Visualisation of graphs

Upward planar drawings

Flow methods

Jonathan Klawitter · Summer semester 2020
Upward planar drawings – motivation

- What may the direction of edges in a digraph represent?
 - Time
 - Flow
 - Hierarchie
 - ...

PERT diagram

Petri net

Phylogenetic network
Upward planar drawings – motivation

- What may the direction of edges in a digraph represent?
 - Time
 - Flow
 - Hierarchie
 - ...

- Would be nice to have general direction preserved in drawing.

PERT diagram

Petri net

Phylogenetic network
Definition.
A directed graph $G = (V, E)$ is upward planar when it admits a drawing Γ (vertices = points, edges = simple curves) that is
- planar and
- where each edge is drawn as an upward, y-monotone curve.
Upward planarity – necessary conditions

- For a digraph G to be upward planar, it has to be:
 - planar
Upward planarity – necessary conditions

For a digraph G to be upward planar, it has to be:
- planar
- acyclic
Upward planarity – necessary conditions

- For a digraph G to be upward planar, it has to be:
 - planar
 - acyclic

![Diagram showing examples of bimodal and non-bimodal vertices]
Upward planarity – necessary conditions

For a digraph G to be upward planar, it has to be:
- planar
- acyclic
- bimodal
Upward planarity – necessary conditions

For a digraph G to be upward planar, it has to be:
- planar
- acyclic
- bimodal

... but these conditions are not sufficient.
Upward planarity – characterisation

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.
Upward planarity – characterisation

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]

For a digraph G the following statements are equivalent:
1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

no crossings
Upward planarity – characterisation

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]
For a digraph G the following statements are equivalent:
1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

- no crossings
- acyclic digraph with a single source s and single sink t
Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]
For a digraph G the following statements are equivalent:
1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Additionally:
- Embedded such that s and t are on the outerface f_0.
- Acyclic digraph with a single source s and single sink t.
- No crossings.
Upward planarity – characterisation

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]
For a digraph G the following statements are equivalent:
1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Additionally:
- Embedded such that s and t are on the outerface f_0.
- or:
 - Edge (s, t) exists.

\[\{\text{no crossings} \quad \text{acyclic digraph with} \quad \text{a single source } s \text{ and single sink } t\]
Upward planarity – characterisation

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]
For a digraph G the following statements are equivalent:
1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition.
Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]
For a digraph G the following statements are equivalent:
1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) Example:
Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]
For a digraph G the following statements are equivalent:
1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Proof.
(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) Example:
Upward planarity – characterisation

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]
For a digraph G the following statements are equivalent:
1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) Example:
Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]

For a digraph G the following statements are equivalent:
1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Proof.

$(2) \Rightarrow (1)$ By definition. $(1) \iff (3)$ Example:
Upward planarity – characterisation

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) Example:
Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]
For a digraph G the following statements are equivalent:
1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Proof.
(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) Example:
Upward planarity – characterisation

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Proof.

$(2) \Rightarrow (1)$ By definition. $(1) \Leftrightarrow (3)$ Example:
Upward planarity – characterisation

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Proof.

$(2) \Rightarrow (1)$ By definition. $(1) \iff (3)$ Example:
Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]

For a digraph G the following statements are equivalent:
1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition. (1) \Leftrightarrow (3) Example:
(3) \Rightarrow (2) Triangulate & construct drawing:
Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]
For a digraph G the following statements are equivalent:
1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Proof.
(2) ⇒ (1) By definition. (1) ⇔ (3) Example:
(3) ⇒ (2) Triangulate & construct drawing:

Claim.
Can draw in prespecified triangle.
Upward planarity – characterisation

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition.

(1) \Leftrightarrow (3) Example:

(3) \Rightarrow (2) Triangulate & construct drawing:

Claim.

Can draw in prespecified triangle.

Case 1:
Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]
For a digraph G the following statements are equivalent:
1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Proof.
(2) \Rightarrow (1) By definition.
(1) \iff (3) Example:
(3) \Rightarrow (2) Triangulate & construct drawing:

Claim. Case 1:
Can draw in prespecified triangle.
Upward planarity – characterisation

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]
For a digraph G the following statements are equivalent:
1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Proof.

(2) \Rightarrow (1) By definition.

(1) \Leftrightarrow (3) Example:

(3) \Rightarrow (2) Triangulate & construct drawing:

Claim.

Case 1:
Can draw in prespecified triangle.
Apply induction.
Upward planarity – characterisation

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]
For a digraph G the following statements are equivalent:
1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Proof.

$(2) \Rightarrow (1)$ By definition. $(1) \Leftrightarrow (3)$ Example:

$(3) \Rightarrow (2)$ Triangulate & construct drawing:

Claim.

Case 1:
Can draw in prespecified triangle. Apply induction.

Case 2:
Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]
For a digraph \(G \) the following statements are equivalent:
1. \(G \) is upward planar.
2. \(G \) admits an upward planar straight-line drawing.
3. \(G \) is the spanning subgraph of a planar \(st \)-digraph.

Proof.

\((2) \Rightarrow (1) \) By definition.
\((1) \Leftrightarrow (3) \) Example:

\((3) \Rightarrow (2) \) Triangulate & construct drawing:

Claim.

Case 1:
Can draw in prespecified triangle.
Apply induction.

Case 2:
...
Upward planarity – characterisation

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]

For a digraph G the following statements are equivalent:

1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Proof.

$(2) \Rightarrow (1)$ By definition.

$(1) \iff (3)$ Example:

$(3) \Rightarrow (2)$ Triangulate & construct drawing:

Claim.

Case 1: Can draw in prespecified triangle.

Apply induction.

Case 2:
Upward planarity – characterisation

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]
For a digraph G the following statements are equivalent:
1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Proof.

$(2) \Rightarrow (1)$ By definition. $(1) \Leftrightarrow (3)$ Example:
$(3) \Rightarrow (2)$ Triangulate & construct drawing:

Claim.
Can draw in prespecified triangle.
Apply induction.

Case 1:

Case 2:
Upward planarity – complexity

Theorem. [Garg, Tamassia, 1995]
For a *planar acyclic* digraph it is in general NP-hard to decide whether it is upward planar.
Upward planarity – complexity

Theorem. [Garg, Tamassia, 1995]
For a *planar acyclic* digraph it is in general NP-hard to decide whether it is upward planar.

Theorem 2. [Bertolazzi et al., 1994]
For a *combinatorially embedded* planar digraph it can be tested in $O(n^2)$ time whether it is upward planar.
Upward planarity – complexity

Theorem. [Garg, Tamassia, 1995]
For a *planar acyclic* digraph it is in general NP-hard to decide whether it is upward planar.

Theorem 2. [Bertolazzi et al., 1994]
For a *combinatorially embedded* planar digraph it can be tested in $O(n^2)$ time whether it is upward planar.

Corollary.
For a *triconnected* planar digraph it can be tested in $O(n^2)$ time whether it is upward planar.
Upward planarity – complexity

Theorem. [Garg, Tamassia, 1995]
For a *planar acyclic* digraph it is in general NP-hard to decide whether it is upward planar.

Theorem 2. [Bertolazzi et al., 1994]
For a *combinatorially embedded* planar digraph it can be tested in $O(n^2)$ time whether it is upward planar.

Corollary.
For a *triconnected* planar digraph it can be tested in $O(n^2)$ time whether it is upward planar.

Theorem. [Hutton, Libow, 1996]
For a *single-source* acyclic digraph it can be tested in $O(n)$ time whether it is upward planar.
The problem

Fixed embedding upward planarity testing.
Let $G = (V, E)$ be a plane digraph with the embedding given by the set of faces F and the outer face f_0. Test whether G is upward planar (wrt to F, f_0).
The problem

Fixed embedding upward planarity testing.
Let $G = (V, E)$ be a plane digraph with the embedding given by the set of faces F and the outer face f_0. Test whether G is upward planar (wrt to F, f_0).

Idea.
- Find property that any upward planar drawing of G satisfies.
- Formalise property.
- Find algorithm to test property.
Angles, local sources & sinks

Definitions.

A vertex \(v \) is a local source wrt to a face \(f \) if \(v \) has two outgoing edges on \(\partial f \).

A vertex \(v \) is a local sink wrt to a face \(f \) if \(v \) has two incoming edges on \(\partial f \).

An angle \(\alpha \) is large when \(\alpha > \pi \) and small otherwise.

\[
L(v) = \# \text{ large angles at } v
\]

\[
L(f) = \# \text{ large angles in } f
\]

\[
S(v) \& S(f) \text{ for } \# \text{ small angles}
\]

\[
A(f) = \# \text{ local sources wrt to } f = \# \text{ local sinks wrt to } f
\]
Angles, local sources & sinks

Definitions.

- A vertex \(v \) is a local source wrt to a face \(f \) if \(v \) has two outgoing edges on \(\partial f \).
- A vertex \(v \) is a local sink wrt to a face \(f \) if \(v \) has two incoming edges on \(\partial f \).
- An angle \(\alpha \) is large when \(\alpha > \pi \) and small otherwise.
- \(L(v) = \# \) large angles at \(v \)
- \(L(f) = \# \) large angles in \(f \)
- \(S(v) \) & \(S(f) \) for \# small angles
- \(A(f) = \# \) local sources wrt to \(f \)
 \(= \# \) local sinks wrt to \(f \)
Angles, local sources & sinks

Definitions.
- A vertex \(v \) is a **local source** wrt to a face \(f \) if \(v \) has two outgoing edges on \(\partial f \).
- A vertex \(v \) is a **local sink** wrt to a face \(f \) if \(v \) has two incoming edges on \(\partial f \).
Angles, local sources & sinks

Definitions.

- A vertex v is a **local source** wrt to a face f if v has two outgoing edges on ∂f.
- A vertex v is a **local sink** wrt to a face f if v has two incoming edges on ∂f.
- An angle α is **large** when $\alpha > \pi$ and **small** otherwise.
- $L(v) = \#$ large angles at v
- $L(f) = \#$ large angles in f
Angles, local sources & sinks

Definitions.

- A vertex v is a **local source** wrt to a face f if v has two outgoing edges on ∂f.
- A vertex v is a **local sink** wrt to a face f if v has two incoming edges on ∂f.
- An angle α is **large** when $\alpha > \pi$ and **small** otherwise.
- $L(v) = \# \text{ large angles at } v$
- $L(f) = \# \text{ large angles in } f$
- $S(v)$ & $S(f)$ for $\# \text{ small angles}$
Angles, local sources & sinks

Definitions.

■ A vertex v is a **local source** wrt to a face f if v has two outgoing edges on ∂f.

■ A vertex v is a **local sink** wrt to a face f if v has two incoming edges on ∂f.

■ An angle α is **large** when $\alpha > \pi$ and **small** otherwise.

■ $L(v) = \#$ large angles at v

■ $L(f) = \#$ large angles in f

■ $S(v)$ & $S(f)$ for $\#$ small angles

■ $A(f) = \#$ local sources wrt to f
 $= \#$ local sinks wrt to f
Angles, local sources & sinks

Definitions.

■ A vertex v is a **local source** wrt to a face f if v has two outgoing edges on ∂f.
■ A vertex v is a **local sink** wrt to a face f if v has two incoming edges on ∂f.
■ An angle α is **large** when $\alpha > \pi$ and **small** otherwise.
■ $L(v) = \#$ large angles at v
■ $L(f) = \#$ large angles in f
■ $S(v) & S(f)$ for $\#$ small angles
■ $A(f) = \#$ local sources wrt to f
 $= \#$ local sinks wrt to f

Lemma 1.
$L(f) + S(f) = 2A(f)$
Assignment problem

- Vertex v is a global source for f_1 and f_2.
- Has v a large angle in f_1 or f_2?
Lemma 2.

\[L(f) - S(f) = \begin{cases}
-2, & f \neq f_0 \\
+2, & f = f_0
\end{cases} \]
Angle relations

Lemma 2.

\[L(f) - S(f) = \begin{cases}
-2, & f \neq f_0 \\
+2, & f = f_0
\end{cases} \]

Proof by induction.

\[L(f) = 0 \]
Angle relations

Lemma 2.
\[L(f) - S(f) = \begin{cases}
-2, & f \neq f_0 \\
+2, & f = f_0
\end{cases} \]

Proof by induction.

- \[L(f) = 0 \]
 \[\Rightarrow S(f) = 2 \]
Angle relations

Lemma 2.

\[
L(f) - S(f) = \begin{cases}
-2, & f \neq f_0 \\
+2, & f = f_0
\end{cases}
\]

Proof by induction.

- \(L(f) = 0 \) \(\Rightarrow S(f) = 2 \)

- \(L(f) \geq 1 \)

Split \(f \) with edge from a large angle at a “low” sink \(u \) to
Angle relations

Lemma 2.

\[
L(f) - S(f) = \begin{cases}
-2, & f \neq f_0 \\
+2, & f = f_0
\end{cases}
\]

Proof by induction.

- \(L(f) = 0\) \(\Rightarrow S(f) = 2\)

- \(L(f) \geq 1\)

Split \(f\) with edge from a large angle at a “low” sink \(u\) to

- sink \(v\) with small angle:

\[\text{Lemma 2.} \quad L(f) - S(f) = \begin{cases}
-2, & f \neq f_0 \\
+2, & f = f_0
\end{cases}\]

\[\Rightarrow S(f) = 2\]
Angle relations

\[L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases} \]

Lemma 2.

Proof by induction.

- \(L(f) = 0 \) \(\Rightarrow S(f) = 2 \)

- \(L(f) \geq 1 \)

Split \(f \) with edge from a large angle at a “low” sink \(u \) to

- sink \(v \) with small/large angle:
Angle relations

Lemma 2.

\[L(f) - S(f) = \begin{cases}
-2, & f \neq f_0 \\
+2, & f = f_0
\end{cases} \]

Proof by induction.

- \(L(f) = 0 \) \(\Rightarrow S(f) = 2 \)

- \(L(f) \geq 1 \)

Split \(f \) with edge from a large angle at a “low” sink \(u \) to

- sink \(v \) with small/large angle:

\[
L(f) - S(f) = L(f_1) + L(f_2) + 1 - (S(f_1) + S(f_2) - 1) = -2
\]
Angle relations

Lemma 2.

\[
L(f) - S(f) = \begin{cases}
-2, & f \neq f_0 \\
+2, & f = f_0
\end{cases}
\]

- \(L(f) \geq 1 \)

Split \(f \) with edge from a large angle at a "low" sink \(u \) to

- sink \(v \) with small/large angle:

Proof by induction.

- \(L(f) = 0 \) \(\implies S(f) = 2 \)

\[
L(f) - S(f) = L(f_1) + L(f_2) + 1 - (S(f_1) + S(f_2) - 1) = -2
\]
Angle relations

Lemma 2.

\[L(f) - S(f) = \begin{cases}
-2, & f \neq f_0 \\
+2, & f = f_0
\end{cases} \]

Proof by induction.

- \(L(f) = 0 \)
 \[\Rightarrow S(f) = 2 \]

- \(L(f) \geq 1 \)

Split \(f \) with edge from a large angle at a “low” sink \(u \) to

- source \(v \) with small/large angle:

\[u \]

\[v \]
Angle relations

Lemma 2.

\[L(f) - S(f) = \begin{cases}
-2, & \text{if } f \neq f_0 \\
+2, & \text{if } f = f_0
\end{cases} \]

Proof by induction.

- \(L(f) = 0 \) \(\Rightarrow S(f) = 2 \)

\(L(f) \geq 1 \)

Split \(f \) with edge from a large angle at a “low” sink \(u \) to

- source \(v \) with small angle:
Angle relations

Lemma 2. \[L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases} \]

\[L(f) \geq 1 \]

Split \(f \) with edge from a large angle at a “low” sink \(u \) to

- source \(v \) with small/large angle:

Proof by induction.

- \(L(f) = 0 \) \(\Rightarrow S(f) = 2 \)

\[L(f) - S(f) = L(f_1) + L(f_2) + 2 - (S(f_1) + S(f_2)) = -2 \]
Angle relations

Lemma 2.

\[L(f) - S(f) = \begin{cases}
-2, & f \neq f_0 \\
+2, & f = f_0
\end{cases} \]

Proof by induction.

- \(L(f) = 0 \) \(\Rightarrow S(f) = 2 \)

- \(L(f) \geq 1 \)

Split \(f \) with **edge** from a large angle at a “low” sink \(u \) to
 - vertex \(v \) that is neither source nor sink:

\[
L(f) - S(f) = L(f_1) + L(f_2) + 1 - (S(f_1) + S(f_2) - 1) = -2
\]
Angle relations

Lemma 2.
\[L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases} \]

Proof by induction.
- \(L(f) = 0 \) \(\Rightarrow S(f) = 2 \)
- \(L(f) \geq 1 \)

Split \(f \) with edge from a large angle at a “low” sink \(u \) to
- vertex \(v \) that is neither source nor sink:

\[L(f) - S(f) = L(f_1) + L(f_2) + 1 - (S(f_1) + S(f_2) - 1) = -2 \]

- Otherwise “high” source \(u \) exists.

vertex \(v \) that is neither source nor sink:
Number of large angles

Lemma 3.
In every upward planar drawing of G holds that

- for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\
1 & v \text{ source/sink;}
\end{cases}$

- for each face f: $L(f) = \begin{cases} A(f) - 1 & f \neq f_0, \\
A(f) + 1 & f = f_0.
\end{cases}$

Proof.
Observation and from Lemma 1: $L(f) + S(f) = 2A(f)$
and from Lemma 2: $L(f) - S(f) = \pm 2$.
Number of large angles

Lemma 3.
In every upward planar drawing of G holds that

- for each vertex $v \in V$: \[L(v) = \begin{cases} 0 & v \text{ inner vertex}, \\ 1 & v \text{ source/sink}; \end{cases} \]

- for each face f: \[L(f) = \begin{cases} A(f) - 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases} \]

Proof.
Observation and from Lemma 1: \[L(f) + S(f) = 2A(f) \]
and from Lemma 2: \[L(f) - S(f) = \pm 2. \]
Assignment of large angles to faces

- Let S and T be the sets of sources and sinks, respectively.
Assignment of large angles to faces

- Let S and T be the sets of sources and sinks, respectively.

Definition.

A **consistent assignment** $\Phi: S \cup T \rightarrow F$ is a mapping
where

$$
\Phi: \nu \mapsto \text{incident face, where } \nu \text{ forms large angle}
$$

such that

$$
|\Phi^{-1}(f)| =
$$
Assignment of large angles to faces

Let S and T be the sets of sources and sinks, respectively.

Definition.
A **consistent assignment** $\Phi: S \cup T \to F$ is a mapping where

$$\Phi: v \mapsto \text{incident face, where } v \text{ forms large angle}$$

such that

$$|\Phi^{-1}(f)| = L(f) =$$
Assignment of large angles to faces

Let \(S \) and \(T \) be the sets of sources and sinks, respectively.

Definition.
A **consistent assignment** \(\Phi: S \cup T \rightarrow F \) is a mapping where

\(\Phi: v \mapsto \text{incident face, where } v \text{ forms large angle} \)

such that

\[
|\Phi^{-1}(f)| = L(f) = \begin{cases}
A(f) - 1 & \text{if } f \neq f_0, \\
A(f) + 1 & \text{if } f = f_0.
\end{cases}
\]
Example of angle to face assignment
Example of angle to face assignment

- global sources & sinks
Example of angle to face assignment

- global sources & sinks

\[A(f) \] # sources/sinks of \(f \)
Example of angle to face assignment

- global sources & sinks

\[A(f) \] # sources/sinks of \(f \)
Example of angle to face assignment

- global sources & sinks

\[A(f) \# \text{sources/sinks of } f \]

assignment

\[\Phi : S \cup T \rightarrow F \]
Result characterisation

Theorem 3.
Let $G = (V, E)$ be an acyclic plane digraph with embedding given by F, f_0. Then G is upward planar (respecting F, f_0) if and only if G is bimodal and there exists consistent assignment Φ.
Theorem 3.
Let $G = (V, E)$ be an acyclic plane digraph with embedding given by F, f_0.
Then G is upward planar (respecting F, f_0) if and only if G is bimodal and there exists consistent assignment Φ.

Proof.
\Rightarrow: As constructed before.
Result characterisation

Theorem 3.

Let $G = (V, E)$ be an acyclic plane digraph with embedding given by F, f_0.

Then G is upward planar (respecting F, f_0) if and only if G is bimodal and there exists consistent assignment Φ.

Proof.

\Rightarrow: As constructed before.

\Leftarrow: Idea:

- Construct planar st-digraph that is supergraph of G.
- Apply equivalence from Theorem 1.
Refinement algorithm – $\Phi, F, f_0 \rightarrow \text{st-digraph}$
Refinement algorithm – $\Phi, F, f_0 \rightarrow$ st-digraph

Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f.
Refinement algorithm – $\Phi, F, f_0 \rightarrow$ st-digraph

Let f be a face. Consider the clockwise angle sequence σ_f of \(L/S\) on local sources and sinks of f.

- Goal: Add edges to break large angles (sources and sinks).
Refinement algorithm – $\Phi, F, f_0 \rightarrow$ st-digraph

Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f.

- Goal: Add edges to break large angles (sources and sinks).

- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
Refinement algorithm – $\Phi, F, f_0 \rightarrow$ st-digraph

Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
Refinement algorithm – Φ, F, f₀ → st-digraph

Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f.

- **Goal:** Add edges to break large angles (sources and sinks).
- **For** $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
Refinement algorithm – $\Phi, F, f_0 \rightarrow \text{st-digraph}$

Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f.

- **Goal:** Add edges to break large angles (sources and sinks).

- **For** $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
 - x source \Rightarrow insert edge (z, x)

\[
\begin{array}{c}
\text{S} \\
\text{S} \\
\text{L} \\
\text{S} \\
\text{S} \\
\end{array}
\]
Refinement algorithm – $\Phi, F, f_0 \rightarrow$ st-digraph

Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f.

- **Goal**: Add edges to break large angles (sources and sinks).

- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
 - x source \Rightarrow insert edge (z, x)

Goal: Add edges to break large angles (sources and sinks).

For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:

- x source \Rightarrow insert edge (z, x)
Refinement algorithm – $\Phi, F, f_0 \rightarrow$ st-digraph

Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f.

- Goal: Add edges to break large angles (sources and sinks).

- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
 - x source \Rightarrow insert edge (z, x)

![Diagram showing the refinement algorithm](image)
Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f.

- Goal: Add edges to break large angles (sources and sinks).

- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
 - x source \Rightarrow insert edge (z, x)
Refinement algorithm – $\Phi, F, f_0 \rightarrow$ st-digraph

Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
 - x source \Rightarrow insert edge (z, x)
Refinement algorithm – $\Phi, F, f_0 \rightarrow \text{st-digraph}$

Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle \text{L}, \text{S}, \text{S} \rangle$ at vertices x, y, z:
 - x source \Rightarrow insert edge (z, x)
Refinement algorithm – Φ, F, $f_0 \rightarrow$ st-digraph

Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
 - x source \Rightarrow insert edge (z, x)
 - x sink \Rightarrow insert edge (x, z).
Refinement algorithm – $\Phi, F, f_0 \rightarrow \text{st-digraph}$

Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
 - x source \Rightarrow insert edge (z, x)
 - x sink \Rightarrow insert edge (x, z).
Refinement algorithm – $\Phi, F, f_0 \rightarrow \text{st-digraph}$

Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f.

- **Goal:** Add edges to break large angles (sources and sinks).

- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
 - x source \Rightarrow insert edge (z, x)
 - x sink \Rightarrow insert edge (x, z).
Refinement algorithm – $\Phi, F, f_0 \rightarrow$ st-digraph

Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f.

- **Goal:** Add edges to break large angles (sources and sinks).

- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
 - x source \Rightarrow insert edge (z, x)
 - x sink \Rightarrow insert edge (x, z).
Refinement algorithm – $\Phi, F, f_0 \rightarrow \text{st-digraph}$

Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
 - x source \Rightarrow insert edge (z, x)
 - x sink \Rightarrow insert edge (x, z).
- Refine outer face f_0.

![Diagram](image)
Refinement algorithm – $\Phi, F, f_0 \rightarrow$ st-digraph

Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f.

- Goal: Add edges to break large angles (sources and sinks).

- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
 - x source \Rightarrow insert edge (z, x)
 - x sink \Rightarrow insert edge (x, z).

- Refine outer face f_0.

- Refine all faces. $\Rightarrow G$ is contained in a planar st-digraph.
- Planarity, acyclicity, bimodality are invariants under construction.
Refinement example
Result upward planarity test

Theorem 2. [Bertolazzi et al., 1994]
For a *combinatorially embedded* planar digraph G it can be tested in $\mathcal{O}(n^2)$ time whether it is upward planar.
Result upward planarity test

Theorem 2. [Bertolazzi et al., 1994]
For a *combinatorially embedded* planar digraph G it can be tested in $O(n^2)$ time whether it is upward planar.

Proof.
- Test for bimodality.
- Test for a consistent assignment Φ (via flow network).
Theorem 2. [Bertolazzi et al., 1994]
For a combinatorially embedded planar digraph G it can be tested in $\mathcal{O}(n^2)$ time whether it is upward planar.

Proof.

- Test for bimodality.
- Test for a consistent assignment Φ (via flow network).
- If G bimodal and Φ exists, refine G to plane st-digraph H.
- Draw H upward planar.
- Deleted edges added in refinement step.
Finding a consistent assignment

Idea.
Flow \((v, f) = 1\) from global source/sink \(v\) to the incident face \(f\) its large angle gets assigned to.
Finding a consistent assignment

Idea.
Flow \((v, f) = 1\) from global source/sink \(v\) to the incident face \(f\) its large angle gets assigned to.

Flow network.
\[N_{F,f_0}(G) = ((W, E'); \ell; u; d)\]
- \(W = \)
- \(E' = \)
- \(\ell(e) = \)
- \(u(e) = \)
- \(d(p) = \)
Finding a consistent assignment

Idea.
Flow \((v, f) = 1\) from global source/sink \(v\) to the incident face \(f\) its large angle gets assigned to.

Flow network.

\[
N_{F,f_0}(G) = ((W, E'); \ell; u; d)
\]

- \(W = \)
- \(E' = \)
- \(\ell(e) = \)
- \(u(e) = \)
- \(d(p) = \)
Finding a consistent assignment

Idea.
Flow \((v, f) = 1\) from global source/sink \(v\) to the incident face \(f\) its large angle gets assigned to.

Flow network.
\[
N_{F,f_0}(G) = ((W, E'); \ell; u; d)
\]
- \(W = \{v \in V \mid v \text{ source or sink}\} \cup F\)
- \(E' = \)
- \(\ell(e) = \)
- \(u(e) = \)
- \(d(p) = \)

Example.

![Diagram of a flow network](image-url)
Finding a consistent assignment

Idea.
Flow \((v, f) = 1\) from global source/sink \(v\) to the incident face \(f\) its large angle gets assigned to.

Flow network.
\(N_{F,f_0}(G) = ((W, E'); \ell; u; d)\)
- \(W = \{v \in V \mid v \text{ source or sink}\} \cup F\)
- \(E' =\)
- \(\ell(e) =\)
- \(u(e) =\)
- \(d(p) =\)

Example.
Finding a consistent assignment

Idea.
Flow \((v, f) = 1\) from global source/sink \(v\) to the incident face \(f\) its large angle gets assigned to.

Flow network.
\[
N_{F,f_0}(G) = ((W, E'); \ell; u; d)
\]
- \(W = \{v \in V \mid v \text{ source or sink}\} \cup F\)
- \(E' = \{(v, f) \mid v \text{ incident to } f\}\)
- \(\ell(e) = 0\) for all \(e \in E'\)
- \(u(e) = 1\) for all \(e \in E'\)
- \(d(p) =
\begin{cases}
1 & \text{for } p \in W \cap V \\
-(A(p) - 1) & \text{for } p \in F \setminus \{f_0\} \\
-(A(p) + 1) & \text{for } p = f_0
\end{cases}\)

Example.
Finding a consistent assignment

Idea.
Flow \((v, f) = 1\) from global source/sink \(v\) to the incident face \(f\) its large angle gets assigned to.

Flow network.
\[N_{F,f_0}(G) = ((W, E'); \ell; u; d) \]
- \(W = \{ v \in V | v\ \text{source or sink}\} \cup F\)
- \(E' = \{ (v, f) | v\ \text{incident to } f \}\)
- \(\ell(e) = 0 \ \forall e \in E'\)
- \(u(e) = 1 \ \forall e \in E'\)
- \(d(p) = \)

Example.
Finding a consistent assignment

Idea.
Flow \((v, f) = 1\) from global source/sink \(v\) to the incident face \(f\) its large angle gets assigned to.

Flow network.
\[N_{F,f_0}(G) = ((W, E'); \ell; u; d)\]
- \(W = \{v \in V \mid v\) source or sink\} \cup F\)
- \(E' = \{(v, f) \mid v\) incident to \(f\}\)
- \(\ell(e) = 0 \ \forall e \in E'\)
- \(u(e) = 1 \ \forall e \in E'\)
- \(d(p) = \begin{cases} 1 & \forall p \in W \cap V \\ -(A(p) - 1) & \forall p \in F \setminus \{f_0\} \\ -(A(p) + 1) & p = f_0 \end{cases}\)

Example.
Finding a consistent assignment

Idea.
Flow \((v, f) = 1\) from global source/sink \(v\) to the incident face \(f\) its large angle gets assigned to.

Flow network.
\(N_{F,f_0}(G) = ((W, E'); \ell; u; d)\)
- \(W = \{v \in V \mid v \text{ source or sink}\} \cup F\)
- \(E' = \{(v, f) \mid v \text{ incident to } f\}\)
- \(\ell(e) = 0 \ \forall e \in E'\)
- \(u(e) = 1 \ \forall e \in E'\)

\[d(p) = \begin{cases} 1 & \forall p \in W \cap V \\ -(A(p) - 1) & \forall p \in F \setminus \{f_0\} \\ -(A(p) + 1) & p = f_0 \end{cases} \]

Example.

![Graph example](image)
Discussion

There exist fixed-parameter tractable algorithms to test upward planarity of general digraphs with the parameter being the number of triconnected components.

[Healy, Lynch 2005, Didimo et al. 2009]
Discussion

- There exist fixed-parameter tractable algorithms to test upward planarity of general digraphs with the parameter being the number of triconnected components. [Healy, Lynch 2005, Didimo et al. 2009]

- Finding assignment in Theorem 2 can be sped up to $O(n + r^{1.5})$ where $r = \#$ sources/sinks. [Abbasi, Healy, Rextin 2010]
Discussion

- There exist fixed-parameter tractable algorithms to test upward planarity of general digraphs with the parameter being the number of triconnected components.
 [Healy, Lynch 2005, Didimo et al. 2009]

- Finding assignment in Theorem 2 can be sped up to $O(n + r^{1.5})$ where $r = \#$ sources/sinks.
 [Abbasi, Healy, Rextin 2010]

- Many related concepts have been studied: quasi-planarity, upward drawings of mixed graphs, upward planarity on cyclinder/torus, . . .
Literature

- [GD Ch. 6] for detailed explanation

Original papers referenced:
- [Kelly ’87] Fundamentals of Planar Ordered Sets
- [Di Battista, Tamassia ’88] Algorithms for Plane Representations of Acyclic Digraphs
- [Hutton, Lubiw ’96] Upward Planar Drawing of Single-Source Acyclic Digraphs
- [Bertolazzi, Di Battista, Mannino, Tamassia ’94] Upward Drawings of Triconnected Digraphs
- [Healy, Lynch ’05] Building Blocks of Upward Planar Digraphs
- [Didimo, Giardano, Liotta ’09] Upward Spirality and Upward Planarity Testing
- [Abbasi, Healy, Rextin ’10] Improving the running time of embedded upward planarity testing