 1. $\sum_{i=\rho}^{k} (n(T_i) + n'(T_i)) \leq 4k = 4 d_{SPR}(T, T').$

Claim 2. The number of leaves of $T_i \leq 7(n(T_i) + n'(T_i))$.

$$\sum_{i=\rho}^{k} \text{# leaves of } T_i \leq \sum_{i=\rho}^{k} 7(n(T_i) + n'(T_i)) \leq 28k$$
FPT algorithm

Theorem 8.
Computing $d_{\text{SPR}}(T, T')$ is fixed-parameter tractable when parameterized by $d_{\text{SPR}}(T, T')$.

Proof.
- Reduce T and T' to S and S' by exhaustively applying the reduction rules.
- Let S and S' be on X' and let $k = d_{\text{SPR}}(S, S')$.
- S has at most $4|X'|^2$ neighbours.
 - S has less than $2|X'|$ edges to cut and to attach to.
 by Theorem 7
- Length-k BFS from S visits at most $O\left((4|X'|^2)^k\right) = O((56k)^{2k})$ trees.
- Since $k = d_{\text{SPR}}(S, S') = d_{\text{SPR}}(T, T')$, this yields an fpt algorithm.
Approximation algorithm

Idea.
- Given reduced trees T and T' we compute an agreement forest F by
- successively making “cuts” and “eliminations”.
- This shrink T and T' further and further.
- Show that $|F|$ is at most $3|F'|$, where F' is a MAF of T and T'.
Approximation algorithm

\[
\text{APPROXDSPR}(T, T')
\]

\[
i \leftarrow 1
\]

\[
G_i \leftarrow T
\]

\[
H_i \leftarrow T'
\]

\[
\text{while } \exists \text{ pair of sibling leaves } a \text{ and } b \text{ in } G_i \text{ do}
\]

\[
\text{find the case that applies to } a \text{ and } b \text{ in } H_i
\]

\[
\text{apply the corresponding transaction}
\]

\[
\text{to obtain } G_{i+1} \text{ from } G_i \text{ and } H_{i+1} \text{ from } H_i
\]

\[
i++
\]

\[
\text{return } |H_i| - 1
\]
Approximation algorithm – example

$T = G_1$

$T' = H_1$

Case 2

- Should we cut of the leaves 1 or 2 or all in between them in H_1?
- Do parts of each!
Approximation algorithm – example

Case 1

If the same cherry occurs in \(H_i \), we can simply reduce it.
Case 4

- Leaf b is the only leaf of a tree in H_i.
- Cut off b in G_i.

Leaf b is the only leaf of a tree in H_i.
Cut off b in G_i.

G_3

H_3
Approximation algorithm – example

\[G_4 \]

\[H_4 \]

Return 3.
Approximation algorithm – analysis

<table>
<thead>
<tr>
<th>Case</th>
<th>G_i</th>
<th>H_i</th>
<th>G_{i+1}</th>
<th>H_{i+1}</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>a b</td>
<td>a b</td>
<td>c</td>
<td>c</td>
<td>no mistake</td>
</tr>
<tr>
<td>2</td>
<td>a b</td>
<td>a b</td>
<td>a b</td>
<td>a b</td>
<td>3 cuts 1+ good</td>
</tr>
<tr>
<td>3</td>
<td>a b</td>
<td>a b</td>
<td>a b</td>
<td>a b</td>
<td>2 cuts 1+ good</td>
</tr>
<tr>
<td>4</td>
<td>a b</td>
<td>b</td>
<td>a b</td>
<td>b</td>
<td>1 cut 1 good</td>
</tr>
</tbody>
</table>
Approximation algorithm – analysis

<table>
<thead>
<tr>
<th>Case</th>
<th>G_i</th>
<th>H_i</th>
<th>G_{i+1}</th>
<th>H_{i+1}</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>no mistake</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 cuts 1+ good</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 cuts 1+ good</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 cut 1 good</td>
</tr>
</tbody>
</table>

Theorem 9

APPROXDSPR is a 3-approximation algorithm for $d_{SPR}(T, T')$ with an $O(|X|^2)$ running time.
Discussion

Phylogenetic trees.
- There are other classes of phylogenetic trees: unrooted, non-binary, ranked, ...
- Trees can be generalized to phylogenetic networks, which can also have indegree 2 outdegree 1 vertices.

Maximum Agreement Forests.
- Reframing (characterising) a problem in a different way, can sometimes make your life a lot easier.
- MAF can be generalized to Maximum Agreement Graphs, but these don't characterize the SPR-distance of networks anymore.
Discussion

Kernelization.
- Kernelization is an important technique to construct fpt algorithms.
- Result important since SPR-distance small in practice.
- Reduction rules actually give a kernel of size at most $15k - 9$.
- With further reduction rules can get size below $11k - 9$. [KL ’18]
- Divide & conquer algorithm can (in practice) reduce further reduce problem sizes. [LS ’11]

Approximation algorithm.
- There exist 2-approximation algorithms for the SPR-distance with a running time in $O(n^3)$. [CHW ’17]
Literature

Original papers:

- [BS '05] “On the computational complexity of the rooted subtree prune and regraft distance” for SPR, MAF, characterisation, fpt, divide & conquer
- [RSW '06] “The maximum agreement forest problem: Approximation algorithms and computational experiments”

Referenced papers:

- [HJWZ '96] “On the complexity of comparing evolutionary trees” for NP-hardness proof
- [KL '19] “New reduction rules for the tree bisection and reconnection distance”
- [CHW '17] “A New 2-Approximation Algorithm for rSPR Distance”
- [LS11] “A cluster reduction for computing the subtree distance between phylogenies”