Advanced Algorithms

Exact algorithms for NP-hard problems

TSP and MIS

Jonathan Klawitter · WS20
Examples of NP-hard problems

Many important (practical) problems are NP-hard, for example . . .

\[(x_1 \lor x_2 \lor \neg x_4) \land
(\neg x_2 \lor x_3 \lor \neg x_4) \land
(x_3 \lor x_7 \lor \neg x_8) \land
\ldots\]

SAT

Graph Drawing

Games
Formal view on NP-hardness

But what does NP-hard/-complete actually mean?

- **NP-hard = non-deterministic polynomial-time hard**

- A decision problem H is NP-hard when it is “at least as hard as the hardest problems in P”.

- or: There is a polynomial-time many-one reduction from an NP-hard problem L to H.

- If $P \neq NP$, then NP-hard problems cannot be solved in polynomial time.
Misconceptions about NP-hardness

Common misconceptions [Mann ’17]

- If similar problems are NP-hard, then the problem at hand is also NP-hard.
- Problems that are hard to solve in practice by an engineer are NP-hard.
- NP-hard problems cannot be solved optimally.
- NP-hard problems cannot be solved more efficiently than by exhaustive search.
- For solving NP-hard problems, the only practical possibility is the use of heuristics.
Dealing with NP-hard problems

What should we do?

- Sacrifice optimality for speed
 - Heuristics (Simulated Annealing, Tabu-Search)
 - Approximation Algorithms (Christofides-Algorithm)

- Optimal Solutions
 - Exact exponential-time algorithms
 - Fine-grained analysis – parameterized algorithms

Heuristic Approximation

NP-hard Exponential FPT

this lecture
Motivation

Exponential running time ... but can we at least find exact algorithms that are faster than brute-force (trivial) approaches?

- **TSP**: Bellman-Held-Karp algorithm has running time $O(2^n n^2)$ compared to a $O(n!n)$-time brute-force search.

- **MIS**: algorithm by Tarjan & Trojanowski runs in $O(2^{n/3})$ time compared to a trivial $O(n2^n)$-time approach.

- **Coloring**: Lawler gave an $O(n(1 + \sqrt[3]{3})^n)$ algorithm compared to $O(n^{n+1})$-time brute-force.

- **SAT**: No better algorithm than trivial brute-force search known.
\(\mathcal{O}^* \)-notation

\[
\mathcal{O}(1.4^n \cdot n^2) \subsetneq \mathcal{O}(1.5^n \cdot n) \subsetneq \mathcal{O}(2^n)
\]

- negligible polynomial factors
- base of exponential part dominates

\[
f(n) \in \mathcal{O}^*(g(n)) \iff \exists \text{ polynomial } p(n) \text{ with } f(n) \in \mathcal{O}(g(n)p(n))
\]

- typical result

<table>
<thead>
<tr>
<th>Approach</th>
<th>Runtime in (\mathcal{O})-Notation</th>
<th>(\mathcal{O}^*)-Notation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brute-Force</td>
<td>(\mathcal{O}(2^n))</td>
<td>(\mathcal{O}^*(2^n))</td>
</tr>
<tr>
<td>Algorithm A</td>
<td>(\mathcal{O}(1.5^n \cdot n))</td>
<td>(\mathcal{O}^*(1.5^n))</td>
</tr>
<tr>
<td>Algorithm B</td>
<td>(\mathcal{O}(1.4^n \cdot n^2))</td>
<td>(\mathcal{O}^*(1.4^n))</td>
</tr>
</tbody>
</table>
Traveling Salesperson Problem (TSP)

Input. Distinct cities \(\{v_1, v_2, \ldots, v_n\} \) with distances \(d(c_i, c_j) \in \mathbb{Q}_{\geq 0}; \) directed, complete graph \(G \) with edge weights \(d \)

Output. Tour of the traveling salesperson of minimal total length that visits all the cities and returns to the starting point; i.e. a Hamiltonian cycle \((v_{\pi(1)}, \ldots, v_{\pi(n)}, v_{\pi(1)}) \) of \(G \) of minimum weight

\[
\sum_{i=1}^{n-1} d(v_{\pi(i)}, v_{\pi(i+1)}) + d(v_{\pi(n)}, v_{\pi(1)})
\]

Brute-force.
- Try all permutations and pick the one with smallest weight.
- Runtime: \(\Theta(n! \cdot n) = n \cdot 2^{\Theta(n \log n)} \)
TSP – Dynamic programming

Bellman-Held-Karp algorithm

Idea.

- Reuse optimal substructures with dynamic programming.
- Select a starting vertex $s \in V$.
- For each $S \subseteq V - s$ and $v \in S$, let:
 \[
 \text{OPT}[S, v] = \text{length of a shortest } s-v\text{-path that visits precisely the vertices of } S \cup \{s\}.
 \]

- Use OPT[$S - v, u$] to compute OPT[S, v].
TSP – Dynamic programming

Details.

- The base case \(S = \{v\} \) is easy: \(\text{OPT}[\{v\}, v] = d(s, v) \).
- When \(|S| \geq 2\), compute \(\text{OPT}[S, v] \) recursively:
 \[
 \text{OPT}[S, v] = \min \{ \text{OPT}[S - v, u] + d(u, v) \mid u \in S - v \}
 \]
- After computing \(\text{OPT}[S, v] \) for each \(S \subseteq V - s \) and each \(v \in V - s \), the optimal solution is easily obtained as follows:
 \[
 \text{OPT} = \min \{ \text{OPT}[V - s, v] \} + d(v, s) \mid v \in V - s \}
 \]
TSP – Dynamic programming

Pseudocode.

Algorithm Bellmann-Held-Karp\((G, c)\)

\[
\text{foreach } v \in V - s \text{ do}
\]
\[
\text{OPT}\[\{v\}, v\] = c(s, v)
\]

\[
\text{for } j \leftarrow 2 \text{ to } n - 1 \text{ do}
\]
\[
\text{foreach } S \subseteq V - s \text{ with } |S| = j \text{ do}
\]
\[
\text{foreach } v \in S \text{ do}
\]
\[
\text{OPT}[S, v] \leftarrow \min\{ \text{OPT}[S - v, u] + c(u, v) | u \in S - v \}
\]

\[
\text{return } \min\{ \text{OPT}[V - s, v] + c(v, s) | v \in V - s \}
\]

- A shortest tour can be produced by backtracking the DP table (as usual).

Analysis.

- innermost loop executes \(O(2^n \cdot n)\) iterations
- each takes \(O(n)\) time
- total of \(O(2^n n^2) = O^*(2^n)\)
- Space usage in \(\Theta(2^n \cdot n)\)
- or actually better? What table values do we need to store?
TSP – Discussion

- DP algorithm that runs in $O^*(2^n)$ time and $O(2^n \cdot n)$ space
- Brute-force runs in $2^{O(n \log n)}$ time
 \Rightarrow Sacrifice space for speedup
- Many variants of TSP: symmetric, asymmetric, metric, vehicle routing problem, ...
- Metric TSP can easily be 2-approximated. (Do you remember how?)
- Euclidean TSP considered in course Approximation Algorithms.
- In practice, one successful approach is to start with a greedily computed Hamiltonian cycle and then use 2-OPT and 3-OPT swaps to improve it.
Maximum Independent Set (MIS)

Input. Graph $G = (V, E)$ with n vertices.

Output. Maximum size independent set, i.e., a largest set $U \subseteq V$, such that no pair of vertices in U are adjacent in G.

Brute-force.
- Try all subsets of V.
- Runtime: $O(2^n \cdot n)$

Naive MIS branching.
- Take a vertex v or don’t take it.

Algorithm NaiveMIS(G)

```plaintext
if $V = \emptyset$ then
    return 0

$v \leftarrow$ arbitrary vertex in $V(G)$

return max\{1 + NaiveMIS($G - N(v) - \{v\}$), NaiveMIS($G - \{v\}$)\}
```
MIS – Smarter branching

Lemma.
Let U be a maximum independent set in G. Then for each $v \in V$:
1. $v \in U \Rightarrow N(v) \cap U = \emptyset$
2. $v \notin U \Rightarrow |N(v) \cap U| \geq 1$
Thus, $N[v] := N(v) \cup \{v\}$ contains some $y \in U$ and no other vertex of $N[y]$ is in U.

Smarter MIS branching.

■ For some vertex v, branch on vertices in $N[v]$.

Algorithm MIS(G)

\[
\text{if } V = \emptyset \text{ then return 0}
\]
\[
v \leftarrow \text{vertex of minimum degree in } V(G)
\]
\[
\text{return } 1 + \max\{\text{MIS}(G - N[y]) \mid y \in N[v]\}
\]

■ Correctness follows from Lemma.

■ We prove a runtime of $O^*(3^{n/3}) = O^*(1.4423^n)$.
MIS – Branching analysis

Execution corresponds to a search tree whose vertices are labeled with the input of the respective recursive call.

- Let $B(n)$ be the maximum number of leaves of a search tree for a graph with n vertices.
- Search-tree has height $\leq n$.

\leadsto The algorithm’s runtime is

$$T(n) \in O^*(nB(n)) = O^*(B(n)).$$

- Let’s consider an example run.
MIS – Runtime analysis

For a worst-case n-vertex graph G ($n \geq 1$):

$$B(n) \leq \sum_{y \in N[v]} B(n - (\deg(y) + 1)) \leq (\deg(v) + 1) \cdot B(n - (\deg(v) + 1))$$

where v is a minimum degree vertex of G, and we note that $B(n') \leq B(n)$ for any $n' \leq n$.

We prove by induction that $B(n) \leq 3^{n/3}$.

- **Base case:** $B(0) = 1 \leq 3^{0/3}$
- **Hypothesis:** for $n \geq 1$, set $s = \deg(v) + 1$ in the above inequality

$$B(n) \leq s \cdot B(n - s) \leq s \cdot 3^{(n-s)/3} = \frac{s}{3^{s/3}} \cdot 3^{n/3} \leq 3^{n/3}$$

$$B(n) \in O^*(\frac{3^{\sqrt{n}}}{3}) \subset O^*(1.44225^n)$$
MIS – Discussion

- Smarter branching leads to $O^*(1.44225^n)$-time algorithm,
- compared to brute-force, which runs in $O(2^n \cdot n)$ time.
- Algorithms for MIS known that run in $O^*(1.2202^n)$ time and polynomial space,
- and in $O^*(1.2109^n)$ time and exponential space.
- What vertices are always in a MIS?
- What vertices can we safely assume are in a MIS?
- Advanced case analysis in [Fomin, Kratsch Ch 2.3] leading to a $O^*(1.2786^n)$-time algorithm.
- **Exercise**: Enumerating MISs
- **Exercise**: Edge-branching for MIS
Literature

Main source:
- [Fomin, Kratsch Ch1] “Exact Exponential Algorithms”

Referenced papers:
- [ADMV '15] Classic Nintendo Games are (Computationally) Hard
- [Mann '17] The Top Eight Misconceptions about NP-Hardness