Computational Geometry

Convex Partition
or
Oblivious Routing

Thomas van Dijk

Winter Semester 2019/20
Oblivious routing

Result:
Deterministic oblivious routing in triangulations.
Oblivious routing

Result:
Deterministic oblivious routing in triangulations.

Result:
Randomized oblivious routing convex partitions.
Minimum Convex Partition of Points Sets

(Often: assume no colinear points.)

Point set P
Minimum Convex Partition of Points Sets

(Often: assume no colinear points.)

Convex hull $CH(P)$
Minimum Convex Partition of Points Sets
(Often: assume no colinear points.)

Convex hull $CH(P)$

Points in faces are not allowed.
Minimum Convex Partition of Points Sets

(Often: assume no colinear points.)

Convex hull \(CH(P) \)

Points in faces are not allowed.
Minimum Convex Partition of Points Sets

(Often: assume no colinear points.)

A triangulation of P:
Minimum Convex Partition of Points Sets

(Often: assume no colinear points.)

A triangulation of P: 8 faces
Minimum Convex Partition of Points Sets

(Often: assume no collinear points.)

A triangulation of P: 8 faces
Minimum Convex Partition of Points Sets

(Often: assume no colinear points.)

A minimal convex partition: 5 faces
Minimum Convex Partition of Points Sets

(Often: assume no colinear points.)

Minimum number of faces?
Minimum Convex Partition of Points Sets
(Often: assume no colinear points.)

Minimum number of faces?
Minimum Convex Partition of Points Sets

(Often: assume no colinear points.)

Minimum number of faces? 4 faces
Minimum Convex Partition of Points Sets

(Often: assume no colinear points.)

Minimum number of faces? 4 faces
Known results

Not as much as we would like...
Known results

Not as much as we would like...

... no polynomial-time algorithm known.
Known results

Not as much as we would like...

... no polynomial-time algorithm known.

... NP-hardness unknown.
Known results

Not as much as we would like...
 ... no polynomial-time algorithm known.
 ... NP-hardness unknown.
 ... it is fixed parameter tractable ...
Known results

Not as much as we would like...

... no polynomial-time algorithm known.

... NP-hardness unknown.

... it is fixed parameter tractable ...

... by an unconvincing parameter.

(number of interior points)
Known results

Not as much as we would like...

... no polynomial-time algorithm known.

... NP-hardness unknown.

... it is fixed parameter tractable ...

... by an unconvincing parameter.

\(O(n^{3h+3}) \) time, where \(h \) is \# nested convex hulls.
Known results

Not as much as we would like...

... no polynomial-time algorithm known.

... NP-hardness unknown.

... it is fixed parameter tractable ...

... by an unconvincing parameter.

\[(\text{n}^{3h+3})\text{ time, where } h \text{ is } \# \text{ nested convex hulls.}\]

Integer Linear Program (ILP)
Known results

Not as much as we would like...

... no polynomial-time algorithm known.

... NP-hardness unknown.

... it is fixed parameter tractable ...

... by an unconvincing parameter.

(time, where h is # nested convex hulls)

Exact: $O(n^{3h+3})$ time, where h is # nested convex hulls.

Integer Linear Program (ILP)

Approx: Factor 3 in $O(n \log n)$ time.
Known results

Not as much as we would like...

... no polynomial-time algorithm known.

... NP-hardness unknown.

... it is fixed parameter tractable ...

... by an unconvincing parameter.
 (number of interior points)

Exact: \(O(n^{3h+3})\) time, where \(h\) is \# nested convex hulls.

Integer Linear Program (ILP)

Approx: Factor 3 in \(O(n \log n)\) time.

Factor \(\frac{30}{11}\) in \(O(n^2)\) time.
Known results

Not as much as we would like...

... no polynomial-time algorithm known.

... NP-hardness unknown.

... it is fixed parameter tractable ...

... by an unconvincing parameter.

\(O(n^{3h+3})\) time, where \(h\) is \# nested convex hulls.

Integer Linear Program (ILP)

Approx: Factor 3 in \(O(n \log n)\) time.

Factor \(\frac{30}{11}\) in \(O(n^2)\) time.
Integer Linear Programming (ILP)

Variables $x \in \mathbb{Z}^n$
Integer Linear Programming (ILP)

Variables \(x \in \mathbb{Z}^n \)

Objective function Maximize \(c^T x = \sum_i c_i x_i \)
Integer Linear Programming (ILP)

Variables \(x \in \mathbb{Z}^n \)

Objective function Maximize \(c^T x = \sum_i c_i x_i \)

Constraints \(Ax \leq b \)
Integer Linear Programming (ILP)

Max Independent Set

Variables

\[x \in \mathbb{Z}^n \]

Objective function

Maximize \[c^\top x = \sum_i c_i x_i \]

Constraints

\[Ax \leq b \]

Given a graph \(G = (V, E) \), pick a maximum cardinality set \(S \subseteq V \) such that no two vertices are adjacent.
Integer Linear Programming (ILP)

Max Independent Set

Variables \(x \in \mathbb{Z}^n \)

Objective function \(\text{Maximize } c^T x = \sum_i c_i x_i \)

Constraints \(Ax \leq b \)

Given a graph \(G = (V, E) \), pick a maximum cardinality set \(S \subseteq V \) such that no two vertices are adjacent.
Integer Linear Programming (ILP)

Max Independent Set

Variables \(x_v \in \{0, 1\} \quad \forall v \in V \)

Objective function Maximize \(c^\top x = \sum_i c_i x_i \)

Constraints \(Ax \leq b \)

Given a graph \(G = (V, E) \), pick a maximum cardinality set \(S \subseteq V \) such that no two vertices are adjacent.
Integer Linear Programming (ILP)

\[x_v \in \mathbb{Z}, \quad 0 \leq x_v \leq 1 \]

Variables

\[x_v \in \{0, 1\} \quad \forall v \in V \]

Objective function

Maximize \(c^\top x = \sum_i c_i x_i \)

Constraints

\[Ax \leq b \]

Given a graph \(G = (V, E) \), pick a maximum cardinality set \(S \subseteq V \) such that no two vertices are adjacent.
Integer Linear Programming (ILP)

Max Independent Set

Variables

\[x_v \in \{0, 1\} \quad \forall v \in V \]

Objective function

Maximize \(1_n^T x = \sum_{v \in V} x_v \)

Constraints

\(Ax \leq b \)

Given a graph \(G = (V, E) \), pick a maximum cardinality set \(S \subseteq V \) such that no two vertices are adjacent.
Integer Linear Programming (ILP)

Max Independent Set

Variables
$x_v \in \{0, 1\} \quad \forall v \in V$

Objective function
Maximize $1^T_n x = \sum_{v \in V} x_v$

Constraints
$x_u + x_v \leq 1 \quad \forall \{i, j\} \in E$

Given a graph $G = (V, E)$, pick a maximum cardinality set $S \subseteq V$ such that no two vertices are adjacent.
Integer Linear Programming (ILP)

Binary variable x_{ij} meaning: do we select $\{i, j\}$ as an edge?
Integer Linear Programming (ILP)

Binary variable \(x_{ij} \) meaning: do we select \(\{i, j\} \) as an edge?

Minimize \(\sum_{\{i,j\} \in P^2} x_{ij} \) subject to:
Integer Linear Programming (ILP)

Binary variable x_{ij} meaning: do we select $\{i, j\}$ as an edge?

Minimize $\sum_{\{i,j\} \in P^2} x_{ij}$ subject to:

$x_{ij} = 1 \quad \forall \overline{ij}$ on $CH(P)$
Integer Linear Programming (ILP)

Binary variable x_{ij} meaning: do we select $\{i, j\}$ as an edge?

Minimize $\sum_{\{i,j\}\in P^2} x_{ij}$ subject to:

$x_{ij} = 1 \quad \forall \overline{ij}$ on $CH(P)$

$\sum_{k\in \text{Behind}(i,j)} x_{ik} \geq 1 \quad \forall (i, j) \in P^2$, where i is interior
Integer Linear Programming (ILP)

Binary variable x_{ij} meaning: do we select $\{i, j\}$ as an edge?

Minimize $\sum_{\{i,j\} \in P^2} x_{ij}$ subject to:

$x_{ij} = 1 \quad \forall \overline{ij} \text{ on } CH(P)$

$\sum_{k \in \text{Behind}(i,j)} x_{ik} \geq 1 \quad \forall (i, j) \in P^2$, where i is interior
Integer Linear Programming (ILP)

Binary variable x_{ij} meaning: do we select $\{i, j\}$ as an edge?

Minimize $\sum_{\{i,j\} \in P^2} x_{ij}$ subject to:

$x_{ij} = 1 \quad \forall \overline{ij}$ on $CH(P)$

$\sum_{k \in \text{Behind}(i,j)} x_{ik} \geq 1 \quad \forall (i, j) \in P^2$, where i is interior
Integer Linear Programming (ILP)

Binary variable x_{ij} meaning: do we select $\{i, j\}$ as an edge?

Minimize $\sum \{i,j\} \in P^2 x_{ij}$ subject to:

$x_{ij} = 1 \quad \forall \overline{ij} \text{ on } CH(P)$

$\sum_{k \in \text{Behind}(i,j)} x_{ik} \geq 1 \quad \forall (i, j) \in P^2$, where i is interior

$x_{ij} + x_{kl} \leq 1 \quad \forall \overline{ij}$ and \overline{kl} that cross
Integer Linear Programming (ILP)

Binary variable \(x_{ij}\) meaning: do we select \(\{i, j\}\) as an edge?

Minimize \(\sum_{\{i,j\} \in P^2} x_{ij}\) subject to:

\[
x_{ij} = 1 \quad \forall \overline{ij} \text{ on } CH(P)
\]

\[
\sum_{k \in \text{Behind}(i,j)} x_{ik} \geq 1 \quad \forall (i, j) \in P^2, \text{ where } i \text{ is interior}
\]

\[
x_{ij} + x_{kl} \leq 1 \quad \forall \overline{ij} \text{ and } \overline{kl} \text{ that cross}
\]

\[
\sum_{j \in P} x_{ij} \geq 3 \quad \forall i \in P, \text{ where } i \text{ is interior}
\]
3-Approximation

Theorem A 3-approximation of a minimum convex partition of P can be computed in $O(n \log n)$ time. (This assumes no colinear points.)
3-Approximation

Theorem A 3-approximation of a minimum convex partition of P can be computed in $O(n \log n)$ time. (This assumes no colinear points.)

Lemma For every convex partition E of P, it holds that $\frac{k}{2} + b + \frac{a}{2} + 1 \leq |R(E)|$. (This assumes no colinear points.)
3-Approximation

Theorem A 3-approximation of a minimum convex partition of P can be computed in $O(n \log n)$ time. (This assumes no colinear points.)

Lemma For every convex partition E of P, it holds that $\frac{k}{2} + b + \frac{a}{2} + 1 \leq |R(E)|$. (This assumes no colinear points.)
3-Approximation

Theorem A 3-approximation of a minimum convex partition of P can be computed in $O(n \log n)$ time. (This assumes no colinear points.)

Lemma For every convex partition E of P, it holds that $\frac{k}{2} + \frac{b}{2} + \frac{a}{2} + 1 \leq |R(E)|$. (This assumes no colinear points.)

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2}k + \frac{3}{2}$. (This assumes no colinear points.)
A lower bound

Let \(k \geq 3 \) be number of interior points; \(n - k \) outer points.
A lowerbound

Let $k \geq 3$ be number of interior points; $n - k$ outer points. Let $CH_{in}(P) := \text{convex hull of inner points}$.
A lowerbound

Let $k \geq 3$ be number of interior points; $n - k$ outer points. Let $CH_{in}(P) :=$ convex hull of inner points.
A lowerbound

Let $k \geq 3$ be number of interior points; $n - k$ outer points. Let $CH_{\text{in}}(P) :=$ convex hull of inner points.
A lowerbound

Let $k \geq 3$ be number of interior points; $n - k$ outer points. Let $CH_{\text{in}}(P) := \text{convex hull of inner points.}$
A lower bound

Let $k \geq 3$ be the number of interior points; $n - k$ outer points. Let $CH_{in}(P) :=$ convex hull of inner points.

Type b
A lowerbound

Let $k \geq 3$ be number of interior points; $n - k$ outer points. Let $CH_{in}(P) :=$ convex hull of inner points.
A lowerbound

Let $k \geq 3$ be number of interior points; $n - k$ outer points. Let $CH_{in}(P) := \text{convex hull of inner points.}$
A lowerbound

Let $k \geq 3$ be number of interior points; $n - k$ outer points.
Let $CH_{in}(P) :=$ convex hull of inner points.

Claim: Type a vertex needs at least one edge to $CH(P)$.
A lowerbound

Let $k \geq 3$ be number of interior points; $n - k$ outer points. Let $CH_{in}(P) :=$ convex hull of inner points.

Claim: Type a vertex needs at least one edge to $CH(P)$.
A lowerbound

Let \(k \geq 3 \) be number of interior points; \(n - k \) outer points.
Let \(CH_{\text{in}}(P) := \text{convex hull of inner points}. \)

Claim: Type \(a \) vertex needs at least one edge to \(CH(P) \).
A lowerbound

Let $k \geq 3$ be number of interior points; $n - k$ outer points.
Let $CH_{in}(P) :=$ convex hull of inner points.

Claim: Type a vertex needs at least one edge to $CH(P)$.

Claim: Type b vertex needs at least two edges to $CH(P)$.
A lowerbound

Let $k \geq 3$ be number of interior points; $n - k$ outer points. Let $CH_{\text{in}}(P) := \text{convex hull of inner points}$.

Claim: Type a vertex needs at least one edge to $CH(P)$.

Claim: Type b vertex needs at least two edges to $CH(P)$.
A lowerbound

Let $k \geq 3$ be number of interior points; $n - k$ outer points.
Let $CH_{in}(P) := \text{convex hull of inner points.}$

Claim: Type a vertex needs at least one edge to $CH(P)$.
Claim: Type b vertex needs at least two edges to $CH(P)$.
A lowerbound

Let $k \geq 3$ be number of interior points; $n - k$ outer points. Let $CH_{in}(P) := \text{convex hull of inner points}$.

Claim: Type a vertex needs at least one edge to $CH(P)$.

Claim: Type b vertex needs at least \textbf{two} edges to $CH(P)$.
A lowerbound

Let $k \geq 3$ be number of interior points; $n - k$ outer points.
Let $CH_{\text{in}}(P) :=$ convex hull of inner points.

Claim: Type a vertex needs at least one edge to $CH(P)$.
Claim: Type b vertex needs at least two edges to $CH(P)$.
A lowerbound

Let $k \geq 3$ be number of interior points; $n - k$ outer points. Let $CH_{in}(P) := \text{convex hull of inner points.}$

Claim: Type a vertex needs at least one edge to $CH(P)$.

Claim: Type b vertex needs at least two edges to $CH(P)$.

Degree sum:
A lowerbound

Let $k \geq 3$ be number of interior points; $n - k$ outer points. Let $CH_{\text{in}}(P) := $ convex hull of inner points.

Claim: Type a vertex needs at least one edge to $CH(P)$.

Claim: Type b vertex needs at least two edges to $CH(P)$.

Degree sum: $2(n - k)$

Every outer point has degree two on the convex hull.
A lowerbound

Let $k \geq 3$ be number of interior points; $n - k$ outer points. Let $CH_{in}(P) := \text{convex hull of inner points}$.

Claim: Type a vertex needs at least one edge to $CH(P)$.

Claim: Type b vertex needs at least two edges to $CH(P)$.

Degree sum: $2(n - k) + 3k$

Every outer point has degree two on the convex hull.

Every interior point has degree at least 3.
A lowerbound

Let \(k \geq 3 \) be number of interior points; \(n - k \) outer points. Let \(CH_{in}(P) := \) convex hull of inner points.

Claim: Type \(a \) vertex needs at least one edge to \(CH(P) \).
Claim: Type \(b \) vertex needs at least two edges to \(CH(P) \).

Degree sum: \(2(n - k) + 3k \)

Every outer point has degree two on the convex hull.
Every interior point has degree at least 3. (No colinear points.)
A lowerbound

Let $k \geq 3$ be number of interior points; $n - k$ outer points. Let $CH_{in}(P) :=$ convex hull of inner points.

Claim: Type a vertex needs at least one edge to $CH(P)$. Claim: Type b vertex needs at least two edges to $CH(P)$.

Degree sum: \[2(n - k) + 3k + a + 2b\]

Every outer point has degree two on the convex hull. Every interior point has degree at least 3. (No colinear points.)

There are $a + 2b$ edges arriving at CH from interior.
A lowerbound

Let \(k \geq 3 \) be number of interior points; \(n - k \) outer points.
Let \(CH_{\text{in}}(P) := \text{convex hull of inner points} \).

Claim: Type \(a \) vertex needs at least one edge to \(CH(P) \).
Claim: Type \(b \) vertex needs at least two edges to \(CH(P) \).

Degree sum: \(2(n - k) + 3k + a + 2b \)

Every outer point has degree two on the convex hull.
Every interior point has degree at least 3. (No colinear points.)

There are \(a + 2b \) edges arriving at \(CH \) from interior.

\(\# \) edges \(\geq n + \frac{k}{2} + \frac{a}{2} + b \)
A lower bound

Let $k \geq 3$ be number of interior points; $n - k$ outer points.

Let $CH_{in}(P) :=$ convex hull of inner points.

Claim: Type a vertex needs at least one edge to $CH(P)$.

Claim: Type b vertex needs at least two edges to $CH(P)$.

Degree sum: $2(n - k) + 3k + a + 2b$

Every outer point has degree two on the convex hull.

Every interior point has degree at least 3. (No colinear points.)

There are $a + 2b$ edges arriving at CH from interior.

$\# \text{ edges} \geq n + \frac{k}{2} + \frac{a}{2} + b \quad \Rightarrow \quad \# \text{ faces} \geq \frac{k}{2} + \frac{a}{2} + b + 1$
Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2}k + \frac{3}{2}$.
An upperbound

Lemma There is a convex partition E of P such that

$$|R(E)| \leq \frac{3}{2} k + \frac{3}{2}.$$

Induction on k: $k = 0$
An upperbound

Lemma There is a convex partition E of P such that

$$|R(E)| \leq \frac{3}{2}k + \frac{3}{2}.$$

Induction on k: $k = 0 \implies |R(E)| \leq \frac{3}{2}$
An upperbound

Lemma There is a convex partition E of P such that
$$|R(E)| \leq \frac{3}{2} k + \frac{3}{2}.$$

Induction on k:

$k = 1$
An upperbound

Lemma There is a convex partition E of P such that
$$|R(E)| \leq \frac{3}{2} k + \frac{3}{2}.$$

Induction on k: $k = 1 \implies |R(E)| \leq 3$
An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2}k + \frac{3}{2}$.

Induction on k: $k = 1 \implies |R(E)| \leq 3$

Triangulate CH arbitrarily.
An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2}k + \frac{3}{2}$.

Induction on k: $k = 1 \implies |R(E)| \leq 3$

Triangulate CH arbitrarily.
An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2}k + \frac{3}{2}$.

Induction on k: $k = 1 \implies |R(E)| \leq 3$

Triangulate CH arbitrarily.
An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2} k + \frac{3}{2}$.

Induction on k: $k = 1 \implies |R(E)| \leq 3$
An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2}k + \frac{3}{2}$.

Induction on k: $k \geq 2$
An upperbound

Lemma There is a convex partition E of P such that

$$|R(E)| \leq \frac{3}{2} k + \frac{3}{2}.$$

Induction on k: $k \geq 2$
An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2}k + \frac{3}{2}$.

Induction on k: $k \geq 2$
An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2}k + \frac{3}{2}$.

Induction on k: $k \geq 2$
An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2}k + \frac{3}{2}$.

Induction on k: $k \geq 2$
An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2}k + \frac{3}{2}$.

Induction on k: $k \geq 2$
Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2}k + \frac{3}{2}$.

Induction on k: $k \geq 2$
An upperbound

Lemma There is a convex partition E of P such that
\[|R(E)| \leq \frac{3}{2} k + \frac{3}{2}. \]

Induction on k: \[k \geq 2 \]

Ind. hyp. holds for Q
An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2}k + \frac{3}{2}$.

Induction on k: $k \geq 2$

Ind. hyp. holds for Q
An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2}k + \frac{3}{2}$.

Induction on k: $k \geq 2$
An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2} k + \frac{3}{2}$.

Induction on k: \[k \geq 2 \]
Lemma There is a convex partition E of P such that
\[|R(E)| \leq \frac{3}{2} k + \frac{3}{2}. \]

Induction on k: $k \geq 2$
An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2}k + \frac{3}{2}$.

Induction on k: $k \geq 2$
Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2}k + \frac{3}{2}$.

Induction on k: $k \geq 2$
An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2}k + \frac{3}{2}$.

Induction on k: $k \geq 2$

Chain C with $\ell \geq 2$ points.
An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2} k + \frac{3}{2}$.

Induction on k: \hspace{1cm} $k \geq 2$

Chain C with $\ell \geq 2$ points.

Q has partition with $\frac{3}{2} (k - \ell) + \frac{3}{2}$ faces.
An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2}k + \frac{3}{2}$.

Induction on k: $k \geq 2$

Chain C with $\ell \geq 2$ points.

Q has partition with $\frac{3}{2}(k - \ell) + \frac{3}{2}$ faces.

New faces:
An upper bound

Lemma There is a convex partition E of P such that
\[|R(E)| \leq \frac{3}{2} k + \frac{3}{2}. \]

Induction on k: $k \geq 2$

Q has partition with $\frac{3}{2}(k - \ell) + \frac{3}{2}$ faces.

New faces: $\ell + 1$.

Chain C with $\ell \geq 2$ points.
An upperbound

Lemma There is a convex partition E of P such that
$$|R(E)| \leq \frac{3}{2}k + \frac{3}{2}.$$

Induction on k:

$k \geq 2$

Chain C with $\ell \geq 2$ points.

Q has partition with $\frac{3}{2}(k - \ell) + \frac{3}{2}$ faces.

New faces:

$\ell + 1$.

Total:

$$\frac{3}{2}k + \frac{3}{2} - \frac{1}{2}\ell + 1.$$
An upperbound

Lemma There is a convex partition E of P such that $|R(E)| \leq \frac{3}{2}k + \frac{3}{2}$.

Induction on k: $k \geq 2$

Chain C with $\ell \geq 2$ points.

Q has partition with $\frac{3}{2}(k - \ell) + \frac{3}{2}$ faces.

New faces: $\ell + 1$.

Total: $\frac{3}{2}k + \frac{3}{2} - \frac{1}{2}\ell + 1$.

Note! $\ell \geq 2$
Putting it together

Theorem A 3-approximation of a minimum convex partition of P can be computed in $O(n \log n)$ time. (This assumes no colinear points.)

Proof:
Putting it together

Theorem A 3-approximation of a minimum convex partition of P can be computed in $O(n \log n)$ time. (This assumes no colinear points.)

Proof: At the excercise sheet!