Advanced Algorithms

Winter term 2019/20

Lecture 11. Alternative Parameterization: Tree Decomposition

Source: PA §7.2, 7.3.1

(slides by Thomas van Dijk & Alexander Wolff)

Steven Chaplick
Independent Set

INDEPENDENT SET

Given: graph G, weight function $\omega : V \rightarrow \mathbb{N}$

Question: What is the maximum weight of a set $S \subseteq V$ where no pair in S forms an edge in G?
Independent Set

Thm: Independent Set is NP-complete.

INDEPENDENT SET

Given: graph G, weight function $\omega : V \to \mathbb{N}$

Question: What is the maximum weight of a set $S \subseteq V$ where no pair in S forms an edge in G?
Independent Set

INDEPENDENT SET

Given: graph G, weight function $\omega : V \rightarrow \mathbb{N}$

Question: What is the maximum weight of a set $S \subseteq V$ where no pair in S forms an edge in G?

Thm: Independent Set is NP-complete.

Thm: Independent Set can be solved in linear time on trees.
Independent Sets in Trees

Choose an arbitrary root w.

![Tree Diagram]

Choose an arbitrary root w.

![Tree Diagram]
Independent Sets in Trees

Choose an arbitrary root w.
Let $T(v) :=$ subtree rooted at v
Independent Sets in Trees

Choose an arbitrary root w.
Let $T(v) :=$ subtree rooted at v
Let $A(v) :=$ maximum weight of an independent set S in $T(v)$
Independent Sets in Trees

Choose an arbitrary root \(w \).

Let \(T(v) := \) subtree rooted at \(v \)

Let \(A(v) := \) maximum weight of an independent set \(S \) in \(T(v) \)

\[A(w) = \text{solution} \]
Independent Sets in Trees

Choose an arbitrary root \(w \).
Let \(T(v) := \) subtree rooted at \(v \)
Let \(A(v) := \) maximum weight of an independent set \(S \) in \(T(v) \)
Let \(B(v) := \) maximum weight of an independent set \(S \) in \(T(v) \) where \(v \not\in S \)
Independent Sets in Trees

Choose an arbitrary root w.
Let $T(v) :=$ subtree rooted at v
Let $A(v) :=$ maximum weight of an independent set S in $T(v)$
Let $B(v) :=$ maximum weight of an independent set S in $T(v)$
where $v \notin S$
When v is a leaf: $A(v) =$
Independent Sets in Trees

Choose an arbitrary root w.

Let $T(v) :=$ subtree rooted at v

Let $A(v) :=$ maximum weight of an independent set S in $T(v)$

Let $B(v) :=$ maximum weight of an independent set S in $T(v)$ where $v \not\in S$

When v is a leaf: $A(v) = \omega(v)$ and $B(v) =$
Independent Sets in Trees

Choose an arbitrary root \(w \).

Let \(T(v) := \) subtree rooted at \(v \)

Let \(A(v) := \) maximum weight of an independent set \(S \) in \(T(v) \)

Let \(B(v) := \) maximum weight of an independent set \(S \) in \(T(v) \) where \(v \notin S \)

When \(v \) is a leaf: \(A(v) = \omega(v) \) and \(B(v) = 0 \)
Independent Sets in Trees

Choose an arbitrary root \(w \).
Let \(T(v) := \) subtree rooted at \(v \)
Let \(A(v) := \) maximum weight of an independent set \(S \) in \(T(v) \)
Let \(B(v) := \) maximum weight of an independent set \(S \) in \(T(v) \) where \(v \not\in S \)

When \(v \) is a leaf: \(A(v) = \omega(v) \) and \(B(v) = 0 \)
When \(v \) has children \(x_1, \ldots, x_r \):

\[
B(v) =
\]
Independent Sets in Trees

Choose an arbitrary root w.

Let $T(v) :=$ subtree rooted at v

Let $A(v) :=$ maximum weight of an independent set S in $T(v)$

Let $B(v) :=$ maximum weight of an independent set S in $T(v)$ where $v \notin S$

When v is a leaf: $A(v) = \omega(v)$ and $B(v) = 0$

When v has children x_1, \ldots, x_r:

$$B(v) = \sum_{i=1}^{r} A(x_i)$$
Independent Sets in Trees

Choose an arbitrary root \(w \).

Let \(T(v) := \) subtree rooted at \(v \)

Let \(A(v) := \) maximum weight of an independent set \(S \) in \(T(v) \)

Let \(B(v) := \) maximum weight of an independent set \(S \) in \(T(v) \) where \(v \notin S \)

When \(v \) is a leaf: \(A(v) = \omega(v) \) and \(B(v) = 0 \)

When \(v \) has children \(x_1, \ldots, x_r \):

\[
A(v) =
\]

\[
B(v) = \sum_{i=1}^{r} A(x_i)
\]
Independent Sets in Trees

Choose an arbitrary root \(w \).

Let \(T(v) \) := subtree rooted at \(v \)

Let \(A(v) \) := maximum weight of an independent set \(S \) in \(T(v) \)

Let \(B(v) \) := maximum weight of an independent set \(S \) in \(T(v) \) where \(v \notin S \)

When \(v \) is a leaf: \(A(v) = \omega(v) \) and \(B(v) = 0 \)

When \(v \) has children \(x_1, \ldots, x_r \):

\[
A(v) = \max \{ \sum_{i=1}^{r} A(x_i), \sum_{i=1}^{r} A(x_i) \},
\]

\[
B(v) = \sum_{i=1}^{r} A(x_i)
\]
Independent Sets in Trees

Choose an arbitrary root \(w \).
Let \(T(v) := \) subtree rooted at \(v \)
Let \(A(v) := \) maximum weight of an independent set \(S \) in \(T(v) \)
Let \(B(v) := \) maximum weight of an independent set \(S \) in \(T(v) \) where \(v \notin S \)

When \(v \) is a leaf: \(A(v) = \omega(v) \) and \(B(v) = 0 \)
When \(v \) has children \(x_1, \ldots, x_r \):
\[
A(v) = \max \{ \sum_{i=1}^{r} A(x_i), \omega(v) + \sum_{i=1}^{r} B(x_i) \}
\]
\[
B(v) = \sum_{i=1}^{r} A(x_i)
\]
Independent Sets in Trees

Choose an arbitrary root \(w \).

Let \(T(v) := \) subtree rooted at \(v \)

Let \(A(v) := \) maximum weight of an independent set \(S \) in \(T(v) \)

Let \(B(v) := \) maximum weight of an independent set \(S \) in \(T(v) \) where \(v \not\in S \)

When \(v \) is a leaf: \(A(v) = \omega(v) \) and \(B(v) = 0 \)

When \(v \) has children \(x_1, \ldots, x_r \):

\[
A(v) = \max\{ \sum_{i=1}^{r} A(x_i), \ \omega(v) + \sum_{i=1}^{r} B(x_i) \} \\
B(v) = \sum_{i=1}^{r} A(x_i) \]

Algo: Compute \(A(\cdot) \) and \(B(\cdot) \) bottom-up
s, t-series parallel graphs

Def.: A graph $G = (V, E)$ is 2-terminal when it contains two special vertices s and t.
Def.: A graph $G = (V, E)$ is 2-terminal when it contains two special vertices s and t.

Def.: A 2-terminal graph G is series parallel when:

- G is a single edge (s, t)
s, t-series parallel graphs

Def.: A graph \(G = (V, E) \) is *2-terminal* when it contains two special vertices \(s \) and \(t \)

Def.: A 2-terminal graph \(G \) is *series parallel* when:

- \(G \) is a single edge \((s, t)\)
- \(G \) is a *series composition* of two series parallel graphs

![Diagram of series parallel graphs](image)
s, t-series parallel graphs

Def.: A graph $G = (V, E)$ is 2-terminal when it contains two special vertices s and t.

Def.: A 2-terminal graph G is series parallel when:
- G is a single edge (s, t)
- G is a series composition of two series parallel graphs
- G is a parallel composition of two series parallel graphs

\[
s_1 = s_2 \quad t_1 = t_2
\]
Def.: A graph $G = (V, E)$ is 2-terminal when it contains two special vertices s and t.

Def.: A 2-terminal graph G is series parallel when:

- G is a single edge (s, t)
- G is a series composition of two series parallel graphs
- G is a parallel composition of two series parallel graphs

recursive definition: series parallel graphs have a natural tree-structure.
SP-tree
SP-tree

\[s \quad t \quad s \quad t \]
SP-tree
SP-tree

\[s \quad \text{---} \quad t \]

\[s \quad \text{---} \quad t \]
SP-tree
SP-tree
Let i be a node in an SP-tree.

$G(i) :=$ graph represented by the subtree rooted at i
Let i be a node in an SP-tree. $G(i) :=$ graph represented by the subtree rooted at i.
Independent Set on SP-trees

Dynamic program on SP-tree indexed by $G(i)$
Independent Set on SP-trees

Dynamic program on SP-tree indexed by $G(i)$

$AA(i) := \text{maximum weight independent set } S \text{ in } G(i) \text{ where } s_i \in S \text{ and } t_i \in S$
Independent Set on SP-trees

Dynamic program on SP-tree indexed by $G(i)$

$AA(i) := \text{maximum weight independent set } S \text{ in } G(i) \text{ where } s_i \in S \text{ and } t_i \in S$

$BA(i) := \text{maximum weight independent set } S \text{ in } G(i) \text{ where } s_i \notin S \text{ and } t_i \in S$
Independent Set on SP-trees

Dynamic program on SP-tree indexed by $G(i)$

$AA(i) :=$ maximum weight independent set S in $G(i)$ where $s_i \in S$ and $t_i \in S$

$BA(i) :=$ maximum weight independent set S in $G(i)$ where $s_i \notin S$ and $t_i \in S$

$AB(i)$ and $BB(i)$ def. similarly
Independent Set on SP-trees

Dynamic program on SP-tree indexed by $G(i)$

$AA(i) :=$ maximum weight independent set S in $G(i)$ where $s_i \in S$ and $t_i \in S$

$BA(i) :=$ maximum weight independent set S in $G(i)$ where $s_i \notin S$ and $t_i \in S$

$AB(i)$ and $BB(i)$ def. similarly

When i is a leaf...

$$BB(i) =$$
Independent Set on SP-trees

Dynamic program on SP-tree indexed by $G(i)$

$AA(i) := \text{maximum weight independent set } S \text{ in } G(i) \text{ where } s_i \in S \text{ and } t_i \in S$

$BA(i) := \text{maximum weight independent set } S \text{ in } G(i) \text{ where } s_i \notin S \text{ and } t_i \in S$

$AB(i) \text{ and } BB(i) \text{ def. similarly}$

When i is a leaf...

$$BB(i) = 0$$
Independent Set on SP-trees

Dynamic program on SP-tree indexed by $G(i)$

$AA(i) := \text{maximum weight independent set } S \text{ in } G(i) \text{ where } s_i \in S \text{ and } t_i \in S$

$BA(i) := \text{maximum weight independent set } S \text{ in } G(i) \text{ where } s_i \notin S \text{ and } t_i \in S$

$AB(i) \text{ and } BB(i) \text{ def. similarly}$

When i is a leaf...

$BA(i) =$

$BB(i) = 0$
Independent Set on SP-trees

Dynamic program on SP-tree indexed by $G(i)$

$AA(i) := \text{maximum weight independent set } S \text{ in } G(i) \text{ where } s_i \in S \text{ and } t_i \in S$

$BA(i) := \text{maximum weight independent set } S \text{ in } G(i) \text{ where } s_i \not\in S \text{ and } t_i \in S$

$AB(i)$ and $BB(i)$ def. similarly

When i is a leaf...

$BA(i) = \omega(t_i)$

$BB(i) = 0$
Independent Set on SP-trees

Dynamic program on SP-tree indexed by $G(i)$

$AA(i) :=$ maximum weight independent set S in $G(i)$ where $s_i \in S$ and $t_i \in S$

$BA(i) :=$ maximum weight independent set S in $G(i)$ where $s_i \not\in S$ and $t_i \in S$

$AB(i)$ and $BB(i)$ def. similarly

When i is a leaf...

\[
AB(i) = \\
BA(i) = \omega(t_i) \\
BB(i) = 0
\]
Independent Set on SP-trees

Dynamic program on SP-tree indexed by $G(i)$

$AA(i) :=$ maximum weight independent set S in $G(i)$ where $s_i \in S$ and $t_i \in S$

$BA(i) :=$ maximum weight independent set S in $G(i)$ where $s_i \notin S$ and $t_i \in S$

$AB(i)$ and $BB(i)$ def. similarly

When i is a leaf...

$$AB(i) = \omega(s_i)$$
$$BA(i) = \omega(t_i)$$
$$BB(i) = 0$$
Independent Set on SP-trees

Dynamic program on SP-tree indexed by $G(i)$

$AA(i) := \text{maximum weight independent set } S \text{ in } G(i) \text{ where } s_i \in S \text{ and } t_i \in S$

$BA(i) := \text{maximum weight independent set } S \text{ in } G(i) \text{ where } s_i \notin S \text{ and } t_i \in S$

$AB(i)$ and $BB(i)$ def. similarly

When i is a leaf...

$AA(i) =$

$AB(i) = \omega(s_i)$

$BA(i) = \omega(t_i)$

$BB(i) = 0$
Independent Set on SP-trees

Dynamic program on SP-tree indexed by $G(i)$

$AA(i) :=$ maximum weight independent set S in $G(i)$ where $s_i \in S$ and $t_i \in S$

$BA(i) :=$ maximum weight independent set S in $G(i)$ where $s_i \not\in S$ and $t_i \in S$

$AB(i)$ and $BB(i)$ def. similarly

When i is a leaf...

$AA(i) = -\infty$

$AB(i) = \omega(s_i)$

$BA(i) = \omega(t_i)$

$BB(i) = 0$
Independent Set on SP-trees

Dynamic program on SP-tree indexed by $G(i)$

$AA(i) :=$ maximum weight independent set S in $G(i)$ where $s_i \in S$ and $t_i \in S$

$BA(i) :=$ maximum weight independent set S in $G(i)$ where $s_i \notin S$ and $t_i \in S$

$AB(i)$ and $BB(i)$ def. similarly

When i is a series composition with children x and y, ...

$$AA(i) =$$

$t_x = s_y$
Independent Set on SP-trees

Dynamic program on SP-tree indexed by $G(i)$

$AA(i) := \text{maximum weight independent set } S \text{ in } G(i) \text{ where } s_i \in S \text{ and } t_i \in S$

$BA(i) := \text{maximum weight independent set } S \text{ in } G(i) \text{ where } s_i \notin S \text{ and } t_i \in S$

$AB(i)$ and $BB(i)$ def. similarly

When i is a series composition with children x and y, ...

$AA(i) = \max\{
Independent Set on SP-trees

Dynamic program on SP-tree indexed by $G(i)$

$AA(i) :=$ maximum weight independent set S in $G(i)$ where $s_i \in S$ and $t_i \in S$

$BA(i) :=$ maximum weight independent set S in $G(i)$ where $s_i \not\in S$ and $t_i \in S$

$AB(i)$ and $BB(i)$ def. similarly

When i is a series composition with children x and y, ...

\[AA(i) = \max \{ AB(x) + BA(y), \]
Independent Set on SP-trees

Dynamic program on SP-tree indexed by $G(i)$

$AA(i) := \text{maximum weight independent set } S \text{ in } G(i) \text{ where } s_i \in S \text{ and } t_i \in S$

$BA(i) := \text{maximum weight independent set } S \text{ in } G(i) \text{ where } s_i \notin S \text{ and } t_i \in S$

$AB(i)$ and $BB(i)$ def. similarly

When i is a series composition with children x and y, ...

$$AA(i) = \max\{ AB(x) + BA(y), \ AA(x) + AA(y) - \omega(t_x) \}$$
Independent Set on SP-trees

Dynamic program on SP-tree indexed by $G(i)$

$AA(i) := \text{maximum weight independent set } S \text{ in } G(i) \text{ where } s_i \in S \text{ and } t_i \in S$

$BA(i) := \text{maximum weight independent set } S \text{ in } G(i) \text{ where } s_i \notin S \text{ and } t_i \in S$

$AB(i) \text{ and } BB(i) \text{ def. similarly}$

other cases omitted... (easy exercise)
Independent Set on SP-trees

Dynamic program on SP-tree indexed by $G(i)$

$AA(i) := \text{maximum weight independent set } S \text{ in } G(i) \text{ where } s_i \in S \text{ and } t_i \in S$

$BA(i) := \text{maximum weight independent set } S \text{ in } G(i) \text{ where } s_i \notin S \text{ and } t_i \in S$

$AB(i)$ and $BB(i)$ def. similarly

other cases omitted... (easy exercise)

$O(1)$ time per SP-node
Independent Set on SP-trees

Dynamic program on SP-tree indexed by $G(i)$

$AA(i) := \text{maximum weight independent set } S \text{ in } G(i) \text{ where } s_i \in S \text{ and } t_i \in S$

$BA(i) := \text{maximum weight independent set } S \text{ in } G(i) \text{ where } s_i \notin S \text{ and } t_i \in S$

$AB(i)$ and $BB(i)$ def. similarly

other cases omitted... (easy exercise)

$O(1)$ time per SP-node

Thm: Independent Set on series parallel graphs with a given SP-tree can be solved in $O(n)$ time.
Generalization?

Many ways to generalize the concept of having a “tree structure”

Ex.: k-terminal graph $G = (V, E, T)$, $|T| = k$
Generalization?

Many ways to generalize the concept of having a “tree structure”

Ex.: k-terminal graph $G = (V, E, T)$, $|T| = k$
Generalization?

Many ways to generalize the concept of having a “tree structure”

Ex.: \(k \)-terminal graph \(G = (V, E, T), |T| = k \)
Generalization?

Many ways to generalize the concept of having a “tree structure”

Ex.: \(k \)-terminal graph \(G = (V, E, T) \), \(|T| = k \)

Example Operation: “gluing”
Example: Tree Decomposition

Tree Decomposition is a tree where the nodes map to subsets of V so that...

Graph $G = (V, E)$:

Tree Decomposition:
Example: Tree Decomposition

1. Each vertex belongs to at least one bag.
2. These bags are connected.

Graph $G = (V, E)$:

Tree Decomposition:
Example: Tree Decomposition

1. each vertex belongs to at least one bag
2. these bags are connected

Graph $G = (V, E)$:

Tree Decomposition:
Example: Tree Decomposition

1. each vertex belongs to at least one bag
2. these bags are connected

Graph $G = (V, E)$:

Tree Decomposition:
Example: Tree Decomposition

Graph $G = (V, E)$:

Tree Decomposition:

Each edge is contained in at least one bag.
Example: Tree Decomposition

Graph $G = (V, E)$:

- $V = \{a, b, c, d, e, f, g, h\}$
- $E = \{a, b, c, d, e, f, g, h\}$

Tree Decomposition:

- Each edge is contained in at least one bag.
Example: Tree Decomposition

Graph $G = (V, E)$:

Tree Decomposition:

$$a, b, c, d, e, f, g, h$$
Example: Tree Decomposition

Graph $G = (V, E)$:

Tree Decomposition:
Example: Tree Decomposition

Graph $G = (V, E)$:

Tree Decomposition:
Example: Tree Decomposition

Graph $G = (V, E)$:

Tree Decomposition:
Example: Tree Decomposition

Graph $G = (V, E)$:

Tree Decomposition:
Example: Tree Decomposition

Graph \(G = (V, E) \):

Tree Decomposition:
Example: Tree Decomposition

Graph $G = (V, E)$:

Tree Decomposition:
Example: Tree Decomposition

Graph \(G = (V, E) \):

\[
\{b, d\} \not\in E
\]

Tree Decomposition:
Example: Tree Decomposition

Graph $G = (V, E)$:

Tree Decomposition:
Def. A tree decomposition of a graph $G = (V, E)$ is:

- a tuple $D = (X, T)$
Tree Decomposition (formal)

Def. A *tree decomposition* of a graph $G = (V, E)$ is:
- a tuple $D = (X, T)$
- $T = (P, F)$ is a tree
Def. A tree decomposition of a graph $G = (V, E)$ is:

- a tuple $D = (X, T)$
- $T = (P, F)$ is a tree
- $X = \{X_p \mid p \in P\}$ is a set family of subsets of V (one for each node in P)
Def. A *tree decomposition* of a graph $G = (V, E)$ is:

- a tuple $D = (X, T)$
- $T = (P, F)$ is a tree
- $X = \{X_p \mid p \in P\}$ is a set family of subsets of V (one for each node in P)
- $\bigcup_{p \in P} X_p = V$
Tree Decomposition (formal)

Def. A *tree decomposition* of a graph $G = (V, E)$ is:

- a tuple $D = (X, T)$
- $T = (P, F)$ is a tree
- $X = \{X_p \mid p \in P\}$ is a set family of subsets of V (one for each node in P)
- $\bigcup_{p \in P} X_p = V$
- $\forall \{u, v\} \in E \ \exists p \in P$ where $u, v \in X_p$
Tree Decomposition (formal)

Def. A tree decomposition of a graph $G = (V, E)$ is:

- A tuple $D = (X, T)$
- $T = (P, F)$ is a tree
- $X = \{X_p \mid p \in P\}$ is a set family of subsets of V (one for each node in P)
- $\bigcup_{p \in P} X_p = V$
- $\forall \{u, v\} \in E \exists p \in P$ where $u, v \in X_p$
- $\forall v \in V : \{p \in P \mid v \in X_p\}$ is connected in T
Treewidth (formal)

- a tuple $D = (X, T)$
- $T = (P, F)$ is a tree

Def. Width (tree decomposition): $\max_{p \in P} |X_p| - 1$, i.e., cardinality of the largest bag -1
Treewidth (formal)

- a tuple $D = (X, T)$
- $T = (P, F)$ is a tree

Def. Width (tree decomposition): $\max_{p \in P} |X_p| - 1$, i.e., cardinality of the largest bag -1
Treewidth (formal)

- a tuple \(D = (X, T) \)
- \(T = (P, F) \) is a tree

Def. Width (tree decomposition): \(\max_{p \in P} |X_p| - 1 \), i.e., cardinality of the largest bag - 1

Def. Treewidth \(\text{tw}(G) \) is the minimum width of a tree decomposition of \(G \)
Treewidth (formal)

- a tuple \(D = (X, T) \)
- \(T = (P, F) \) is a tree

Def. Width (tree decomposition): \(\max_{p \in P} |X_p| - 1 \), i.e., cardinality of the largest bag \(-1\)

Def. Treewidth \(tw(G) \) is the minimum width of a tree decomposition of \(G \)

Obs. \(tw(G) < n \)
Treewidth (formal)

- a tuple \(D = (X, T) \)
- \(T = (P, F) \) is a tree

Def. Width (tree decomposition): \(\max_{p \in P} |X_p| - 1 \), i.e., cardinality of the largest bag \(-1\)

Def. Treewidth \(tw(G) \) is the minimum width of a tree decomposition of \(G \)

Obs. \(tw(G) < n \)

Question: Which graphs have treewidth 0?
Treewidth (formal)

- a tuple $D = (X, T)$
- $T = (P, F)$ is a tree

Def. Width (tree decomposition): $\max_{p \in P} |X_p| - 1$, i.e., cardinality of the largest bag -1

Def. Treewidth $\text{tw}(G)$ is the minimum width of a tree decomposition of G

Obs. $\text{tw}(G) < n$

Question: Which graphs have treewidth 0?

Exercise: Trees have treewidth 1
Treewidth (formal)

- a tuple $D = (X, T)$
- $T = (P, F)$ is a tree

Def. Width (tree decomposition): $\max_{p \in P} |X_p| - 1$, i.e., cardinality of the largest bag -1

Def. Treewidth $\text{tw}(G)$ is the minimum width of a tree decomposition of G

Obs. $\text{tw}(G) < n$

Question: Which graphs have treewidth 0? $E = \emptyset$

Exercise: Trees have treewidth 1

Exercise: Series parallel graphs have treewidth 2
Treewidth (formal)

- a tuple $D = (X, T)$
- $T = (P, F)$ is a tree

Def. Width (tree decomposition): $\max_{p \in P} |X_p| - 1$, i.e., cardinality of the largest bag −1

Def. Treewidth $\text{tw}(G)$ is the minimum width of a tree decomposition of G

Obs. $\text{tw}(G) < n$

Question: Which graphs have treewidth 0? $E = \emptyset$

Exercise: Trees have treewidth 1

Exercise: Series parallel graphs have treewidth 2

Thm: There is a tree decomposition of width $\text{tw}(G)$ where $|P|$ is polynomial in n, i.e., the tree has polynomial size in n
Parameterized Problems

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in $O(f(k) \cdot \text{poly}(n))$ time.
Parameterized Problems

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in $O(f(k) \cdot poly(n))$ time.

Ex.: k-Vertex Cover
Parameterized Problems

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in $O(f(k) \cdot \text{poly}(n))$ time.

Ex.: k-Vertex Cover FPT
Parameterized Problems

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in $O(f(k) \cdot \text{poly}(n))$ time.

Ex.: k-Vertex Cover

k-Independent Set
Parameterized Problems

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in $O(f(k) \cdot \text{poly}(n))$ time.

Ex.:
- k-Vertex Cover
 FPT
- k-Independent Set
Parameterized Problems

Given: Instance of size \(n \) and parameter \(k \)

Def. Problem is FPT when solvable in \(O(f(k) \cdot poly(n)) \) time.

Ex.:
- \(k \)-Vertex Cover \(\text{FPT} \)
- \(k \)-Independent Set \(\text{likely not FPT, } W[1]-\text{comp.} \)

See PA §13.3
Parameterized Problems

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in $O(f(k) \cdot \text{poly}(n))$ time.

Ex.:
- **k-Vertex Cover** (FPT)
- **k-Independent Set** (likely not FPT, W[1]-comp.)
- **k-Dominating Set**

See PA §13.3
Parameterized Problems

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in $O(f(k) \cdot \text{poly}(n))$ time.

Ex.:
- \textit{k-Vertex Cover} \quad \text{FPT}
- \textit{k-Independent Set} \quad \text{likely not FPT, W[1]-comp.}
- \textit{k-Dominating Set} \quad \text{likely not FPT, W[2]-comp.}

See PA §13.3
Parameterized Problems

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in $O(f(k) \cdot poly(n))$ time.

Ex.:
- k-Vertex Cover
- k-Independent Set
- k-Dominating Set
- k-Coloring

- FPT

See PA §13.3
Parameterized Problems

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in $O(f(k) \cdot \text{poly}(n))$ time.

Ex.:

- k-Vertex Cover \(\text{FPT}\)
- k-Independent Set \(\text{likely not FPT, } W[1]\text{-comp.}\)
- k-Dominating Set \(\text{likely not FPT, } W[2]\text{-comp.}\)
- k-Coloring \(\text{NP-comp. } k \geq 3\)

See PA §13.3
Parameterized Problems

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in $O(f(k) \cdot \text{poly}(n))$ time.

Ex.:
- **k-Vertex Cover**
- **k-Independent Set**
- **k-Dominating Set**
- **k-Coloring**

“natural parameterization”

- **FPT**
- **likely not FPT, $W[1]$-comp.**
- **likely not FPT, $W[2]$-comp.**
- **NP-comp. $k \geq 3$**

See **PA §13.3**
Parameterized Problems

Given: Instance of size \(n \) and parameter \(k \)

Def. Problem is FPT when solvable in \(O(f(k) \cdot \text{poly}(n)) \) time.

Ex.:

- \(k \)-**Vertex Cover**
 - **FPT**
- \(k \)-**Independent Set**
 - likely not FPT, \(W[1] \)-comp.
- \(k \)-**Dominating Set**
- \(k \)-**Coloring**
 - \(\text{NP-comp.} \) \(k \geq 3 \)

Independent Set (treewidth)

- **Given:** Graph \(G \), number \(k \)
- **Parameter:** \(\text{tw}(G) \)
- **Question:** Does \(G \) have an independent set of size \(\geq k \)?
Parameterized Problems

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in $O(f(k) \cdot \text{poly}(n))$ time. $O(f(tw(G)) \cdot \text{poly}(n))$ time.

Ex.:
- **k-Vertex Cover**
 FPT
- **k-Independent Set**
- **k-Dominating Set**
- **k-Coloring**
 NP-comp. $k \geq 3$

Independent Set (treewidth)

Given: Graph G, number k

Parameter: $tw(G)$

Question: Does G have an independent set of size $\geq k$?
Parameterized Problems

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in $O(f(k) \cdot \text{poly}(n))$ time.

Ex.:
- **k-Vertex Cover**
 - FPT
- **k-Independent Set**
- **k-Dominating Set**
- **k-Coloring**

Independent Set (treewidth)

<table>
<thead>
<tr>
<th>Given:</th>
<th>Graph G, number k</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameter:</td>
<td>$\text{tw}(G)$</td>
</tr>
<tr>
<td>Question:</td>
<td>Does G have an independent set of size $\geq k$?</td>
</tr>
</tbody>
</table>
Parameterized Problems

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in $O(f(k) \cdot \text{poly}(n))$ time.

Ex.:
- k-Vertex Cover
 - FPT
- k-Independent Set
- k-Dominating Set
- k-Coloring
 - NP-comp. $k \geq 3$

Independent Set (treewidth) FPT
List Coloring (treewidth)

See PA §13.3
Parameterized Problems

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in $O(f(k) \cdot \text{poly}(n))$ time.

Ex.:
- **k-Vertex Cover** FPT
- **k-Independent Set** likely not FPT, $W[1]$-comp.
- **k-Coloring** NP-comp. $k \geq 3$
- **Independent Set (treewidth)** FPT
- **List Coloring (treewidth)** $W[1]$-comp.

See PA §13.3
Parameterized Problems

Given: Instance of size n and parameter k

Def. Problem is FPT when solvable in $O(f(k) \cdot poly(n))$ time.

Ex.:
- k-**Vertex Cover**
 - FPT
- k-**Independent Set**
- k-**Dominating Set**
- k-**Coloring**
 - NP-comp. $k \geq 3$

Independent Set (treewidth)
- FPT

List Coloring (treewidth)

Channel Assignment (treewidth)
Parameterized Problems

Given: Instance of size \(n \) and parameter \(k \)

Def. Problem is FPT when solvable in \(O(f(k) \cdot \text{poly}(n)) \) time.

Ex.:
- \(k \)-Vertex Cover \(\text{FPT} \)
- \(k \)-Independent Set likely not FPT, \(W[1]\)-comp.
- \(k \)-Dominating Set likely not FPT, \(W[2]\)-comp.
- \(k \)-Coloring \(\text{NP-comp.} \quad k \geq 3 \)

Independent Set (treewidth) \(\text{FPT} \)
List Coloring (treewidth) \(W[1]\)-comp.
Channel Assignment (treewidth) \(\text{NP-comp.} \quad k \geq 3 \)

See PA §13.3
Computing Treewidth

TreeWidth

Given: Graph $G = (V, E)$, number k

Question: $tw(G) \leq k$?
Computing Treewidth

Treewidth

Given: Graph $G = (V, E)$, number k

Question: $\text{tw}(G) \leq k$?

Thm: Treewidth is NP-complete
Computing Treewidth

Treewidth
- **Given:** Graph $G = (V, E)$, number k
- **Question:** $\text{tw}(G) \leq k$?

Thm: Treewidth is NP-complete

k-Treewidth
- **Given:** graph $G = (V, E)$
- **Parameter:** number k
- **Question:** $\text{tw}(G) \leq k$?
Computing Treewidth

Treewidth

Given: Graph $G = (V, E)$, number k

Question: $\text{tw}(G) \leq k$?

Thm: Treewidth is NP-complete

k-Treewidth

Given: graph $G = (V, E)$

Parameter: number k

Question: $\text{tw}(G) \leq k$?

Thm: k-Treewidth is FPT
Computing Treewidth

TreeWidth

Given: Graph $G = (V, E)$, number k

Question: $\text{tw}(G) \leq k$?

Thm: TreeWidth is NP-complete

k-TreeWidth

Given: graph $G = (V, E)$

Parameter: number k

Question: $\text{tw}(G) \leq k$?

Thm: k-TreeWidth is FPT

See PA §7.6.
Computing Treewidth

Treeewidth

Given: Graph $G = (V, E)$, number k

Question: $\text{tw}(G) \leq k$?

Thm: Treeewidth is NP-complete

k-Treeewidth

Given: graph $G = (V, E)$

Parameter: number k

Question: $\text{tw}(G) \leq k$?

Thm: k-Treeewidth is FPT

- actually fixed-parameter linear: $O(f(k)n)$
- algorithm is constructive (provides an optimal tree decomp.)

See PA §7.6.
Computing Treewidth

Treewidth
- **Given:** Graph $G = (V, E)$, number k
- **Question:** $\text{tw}(G) \leq k$?

Thm: Treewidth is NP-complete

k-**Treewidth**
- **Given:** graph $G = (V, E)$
- **Parameter:** number k
- **Question:** $\text{tw}(G) \leq k$?

Thm: k-Treewidth is FPT

See PA §7.6.

How can we make “fixed-treewidth-tractable” algorithms?
item #1: nice tree decompositions

In a *nice* tree decomp., one bag is marked as the root and there are only 4 types of bags:
item #1: nice tree decompositions

In a *nice* tree decomp., one bag is marked as the root and there are only 4 types of bags:

- **Leaf:** the bag is a leaf and contains only one vertex

\[v \]
item #1: nice tree decompositions

In a *nice* tree decomp., one bag is marked as the root and there are only 4 types of bags:

- **Leaf:** the bag is a leaf and contains **only one vertex**
- **Introduce:**
 The bag has exactly one child and contains the child’s vertices and **exactly one new vertex.**
item #1: nice tree decompositions

In a *nice* tree decomp., one bag is marked as the root and there are only 4 types of bags:

- **Leaf:** the bag is a leaf and contains only one vertex
- **Introduce:** The bag has exactly one child and contains the child’s vertices and exactly one new vertex.
- **Forget:** The bag has exactly one child and contains one vertex fewer than the child.
item #1: nice tree decompositions

In a nice tree decomp., one bag is marked as the root and there are only 4 types of bags:

- **Leaf:** the bag is a leaf and contains only one vertex.
- **Introduce:** The bag has exactly one child and contains the child’s vertices and exactly one new vertex.
- **Forget:** The bag has exactly one child and contains one vertex fewer than the child.
- **Join:** The bag has exactly two children and these three nodes have exactly the same vertices.
Thm: For each tree decomposition, there is a nice tree decomposition of the same width and polynomially many more bags. This can also be constructed in polynomial time.
item #1: nice tree decompositions

```
a, b, c
  /    
\a, c, f/
   /    
\a, f, g|   c, d, e
   /    
\g, h  /
```
item #1: nice tree decompositions
item #1: nice tree decompositions

- Introduce b
- Forget f
item #1: nice tree decompositions

Introduce b

Forget f
item #1: nice tree decompositions

```
Introduce b
Forget f
Join
```

```
g, h

a, f, g

a, c, f

a, c

a, b, c
```
item #1: nice tree decompositions

Introduce b

Forget f

Join

a, b, c

a, c

a, c, f

a, c, f

a, f, g

c, d, e

g, h
item #1: nice tree decompositions

Introduce b

Forget f

Join

Introduce f

Introduce a

Forget d

Forget e

Introduce e

Introduce d
item #1: nice tree decompositions

- Introduce b
- Forget f
- Join
- Introduce f
- Introduce a
- Forget d
- Forget e
- Introduce e
- Introduce d
item #1: nice tree decompositions

Introduce b

Forget f

Join

Introduce a

Introduce f

Introduce e

Forget d

Introduce d

Forget e

Introduce e

Introduce c

Forget d

Introduce c

Introduce g

Forget e

Introduce d

Introduce a
item #2: DP on nice Tree Decomp.

Thm: k-TreeWidth is FPT
item #2: DP on nice Tree Decomp.

Thm: k-Treewidth is FPT

Thm: Tree decompositions \rightarrow nice in polynomial time.
item #2: DP on nice Tree Decomp.

Thm: k-TREewidth is FPT

Thm: Tree decompositions \rightarrow nice in polynomial time.

Cor: For FPT-Algorithms it suffices to use nice tree decomp.
item #2: DP on nice Tree Decomp.

Thm: k-**Treewidth** is FPT

Thm: Tree decompositions \rightarrow *nice* in polynomial time.

Cor: For FPT-Algorithms it suffices to use nice tree decomp.

Strategy: Build a recurrence for each type of bag, and use dynamic programming.
Indep.Set on Nice Tree Decomp.

Let $G(i) := \text{Graph induced by the vertices in the subtree at } i$
Indep.Set on Nice Tree Decomp.

Let $G(i) := \text{Graph induced by the vertices in the subtree at } i$
Indep.Set on Nice Tree Decomp.

Let $G(i) := \text{Graph induced by the vertices in the subtree at } i$

For bag i and $S \subseteq X_i$, let:
Indep.Set on Nice Tree Decomp.

Let $G(i) := \text{Graph induced by the vertices in the subtree at } i$

For bag i and $S \subseteq X_i$, let:
$$R(i, S) := \text{maximum weight of an indep. set } I \text{ in } G(i)$$
with $I \cap X_i = S$
Indep.Set on Nice Tree Decomp.

Let $G(i) := \text{Graph induced by the vertices in the subtree at } i$

For bag i and $S \subseteq X_i$, let:
$R(i, S) := \text{maximum weight of an indep. set } I \text{ in } G(i)$
with $I \cap X_i = S$

When i is a Leaf ...
Indep. Set on Nice Tree Decomp.

Let $G(i) :=$ Graph induced by the vertices in the subtree at i

For bag i and $S \subseteq X_i$, let:

$$R(i, S) := \text{maximum weight of an indep. set } I \text{ in } G(i) \text{ with } I \cap X_i = S$$

When i is a Leaf ...

Let $X_i = \{v\}$.

$$R(i, \{v\}) =$$
Indep.Set on Nice Tree Decomp.

Let $G(i) :=$ Graph induced by the vertices in the subtree at i

For bag i and $S \subseteq X_i$, let:

$$R(i, S) := \text{maximum weight of an indep. set } I \text{ in } G(i) \text{ with } I \cap X_i = S$$

When i is a Leaf ...

Let $X_i = \{v\}$.

$$R(i, \{v\}) = \omega(v)$$
Indep.Set on Nice Tree Decomp.

Let $G(i) := \text{Graph induced by the vertices in the subtree at } i$

For bag i and $S \subseteq X_i$, let:

$R(i, S) := \text{maximum weight of an indep. set } I \text{ in } G(i)$

with $I \cap X_i = S$

When i is a Leaf ...

Let $X_i = \{v\}$.

$R(i, \{v\}) = \omega(v)$

$R(i, \emptyset) =$
Indep.Set on Nice Tree Decomp.

Let $G(i) := \text{Graph induced by the vertices in the subtree at } i$

For bag i and $S \subseteq X_i$, let:

$R(i, S) := \text{maximum weight of an indep. set } I \text{ in } G(i)$

with $I \cap X_i = S$

When i is a Leaf ...

Let $X_i = \{v\}$.

$R(i, \{v\}) = \omega(v)$

$R(i, \emptyset) = 0$
Indep.Set on Nice Tree Decomp.

Let $G(i) :=$ Graph induced by the vertices in the subtree at i

For bag i and $S \subseteq X_i$, let:
$R(i, S) :=$ maximum weight of an indep. set I in $G(i)$ with $I \cap X_i = S$

When i is a Join ... with children j_1 and j_2
$R(i, S) =$
Let $G(i) := \text{Graph induced by the vertices in the subtree at } i$

For bag i and $S \subseteq X_i$, let:

$R(i, S) := \text{maximum weight of an indep. set } I \text{ in } G(i)$

with $I \cap X_i = S$

When i is a Join ...

with children j_1 and j_2

$R(i, S) = R(j_1, S) + R(j_2, S)$
Indep. Set on Nice Tree Decomp.

Let $G(i) := \text{Graph induced by the vertices in the subtree at } i$

For bag i and $S \subseteq X_i$, let:

$R(i, S) := \text{maximum weight of an indep. set I in } G(i)$

with $I \cap X_i = S$

When i is a Join ...

with children j_1 and j_2

$R(i, S) = R(j_1, S) + R(j_2, S) - \sum_{v \in S} \omega(v)$
Indep.Set on Nice Tree Decomp.

Let $G(i) := \text{Graph induced by the vertices in the subtree at } i$

For bag i and $S \subseteq X_i$, let:

$R(i, S) := \text{maximum weight of an indep. set } I \text{ in } G(i)$

with $I \cap X_i = S$

When i is an \textbf{Introduce} ...

with child j and $X_i = X_j \cup \{v\}$

For each $S \subseteq X_j$: $R(i, S) =$
Indep.Set on Nice Tree Decomp.

Let $G(i) := \text{Graph induced by the vertices in the subtree at } i$

For bag i and $S \subseteq X_i$, let:

$R(i, S) := \text{maximum weight of an indep. set } I \text{ in } G(i)$

with $I \cap X_i = S$

When i is an Introduce ...

with child j and $X_i = X_j \cup \{v\}$

For each $S \subseteq X_j$: $R(i, S) = R(j, S)$
Indep.Set on Nice Tree Decomp.

Let $G(i) := \text{Graph induced by the vertices in the subtree at } i$

For bag i and $S \subseteq X_i$, let:

$R(i, S) := \text{maximum weight of an indep. set } I \text{ in } G(i)$

with $I \cap X_i = S$

When i is an Introduce ...

with child j and $X_i = X_j \cup \{v\}$

For each $S \subseteq X_j$: $R(i, S) = R(j, S)$

and if v has neighbors in S, $R(i, S \cup \{v\}) =$
Indep.Set on Nice Tree Decomp.

Let $G(i) :=$ Graph induced by the vertices in the subtree at i

For bag i and $S \subseteq X_i$, let:
\[R(i, S) := \text{maximum weight of an indep. set } I \text{ in } G(i) \]
with $I \cap X_i = S$

When i is an **Introduce** ...
with child j and $X_i = X_j \cup \{v\}$

For each $S \subseteq X_j$: $R(i, S) = R(j, S)$
and if v has neighbors in S, $R(i, S \cup \{v\}) = -\infty$
Indep.Set on Nice Tree Decomp.

Let $G(i) := \text{Graph induced by the vertices in the subtree at } i$

For bag i and $S \subseteq X_i$, let:

$R(i, S) := \text{maximum weight of an indep. set } I \text{ in } G(i)$

with $I \cap X_i = S$

When i is an Introduce ...

with child j and $X_i = X_j \cup \{v\}$

For each $S \subseteq X_j$: $R(i, S) = R(j, S)$

and if v has neighbors in S, $R(i, S \cup \{v\}) = -\infty$

if v has no neighbors in S, $R(i, S \cup \{v\}) = $
Indep.Set on Nice Tree Decomp.

Let \(G(i) := \) Graph induced by the vertices in the subtree at \(i \)

For bag \(i \) and \(S \subseteq X_i \), let:
\[
R(i, S) := \text{maximum weight of an indep. set } I \text{ in } G(i) \text{ with } I \cap X_i = S
\]

When \(i \) is an Introduce ...

with child \(j \) and \(X_i = X_j \cup \{v\} \)

For each \(S \subseteq X_j \):
\[
R(i, S) = R(j, S)
\]

and if \(v \) has neighbors in \(S \), \(R(i, S \cup \{v\}) = -\infty \)

if \(v \) has no neighbors in \(S \), \(R(i, S \cup \{v\}) = R(j, S) + \omega(v) \)
Indep. Set on Nice Tree Decomp.

Let $G(i) := \text{Graph induced by the vertices in the subtree at } i$

For bag i and $S \subseteq X_i$, let:

$R(i, S) := \text{maximum weight of an indep. set } I \text{ in } G(i) \text{ with } I \cap X_i = S$

When i is a Forget ...

with child j and $X_i = X_j \setminus \{v\}$

$R(i, S) =$
Indep. Set on Nice Tree Decomp.

Let $G(i) :=$ Graph induced by the vertices in the subtree at i

For bag i and $S \subseteq X_i$, let:

$R(i, S) :=$ maximum weight of an indep. set I in $G(i)$
with $I \cap X_i = S$

When i is a Forget ...
with child j and $X_i = X_j \setminus \{v\}$

$R(i, S) = \max \{ \}$
Let \(G(i) \) := Graph induced by the vertices in the subtree at \(i \)

For bag \(i \) and \(S \subseteq X_i \), let:
\[R(i, S) := \text{maximum weight of an indep. set } I \text{ in } G(i) \]

with \(I \cap X_i = S \)

When \(i \) is a **Forget** ...

with child \(j \) and \(X_i = X_j \setminus \{v\} \)

\[R(i, S) = \max\{ R(j, S) \} \]
Indep.Set on Nice Tree Decomp.

Let $G(i) :=$ Graph induced by the vertices in the subtree at i

For bag i and $S \subseteq X_i$, let:

\[R(i, S) := \text{maximum weight of an indep. set } I \text{ in } G(i) \]
\[\text{with } I \cap X_i = S \]

When i is a **Forget** …

with child j and $X_i = X_j \setminus \{v\}$

\[R(i, S) = \max \{ R(j, S), R(j, S \cup \{v\}) \} \]
Indep.Set on Nice Tree Decomp.

Let $G(i) := \text{Graph induced by the vertices in the subtree at } i$

For bag i and $S \subseteq X_i$, let:

$R(i, S) := \text{maximum weight of an indep. set } I \text{ in } G(i)$

with $I \cap X_i = S$

Algo.: Compute $R(i, S)$ for all i and corresponding S
Indep. Set on Nice Tree Decomp.

Let $G(i) := \text{Graph induced by the vertices in the subtree at } i$

For bag i and $S \subseteq X_i$, let:

$R(i, S) := \text{maximum weight of an indep. set } I \text{ in } G(i)$

with $I \cap X_i = S$

\textbf{Algo.:} Compute $R(i, S)$ for all i and corresponding S

\textbf{Runtime:} ?
Indep.Set on Nice Tree Decomp.

Let $G(i) := \text{Graph induced by the vertices in the subtree at } i$

For bag i and $S \subseteq X_i$, let:

$R(i, S) := \text{maximum weight of an indep. set } I \text{ in } G(i)$

with $I \cap X_i = S$

Algo.: Compute $R(i, S)$ for all i and corresponding S

Runtime: ?

Thm: The independent set problem is FPT parameterized by treewidth.