Visualisation of graphs

Hierarchical layouts

Sugiyama framework

Jonathan Klawitter · Summer semester 2020
Hierarchical drawings – motivation
Hierarchical drawing

Problem statement.

- Input: digraph $G = (V, E)$
- Output: drawing of G that “closely” reproduces the hierarchical properties of G

Desireable properties.

- vertices occur on (few) horizontal lines
- edges directed upwards
- edge crossings minimized
- edges upward, straight, and short as possible
- vertices evenly spaced

Criteria can be contradictory!
Hierarchical drawing – applications

yEd Gallery: Java profiler JProfiler using yFiles

Source: Visualization that won the Graph Drawing contest 2016. Klawitter & Mchedlidze

Source: "Design Considerations for Optimizing Storyline Visualizations" Tanahashi et al.
Classical approach – Sugiyama framework

[Sugiyama, Tagawa, Toda '81]
Step 1: Cycle breaking

Approach.
- Find minimum set E^* of edges which are not upwards.
- Remove E^* and insert reversed edges.

Problem Minimum Feedback Arc Set (FAS).
- Input: directed graph $G = (V, E)$
- Output: min. set $E^* \subseteq E$, so that $G - E^* + E_r^*$ acyclic
Step 1: Cycle breaking

Approach.
- Find minimum set E^* of edges which are not upwards.
- Remove E^* and insert reversed edges.

Problem **Minimum Feedback Arc Set** (FAS).
- Input: directed graph $G = (V, E)$
- Output: min. set $E^* \subseteq E$, so that $G - E^* + E^*_r$ acyclic

...NP-hard :-(
Heuristic 1
[Berger, Shor '90]

GreedyMakeAcyclic(Digraph $G = (V, E)$)

$E' \leftarrow \emptyset$

foreach $v \in V$ do

if $|N\rightarrow(v)| \geq |N\leftarrow(v)|$ then

$E' \leftarrow E' \cup N\rightarrow(v)$

else

$E' \leftarrow E' \cup N\leftarrow(v)$

remove v and $N(v)$ from G.

return (V, E')

- $G' = (V, E')$ is a DAG
 - we create an order on V
 - $E \setminus E'$ is a feedback arc set

- Time: $O(|V| + |E|)$

- Quality guarantee: $|E'| \geq |E|/2$
Heuristic 2

[Eades, Lin, Smyth '93]

\(E' \leftarrow \emptyset \)

while \(V \neq \emptyset \) do

\(\text{while in } V \text{ exists a sink } v \text{ do} \)

\(E' \leftarrow E' \cup N^{\leftarrow}(v) \)

remove \(v \) and \(N^{\leftarrow}(v) \)

Remove all isolated vertices from \(V \)

\(\text{while in } V \text{ exists a source } v \text{ do} \)

\(E' \leftarrow E' \cup N^{\rightarrow}(v) \)

remove \(v \) and \(N^{\rightarrow}(v) \)

if \(V \neq \emptyset \) then

let \(v \in V \) such that \(|N^{\rightarrow}(v)| - |N^{\leftarrow}(v)| \) maximal;

\(E' \leftarrow E' \cup N^{\rightarrow}(v) \)

remove \(v \) and \(N(v) \)

\begin{itemize}
 \item Time: \(O(|V| + |E|) \)
 \item Quality guarantee: \(|E'| \geq |E|/2 + |V|/6 \)
\end{itemize}
Step 2: Leveling

Problem.

- **Input:** acyclic, digraph $G = (V, E)$
- **Output:** Mapping $y: V \rightarrow \{1, \ldots, |V|\}$, so that for every $uv \in A$, $y(u) < y(v)$.

Objective is to minimize ...

- number of layers, i.e. $|y(V)|$
- length of the longest edge, i.e. $\max_{uv \in A} y(v) - y(u)$
- width, i.e. $\max\{|L_i| \mid 1 \leq i \leq h\}$
- total edge length, i.e. number of dummy vertices
Min number of layers

Algorithm.

- for each source q
 set $y(q) := 1$

- for each non-source v
 set $y(v) := \max \{y(u) \mid uv \in E\} + 1$

Observation.

- $y(v)$ is length of the longest path from a source to v plus 1.
 ...which is optimal!

- Can be implemented in linear time with recursive algorithm.
Example
Total edge length – ILP

Can be formulated as an integer linear program:

\[
\begin{align*}
\text{min} & \quad \sum_{(u,v) \in E} (y(v) - y(u)) \\
\text{subject to} & \quad y(v) - y(u) \geq 1 \quad \forall (u,v) \in E \\
& \quad y(v) \geq 1 \quad \forall v \in V \\
& \quad y(v) \in \mathbb{Z} \quad \forall v \in V
\end{align*}
\]

One can show that:
- Constraint-matrix is **totally unimodular**
 \(\Rightarrow\) Solution of the relaxed linear program is integer
- The total edge length can be minimized in polynomial time
Drawings can be very wide.
Narrower layer assignment

Problem: Leveling with a given width.

- **Input:** acyclic, digraph $G = (V, E)$, width $W > 0$
- **Output:** Partition the vertex set into a minimum number of layers such that each layer contains at most W elements.

Problem: Precedence-Constrained Multi-Processor Scheduling

- **Input:** n jobs with unit (1) processing time, W identical machines, and a partial ordering $<$ on the jobs.
- **Output:** Schedule respecting $<$ and having minimum processing time.
- **NP-hard, $(2 - \frac{2}{W})$-Approx., no $(\frac{4}{3} - \varepsilon)$-Approx. ($W \geq 3$).
Approximating PCMPS

- jobs stored in a list L
 (in any order, e.g., topologically sorted)
- for each time $t = 1, 2, \ldots$ schedule $\leq W$ available jobs
- a job in L is *available* when all its predecessors have been scheduled
- as long as there are free machines and available jobs, take the first available job and assign it to a free machine
Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

![Precedence Graph](image)

Number of Machines is $W = 2$.

Output: Schedule

<table>
<thead>
<tr>
<th>M_1</th>
<th>1 2 4 5 6 8 A C E G</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_2</td>
<td>_ 3 _ _ 7 9 B D F _</td>
</tr>
<tr>
<td>t</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
</tr>
</tbody>
</table>

Question: Good approximation factor?
Approximating PCMPS - analysis for $W = 2$

Precedence graph $G_<$

Schedule

<table>
<thead>
<tr>
<th>Schedule</th>
<th>M_1</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_2</td>
<td>-3</td>
<td></td>
<td>-</td>
<td>7</td>
<td>9</td>
<td>B</td>
<td>D</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>1 2 3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

"The art of the lower bound"

$\text{OPT} \geq \lceil n/2 \rceil$ and $\text{OPT} \geq \ell := \text{Number of layers of } G_<$

Goal: measure the quality of our algorithm using the lower bounds

Bound. $\text{ALG} \leq \left\lceil \frac{n + \ell}{2} \right\rceil \approx \frac{n}{2} + \ell/2 \leq 3/2 \cdot \text{OPT}$

insertion of pauses (−) in the schedule (except the last) maps to layers of $G_<$

$\leq (2 - 1/W) \cdot \text{OPT}$ in general case
Step 3: Crossing minimization

Problem.
- **Input:** Graph G, layering $y: V \rightarrow \{1, \ldots, |V|\}$
- **Output:** (Re-)ordering of vertices in each layer so that the number of crossings in minimized.

- NP-hard, even for 2 layers [Garey & Johnson ’83]
- hardly any approaches optimize over multiple layers :(
Iterative crossing reduction – idea

Observation.
The number of crossings only depends on permutations of adjacent layers.

- Add dummy-vertices for edges connecting “far” layers.
- Consider adjacent layers $(L_1, L_2), (L_2, L_3), \ldots$ bottom-to-top.
- Minimize crossings by permuting L_{i+1} while keeping L_i fixed.
Iterative crossing reduction – algorithm

1. choose a random permutation of L_1
2. iteratively consider adjacent layers L_i and L_{i+1}
3. minimize crossings by permuting L_{i+1} and keeping L_i fixed
 \textit{one-sided crossing minimization}
4. repeat steps (2)–(3) in the reverse order (starting from L_h)
5. repeat steps (2)–(4) until no further improvement is achieved
6. repeat steps (1)–(5) with different starting permutations
One-sided crossing minimization

Problem.

- **Input:** bipartite graph $G = (L_1 \cup L_2, E)$, permutation π_1 on L_1
- **Output:** permutation π_2 of L_2 minimizing the number of edge crossings.

One-sided crossing minimization is NP-hard.

[Eades & Whitesides '94]

Algorithms.

- barycenter heuristic
- median heuristic
- Greedy-Switch
- ILP

...
Barycentre heuristic
[Sugiyama et al. '81]

- Intuition: few intersections occur when vertices are close to their neighbours

- The barycentre of u is the average x-coordinate of the neighbours of u in layer L_1 $[x_1 \equiv \pi_1]$

 $$x_2(u) := \text{bary}(u) := \frac{1}{\deg(u)} \sum_{v \in N(u)} x_1(v)$$

- Vertices with the same barycentre of are offset by a small δ.

- linear runtime
- relatively good results
- optimal if no crossings are required \textcolor{red}{exercise!}
- $O(\sqrt{n})$-approximation factor

Worst case?
Median heuristic

[Eades & Wormald '94]

- \(\{v_1, \ldots, v_k\} := N(u) \) with \(\pi_1(v_1) < \pi_1(v_2) < \cdots < \pi_1(v_k) \)

- \(x_2(u) := \text{med}(u) := \begin{cases} 0 & \text{when } N(u) = \emptyset \\ \pi_1(v_{[k/2]}) & \text{otherwise} \end{cases} \)

- move vertices \(u \) und \(v \) by small \(\delta \), when \(x_2(u) = x_2(v) \)

- linear runtime
- relatively good results
- optimal, if no crossings are required
- 3-approximation factor

proof in [GD Ch 11]
Median heuristic
[Eades & Wormald '94]

- \(\{v_1, \ldots, v_k\} := N(u) \) with \(\pi_1(v_1) < \pi_1(v_2) < \cdots < \pi_1(v_k) \)

- \(x_2(u) := \text{med}(u) := \begin{cases}
0 & \text{when } N(u) = \emptyset \\
\pi_1(v_{[k/2]}) & \text{otherwise}
\end{cases} \)

- move vertices \(u \) und \(v \) by small \(\delta \), when \(x_2(u) = x_2(v) \)

- linear runtime
- relatively good results
- optimal, if no crossings are required
- 3-approximation factor

proof in [GD Ch 11]

Worst case?

\[2k(k + 1) + k^2 \text{ vs. } (k + 1)^2 \]
Greedy-switch heuristic

- Iteratively swap each adjacent node as long as crossings decrease
- Runtime $O(L_2^2)$ per iteration; at most $|L_2|$ iterations
- Suitable as post-processing for other heuristics

Worst case?

\[\approx k^2 / 4 \quad \approx 2k \]
Integer linear program

[Jünger & Mutzel, '97]

- Constant $c_{ij} := \#$ crossings between edges incident to v_i or v_j when $\pi_2(v_i) < \pi_2(v_j)$
- Variable x_{ij} for each $1 \leq i < j \leq n_2 := |L_2|$
 \[
 x_{ij} = \begin{cases}
 1 & \text{when } \pi_2(v_i) < \pi_2(v_j) \\
 0 & \text{otherwise}
 \end{cases}
 \]
- The number of crossings of a permutations π_2
 \[
 \text{cross}(\pi_2) = \sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} (c_{ij} - c_{ji})x_{ij} + \sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} c_{ji}
 \]
 constant
Integer linear program

- Minimize the number of crossings:

\[
\text{minimize } \sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} (c_{ij} - c_{ji})x_{ij}
\]

- Transitivity constraints:

\[
0 \leq x_{ij} + x_{jk} - x_{ik} \leq 1 \quad \text{for } 1 \leq i < j < k \leq n_2
\]

i.e., if \(x_{ij} = 1\) and \(x_{jk} = 1\), then \(x_{ik} = 1\)

Properties.

- branch-and-cut technique for DAGs of limited size
- useful for graphs of small to medium size
- finds optimal solution
- solution in polynomial time is not guaranteed
Iterations on example
Step 4: Vertex positioning

Goal.
paths should be close to straight, vertices evenly spaced

- **Exact:** Quadratic Program (QP)
- **Heuristic:** iterative approach
Quadratic Program

- Consider the path \(p_e = (v_1, \ldots, v_k) \) of an edge \(e = v_1v_k \) with dummy vertices: \(v_2, \ldots, v_{k-1} \)
- \(x \)-coordinate of \(v_i \) according to the line \(\overline{v_1v_k} \) (with equal spacing):

 \[
 x(v_i) = x(v_1) + \frac{i - 1}{k - 1} (x(v_k) - x(v_1))
 \]
- define the deviation from the line

 \[
 \text{dev}(p_e) := \sum_{i=2}^{k-1} \left(x(v_i) - x(v_i) \right)^2
 \]
- Objective function: \(\min \sum_{e \in E} \text{dev}(p_e) \)
- Constraints for all vertices \(v, w \) in the same layer with \(w \) right of \(v \):

 \[
 x(w) - x(v) \geq \rho(w, v)
 \]

- QP is time-expensive
- width can be exponential
Iterative heuristic

- compute an initial layout
- apply the following steps as long as improvements can be made:
 1. vertex positioning,
 2. edge straightening,
 3. compactifying the layout width.
Example
Step 5: Drawing edges

Possibility.
Substitute polylines by Bézier curves
Example
Example
Example
Classical approach – Sugiyama framework

[Sugiyama, Tagawa, Toda '81]

- Input
- Cycle breaking
- Leveling
- Crossing minimization
- Vertex positioning
- Edge drawing

- Flexible framework to draw directed graphs
- Sequential optimization of various criteria
- Modelling gives NP-hard problems, which can still be solved quite well
Literature

Detailed explanations of steps and proofs in
■ [GD Ch. 11] and [DG Ch. 5]
based on
■ [Sugiyama, Tagawa, Toda ’81] Methods for visual understanding of hierarchical system structures
and refined with results from
■ [Berger, Shor ’90] Approximation algorithms for the maximum acyclic subgraph problem
■ [Eades, Lin, Smith ’93] A fast and effective heuristic for the feedback arc set problem
■ [Garey, Johnson ’83] Crossing number is NP-complete
■ [Eades, Whiteside ’94] Drawing graphs in two layers
■ [Eades, Wormland ’94] Edge crossings in drawings of bipartite graphs
■ [Jünger, Mutzel ’97] 2-Layer Straightline Crossing Minimization: Performance of Exact and Heuristic Algorithms