Advanced Algorithms

Winter term 2019/20

Lecture 3. 2D Linear Programming via sweep-lines and randomization

Source: CG: A&A §4

Steven Chaplick & Alexander Wolff

Chair for Computer Science I
Maximizing Profit

You are the boss of a small company that produces two products, P_1 and P_2. If you produce x_1 units of P_1 and x_2 units of P_2, your profit in € is

$$G(x_1, x_2) = 300x_1 + 500x_2$$

Your production runs on three machines M_A, M_B, and M_C with the following capacities:

- M_A: $4x_1 + 11x_2 \leq 880$
- M_B: $x_1 + x_2 \leq 150$
- M_C: $x_2 \leq 60$

Which choice of (x_1, x_2) maximizes your profit?
The Answer

linear constraints:

- **M_A:** $4x_1 + 11x_2 \leq 880$
- **M_B:** $x_1 + x_2 \leq 150$
- **M_C:** $x_2 \leq 60$

Ax ≤ b

x ≥ 0

linear objective fct.:

maximize $c^T x$

$G(x_1, x_2) = 300x_1 + 500x_2$

$= (300, 500)(x_1, x_2)$

$G(110, 40) = 53,000$

= maximum value of objective fct. given constraints

= $\max\{c^T x | Ax \leq b, x \geq 0\}$

"iso-profit line" (orthogonal to $(300, 500)$)
Definition and Known Algorithms

Given a set \(H \) of \(n \) halfspaces in \(\mathbb{R}^d \) and a direction \(c \), find a point \(x \in \bigcap H \) such that \(cx \) is maximum (or minimum).

Many algorithms known, e.g.:
- Simplex [Dantzig '47]
- Ellipsoid method [Khatchiyan '79]
- Inner-point method [Karmakar' 84]

Good for instances where \(n \) and \(d \) are large.

We consider \(d = 2 \).

VERY important problem, e.g., in Operations Research. ["Book" application: casting]

\[\bigcap H = \emptyset \]
\[\bigcap H \text{ unbd. in dir. } c \]
set of optima: segment vs. point

\[\bigcap H \text{ bounded.} \]
First Approach

- compute $\cap H$ iteratively
- walk $\partial (\cap H)$, find vertex x w/ cx maximum, $O(n)$ time

IntersectHalfplanes(H)

Let $H = (h_1, \ldots, h_n)$

$C \leftarrow h_1$

foreach i from 2 to n do

$C \leftarrow C \cap h_i$

return C

Running time: $T_{IH}(n) = n \cdot O(n)$

Total Time: $O(n^2)$:

Exercise: Compute $C \cap h_i$ faster.
Second Approach

- compute $\bigcap H$ via divide and conquer
- walk $\partial (\bigcap H)$, find vertex x w/ cx maximum, $O(n)$ time

```plaintext
IntersectHalfplanes(H)

if $|H| = 1$ then
    $C \leftarrow h$, where $\{h\} = H$
else
    split $H$ into sets $H_1$ and $H_2$ with $|H_1|, |H_2| \approx |H|/2$
    $C_1 \leftarrow$ IntersectHalfplanes($H_1$)
    $C_2 \leftarrow$ IntersectHalfplanes($H_2$)
    $C \leftarrow$ IntersectConvexRegions($C_1, C_2$)

return $C$
```

Running time: $T_{IH}(n) = 2T_{IH}(n/2) + T_{ICR}(n)$

How complex can the new region be?
Theorem. The intersection of two convex polygonal regions can be computed in linear time.
Sweep-Line Algorithm

Done, since we have finished C!
Data Structures

1) event (-point) queue Q

\[p \prec q \iff_{\text{def.}} y_p > y_q \quad \text{or} \quad (y_p = y_q \text{ and } x_p < x_q) \]

Store event pts in \textit{sorted order} acc. to \prec

nextEvent() : either, next point (by \prec), or the intersection pt. of two active segments (below the sweep-line)

... runtime? $O(1)$, since num. active segments ≤ 4 :)

2) (sweep-line) status T

Store the segments intersected by ℓ in left-to-right order.

Also, maintain the new convex hull.
Second Approach: Halfplane Intersection

Theorem. The intersection of two convex polygonal regions can be computed in linear time.

\[
\text{IntersectHalfplanes}(H)
\]

- if \(|H| = 1\) then \(C \leftarrow h\), where \(\{h\} = H\)
- else
 - split \(H\) into sets \(H_1\) and \(H_2\) with \(|H_1|, |H_2| \approx |H|/2\)
 - \(C_1 \leftarrow \text{IntersectHalfplanes}(H_1)\)
 - \(C_2 \leftarrow \text{IntersectHalfplanes}(H_2)\)
 - \(C \leftarrow \text{IntersectConvexRegions}(C_1, C_2)\)

return \(C\)

Running time: \(T_{\text{IH}}(n) = 2T_{\text{IH}}(n/2) + T_{\text{ICR}}(n)\)

Corollary. The intersection of \(n\) half planes can be computed in \(O(n \log n)\) time.

Can we do better?
A Small Trick: Make Solution Unique

$\bigcap H = \emptyset \quad \bigcap H \text{ unbd. in dir. } c \quad \bigcap H \text{ bounded.}$

- Add two bounding halfplanes m_1 and m_2

$$m_1 = \begin{cases} x \leq M & \text{if } c_x > 0, \\ x \geq M & \text{otherwise,} \end{cases}$$

for some sufficiently large M

$$m_2 = \begin{cases} y \leq M & \text{if } c_y > 0, \\ y \geq M & \text{otherwise.} \end{cases}$$

- Take the lexicographically largest solution.

⇒ Set of solutions is either empty or a uniquely defined pt.

Idea: M based on obj.fct. c. See §4.5 of CG: A&A for more on unbounded LPs.
Incremental Approach

Idea: Don’t compute $\cap H$, but just one (optimal) point!

Randomized

2DBoundedLP(H, c, m_1, m_2)
compute random permutation of H

$H_0 = \{m_1, m_2\}$

$v_0 \leftarrow \text{corner of } m_1 \cap m_2$

for $i \leftarrow 1$ to n do

if $v_{i-1} \in h_i$ then

$v_i \leftarrow v_{i-1}$

else

$v_i \leftarrow \text{1DBoundedLP}(\pi_{\partial h_i}(H_{i-1}), \pi_{\partial h_i}(c))$

if $v_i = \text{nil}$ then

return nil

$H_i = H_{i-1} \cup \{h_i\}$

return v_n

w-c running time:

$T(n) = \sum_{i=1}^{n} O(i) =$

$= O(n^2)$

:-(
Theorem. The 2D bounded LP problem can be solved in $O(n)$ expected time.

Proof. Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random variable).

Then the expected running time is

\[
E[T_{2d}(n)] = E[\sum_{i=1}^{n}(1 - X_i) \cdot O(1) + X_i \cdot O(i)] \\
= O(n) + \sum E[X_i] \cdot O(i) \\
= O(n) + \sum \Pr[X_i = 1] \cdot O(i) = O(n).
\]

We fix the i random halfplanes in H_i.

\[
\Pr[X_i = 1] = \text{probability that the optimal solution changes when } h_i \text{ is added to } H_{i-1}.
\]

Proof technique: Backward analysis!

\[
\Pr[X_i = 1] = \text{probability that the optimal solution changes when } h_i \text{ is removed from } H_i.
\]

$\leq 2/i$. This is independent of the choice of H_i.\]
Alt. for Intersecting Convex Regions

Use sweep-line alg. for map overlay (line-segment intersections)!

Running time $T_{MO}(n) = O((n + I) \log n)$, where $I = \#$ intersection points.

Running time $T_{IH}(n) = 2T_{IH}(n/2) + T_{ICR}(n) \leq 2T_{IH}(n/2) + O(n \log n) \in O(n \log^2 n)$

As this is more general, it is unsurprisingly worse ...

~> Better to use specialized algorithm for intersecting convex regions/polygons

* it can happen sometimes that general algorithms give optimal runtimes for special cases