Advanced Algorithms

Winter term 2019/20

Lecture 4. Randomized Algorithms

(based on lecture notes of Sabine Storandt)
Randomized Algorithms

- are faster or use less space than deterministic algorithms in practise,
- have theoretical runtimes beyond deterministic lower bounds,
- are easier to implement/more elegant than deterministic strategies,
- allow for trading runtime against output quality,
- provide a good strategy for games or search in unknown environments.
Some Basics

A (discrete) random variable X maps a (finite) set Ω of possible outcomes of a random experiment to some measurable set Ω' of observations (e.g., \mathbb{N} or \mathbb{R}).

Example: dice: \(\{\,\bullet, \bullet, \bullet, \bullet, \bullet, \bullet\,\} \rightarrow \{1, 2, 3, 4, 5, 6\} \)

The expected value of a discrete random variable X is

\[E[X] = \sum_{i \in \Omega'} i \cdot \Pr[X = i]. \]

Example: $E[\text{fair dice}] = (1 + 2 + 3 + 4 + 5 + 6)/6 = 3.5$

strange dice: \(\{\,\bullet, \bullet, \bullet, \bullet, \bullet, \bullet\,\} \rightarrow \{1, 1, 1, 6, 6, 6\} \)

$E[\text{strange dice}] = (1 + 1 + 1 + 6 + 6 + 6)/6 = 3.5$
First Success

Let $X : \{\text{failure, success}\} \to \{0, 1\}$ be a random variable.
Let $p = \Pr[X = 1]$ be the success probability.

$\Rightarrow q := \Pr[X = 0] = 1 - p$ is the failure probability (or rate).

Repeat experiment many times.
Assume that outcomes are independent from each other.

Random variable Y counts the number of rounds until $X = 1$ for the first time.

$\Rightarrow \Pr[Y = j] = q^{j-1}p$

$\Rightarrow \mathbb{E}[Y] = \sum_{j=1}^{\infty} j \cdot q^{j-1}p = p \cdot \left(\sum_{j=1}^{\infty} q^j\right)' = p \cdot \left(\frac{1}{1-q}\right)' = p \cdot \frac{1}{p^2} = 1/p$
Linearity of Expectation

Let X and Y be two random variables and $\lambda \in \mathbb{R}$. Then

$$E[X + \lambda \cdot Y] = E[X] + \lambda \cdot E[Y]$$

Indicator Random Variables

Example I: Guessing cards (without memory). Deck of n cards.

Let $X_i : \{\text{guessed, not guessed}\} \to \{0, 1\}$ be a random variable that indicates whether card i was guessed or not ($i = 1, \ldots, n$).

X_1, \ldots, X_n are *indicator* random variables.

Let X count the number of correct guesses.

$$X = X_1 + \cdots + X_n$$

$$E[X] = E[X_1 + \cdots + X_n] = E[X_1] + \cdots + E[X_n] = n \cdot \frac{1}{n} = 1.$$

Note that this is independent of n!
Using Indicator Random Variables

Example II: Guessing cards (with memory).

Now \(\Pr[X_i = 1] \) depends on the current size of the deck.

\[
E[X_i] = \Pr[X_i = 1] = 1/(n - i + 1)
\]

\[\Rightarrow E[X] = E[X_1 + \cdots + X_n] = \frac{1}{n} + \frac{1}{n-1} + \cdots + \frac{1}{2} + 1 = H_n\]

\(H_n \) is the \(n \)-th harmonic number; \(\ln(n + 1) \leq H_n \leq \ln(n) + 1 \).

\[\Rightarrow E[X] = H_n \in \Theta(\log n) \quad \text{Note that this does depend on } n!\]

Example III: Collecting goodies

How often do you have to shop to collect all \(n \) goodies? \((X) \)

Assume: Each time you get a random goodie. You can’t choose.

\(X_i := \) number of times you must shop to get \(i \)-th new goodie.

\[
\Pr[X_i = 1] = (n - i + 1)/n \quad \Rightarrow E[X_i] = n/(n - i + 1)
\]

\[\Rightarrow E[X] = E[X_1 + \cdots + X_n] = n(\frac{1}{n} + \cdots + \frac{1}{2} + 1) = \Theta(n \log n)\]
Las Vegas & Monte Carlo

Example IV: Drug detection \((n \text{ lockers, } n/2 \text{ with drugs}) \)

Deterministic approach:

Need to break \(n/2 + 1 \) lockers in the worst case.

If students know your strategy, you must break exactly \(n/2 + 1 \).

Randomization removes the adversary.

RandA: – Compute random permutation of the lockers.
 – Break lockers in this order. **Las Vegas Algorithm**

We break \(n/2 + 1 \) lockers in w-c, but expect to break fewer.

RandO: – Compute random permutation of \(k \leq n/2 + 1 \) lockers.
 – Break lockers in this order. **Monte Carlo Algorithm**

We don’t damage so many lockers, but may not find any drugs.
Analysis

RandA: expected number of broken lockers = $1/(1/2) = 2$

RandO: failure probability for 1 locker = $1/2$
failure probability for k lockers = $(1/2)^k$
success probability for k lockers = $1 - 2^{-k}$

Las Vegas Algorithm
Algorithm returns correct result, but resource (runtime) is a random variable.
Examples: RandomizedQuickSort, RandomizedSelect (Median)

Monte Carlo Algorithm
Algorithm errs or fails with certain probability, but runtime does not depend on random choices.
Example: Karger’s randomized MinCut algorithm
Monte Carlo Example

Example V: Find large number (\geq median, in array of n ints)

Deterministic approach:

Go through all elements, return maximum.
(Actually, suffices to go through $n/2$ elements.)

```plaintext
MonteCarloFind(int[] A, int k $\geq$ 1)
pick $a_1, \ldots, a_k \in \{1, \ldots, n\}$ u.a.r.
$m = \max\{A[a_1], \ldots, A[a_k]\}$
return $m$
```

The algorithm has error probability $\leq 2^{-k}$.
Set $k := c \log_2 n$ for some constant $c > 1$.

\Rightarrow Error probability $\leq n^{-c}$, runtime $\in O(\log n)$
Las Vegas Example

Example VI: Find repeated element
(array of $n \geq 4$ ints, $n/2$ distinct, $n/2$ identical)

Deterministic approach:
Sort and find repeated element. $\Theta(n \log n)$ time
Faster: Find median. $\Theta(n)$ time

LasVegasFindRepeated(int[] A)

while true do
 pick $i \in \{1, \ldots, n\}$ and $j \in \{1, \ldots, n\} \setminus \{i\}$, both u.a.r.

Algorithm always returns correct result – but may take forever.
Success probability $= \frac{n/2}{n} \cdot \frac{n/2 - 1}{n - 1} \approx \frac{1}{4}$.
\Rightarrow Expected number of iterations $\approx 4 \in O(1)$.
From Las Vegas to Monte Carlo

Theorem. (Markov inequality)

For any non-negative random variable X and $t \geq 1$,
\[
\Pr[X > t] \leq \frac{\mathbb{E}[X]}{t}.
\]

Equivalently,
\[
\Pr[X > t \cdot \mathbb{E}[X]] \leq \frac{1}{t}.
\]

Let X be the running time of a Las Vegas algorithm and $f(n) = \mathbb{E}[X]$ its expected running time and $\alpha > 1$. Then
\[
\Pr[X > \alpha \cdot f(n)] \leq \frac{1}{\alpha}
\]

So the probability that the Las Vegas algorithm does not find a solution in the first $\alpha \cdot f(n)$ steps is less than $\frac{1}{\alpha}$, which is the error probability of the respective Monte Carlo algorithm.
Closest Pair

Given a set \(P = \{p_1, \ldots, p_n\} \) of points in the plane, find a pair in \((P)_2 \) whose Euclidean distance is minimum.

ADS: Deterministic divide-and-conquer algorithm, worst-case runtime \(O(n \log n) \).

Element Uniqueness Problem: Given \(n \) numbers, are they unique? Cannot be solved in \(o(n \log n) \) w-c time.

(under some assumption concerning the arithmetic model)

\(\Rightarrow \) Closest Pair cannot be solved in \(o(n \log n) \) w-c time.

(under the same assumption concerning the arithmetic model)
A Randomized Incremental Algorithm

Assume:
- Can use the floor function in $O(1)$ time.
- Can use hashing in $O(1)$ time.

Define:
$P_i = \{p_1, \ldots, p_i\}$
$\delta_i =$ distance of the closest pair in P_i.

Problem:
Given δ_{i-1}, how can we compute δ_i?

Idea:
Consider a square grid with cells of size $\delta_{i-1} \times \delta_{i-1}$:

How many points in P_{i-1} can lie in the same grid cell?
At most 4 (in the corners).

After finding p_i's cell, need to check only $O(1)$ points in vicinity.

Cases:
- $\delta_i < \delta_{i-1}$: Need to recompute grid in $O(i)$ time.
- $\delta_i = \delta_{i-1}$: Need to store p_i in its cell in $O(1)$ time.
Backwards Analysis

What is the w-c running time of the algorithm? $\Theta(n^2)$

How do we randomize? Randomly permute points at beginning.

How many points p in P_i have the property that the minimum distance in $P_i \setminus \{p\}$ is larger than in P_i?

- The closest distance in P_i is unique: 2 points.
- One point has the same smallest distance to several points: 1 point.
- There are at least two disjoint closest pairs: 0 points.

Let X_i be the work for adding p_i.

$\Rightarrow \mathbb{E}[X_i] \leq 2/i \cdot O(i) + (i - 2)/i \cdot O(1) = O(1)$

Let X be the total work done by the algorithm.

$\Rightarrow \mathbb{E}[X] = \mathbb{E}[X_1 + \cdots + X_n] \in O(n)$