Advanced Algorithms

Winter term 2019/20

Lecture 3. 2D Linear Programming via sweep-lines and randomization

Source: CG: A&A §4

Steven Chaplick & Alexander Wolff
Chair for Computer Science I
Maximizing Profit

You are the boss of a small company that produces two products, P_1 and P_2. If you produce x_1 units of P_1 and x_2 units of P_2, your profit in € is

$$G(x_1, x_2) = 300x_1 + 500x_2$$
Maximizing Profit

You are the boss of a small company that produces two products, P_1 and P_2. If you produce x_1 units of P_1 and x_2 units of P_2, your profit in € is

$$G(x_1, x_2) = 300x_1 + 500x_2$$

Your production runs on three machines M_A, M_B, and M_C with the following capacities:

$$M_A : \quad 4x_1 + 11x_2 \leq 880$$
$$M_B : \quad x_1 + x_2 \leq 150$$
$$M_C : \quad x_2 \leq 60$$
Maximizing Profit

You are the boss of a small company that produces two products, P_1 and P_2. If you produce x_1 units of P_1 and x_2 units of P_2, your profit in € is

$$G(x_1, x_2) = 300x_1 + 500x_2$$

Your production runs on three machines M_A, M_B, and M_C with the following capacities:

$$M_A : \quad 4x_1 + 11x_2 \leq 880$$
$$M_B : \quad x_1 + x_2 \leq 150$$
$$M_C : \quad x_2 \leq 60$$

Which choice of (x_1, x_2) maximizes your profit?
The Answer

linear constraints:

\[M_A : 4x_1 + 11x_2 \leq 880 \]
\[M_B : x_1 + x_2 \leq 150 \]
\[M_C : x_2 \leq 60 \]
The Answer

Linear Constraints:

- $M_A: 4x_1 + 11x_2 \leq 880$
- $M_B: x_1 + x_2 \leq 150$
- $M_C: x_2 \leq 60$
The Answer

\[M_A : 4x_1 + 11x_2 \leq 880 \]
\[M_B : x_1 + x_2 \leq 150 \]
\[M_C : x_2 \leq 60 \]
The Answer

linear constraints:

\[M_A : \quad 4x_1 + 11x_2 \leq 880 \]
\[M_B : \quad x_1 + x_2 \leq 150 \]
\[M_C : \quad x_2 \leq 60 \]
The Answer

linear constraints:

\[
\begin{align*}
M_A & : 4x_1 + 11x_2 \leq 880 \\
M_B & : x_1 + x_2 \leq 150 \\
M_C & : x_2 \leq 60
\end{align*}
\]

\[
\begin{align*}
x_1 & \geq 0 \\
x_2 & \geq 0
\end{align*}
\]
The Answer

linear constraints:

\[\begin{align*}
M_A & : 4x_1 + 11x_2 \leq 880 \\
M_B & : x_1 + x_2 \leq 150 \\
M_C & : x_2 \leq 60
\end{align*} \]

\[\begin{align*}
x_1 & \geq 0 \\
x_2 & \geq 0
\end{align*} \]
The Answer

linear constraints:

\[M_A : \quad 4x_1 + 11x_2 \leq 880 \]
\[M_B : \quad x_1 + x_2 \leq 150 \]
\[M_C : \quad x_2 \leq 60 \]

\[x_1 \geq 0 \]
\[x_2 \geq 0 \]

set of feasible solutions
The Answer

linear constraints:

\[M_A : \quad 4x_1 + 11x_2 \leq 880 \]
\[M_B : \quad x_1 + x_2 \leq 150 \]
\[M_C : \quad x_2 \leq 60 \]

\[
\begin{align*}
x_1 & \geq 0 \\
x_2 & \geq 0
\end{align*}
\]

linear objective fct.:

\[G(x_1, x_2) = 300x_1 + 500x_2 \]
The Answer

linear constraints:

\[M_A : 4x_1 + 11x_2 \leq 880 \]
\[M_B : x_1 + x_2 \leq 150 \]
\[M_C : x_2 \leq 60 \]

\[x_1 \geq 0 \]
\[x_2 \geq 0 \]

linear objective fct.:

\[G(x_1, x_2) = 300x_1 + 500x_2 = (300, 500)(x_1, x_2) \]

set of feasible solutions
The Answer

Linear constraints:

- M_A: $4x_1 + 11x_2 \leq 880$
- M_B: $x_1 + x_2 \leq 150$
- M_C: $x_2 \leq 60$

- $x_1 \geq 0$
- $x_2 \geq 0$

Linear objective function:

$G(x_1, x_2) = 300x_1 + 500x_2 = (300, 500)(x_1, x_2)$

- "Iso-profit line" (orthogonal to $(300, 500)$)
The Answer

linear constraints:

\[M_A: \quad 4x_1 + 11x_2 \leq 880 \]
\[M_B: \quad x_1 + x_2 \leq 150 \]
\[M_C: \quad x_2 \leq 60 \]

\[x_1 \geq 0 \]
\[x_2 \geq 0 \]

linear objective fct.:

\[G(x_1, x_2) = 300x_1 + 500x_2 \]
\[= (300, 500)(x_1, x_2) \]

set of feasible solutions

"iso-profit line" (orthogonal to \((300, 500)\))
The Answer

linear constraints:

\[M_A : 4x_1 + 11x_2 \leq 880 \]
\[M_B : x_1 + x_2 \leq 150 \]
\[M_C : x_2 \leq 60 \]
\[x_1 \geq 0 \]
\[x_2 \geq 0 \]

linear objective fct.:

\[G(x_1, x_2) = 300x_1 + 500x_2 \]
\[= (300, 500)(x_1, x_2) \]

"iso-profit line" (orthogonal to \((300, 500)\))
The Answer

linear constraints:

- $M_A: \ 4x_1 + 11x_2 \leq 880$
- $M_B: \ x_1 + x_2 \leq 150$
- $M_C: \ x_2 \leq 60$

$x_1 \geq 0$
$x_2 \geq 0$

linear objective fct.:

$G(x_1, x_2) = 300x_1 + 500x_2$

$= (300, 500)(x_1, x_2)$

"iso-profit line" (orthogonal to $(300, 500)$)
The Answer

linear constraints:

- **M_A:** $4x_1 + 11x_2 \leq 880$
- **M_B:** $x_1 + x_2 \leq 150$
- **M_C:** $x_2 \leq 60$

Linear objective fct.:

$$G(x_1, x_2) = 300x_1 + 500x_2 = (300, 500)(x_1, x_2)$$

set of feasible solutions

"iso-profit line" (orthogonal to $(300, 500)$)
The Answer

linear constraints:

- $M_A : 4x_1 + 11x_2 \leq 880$
- $M_B : x_1 + x_2 \leq 150$
- $M_C : x_2 \leq 60$

linear objective fct.:

$$G(x_1, x_2) = 300x_1 + 500x_2 = (300, 500)(x_1, x_2)$$

set of feasible solutions

"iso-profit line" (orthogonal to $(300, 500)$)

$$\partial M_A \cap \partial M_B =$$
The Answer

linear constraints:

- $M_A: 4x_1 + 11x_2 \leq 880$
- $M_B: x_1 + x_2 \leq 150$
- $M_C: x_2 \leq 60$

linear objective fct.:

$G(x_1, x_2) = 300x_1 + 500x_2$

$= (300, 500)(x_1, x_2)$

set of feasible solutions

$\partial M_A \cap \partial M_B = \left\{ \left(\frac{110}{40} \right) \right\}$

"iso-profit line" (orthogonal to $(300, 500)$)
The Answer

Linear constraints:

\[
\begin{align*}
M_A : & \quad 4x_1 + 11x_2 \leq 880 \\
M_B : & \quad x_1 + x_2 \leq 150 \\
M_C : & \quad x_2 \leq 60 \\
\end{align*}
\]

\[
\begin{align*}
x_1 & \geq 0 \\
x_2 & \geq 0 \\
\end{align*}
\]

Linear objective function:

\[
G(x_1, x_2) = 300x_1 + 500x_2 = (300, 500)(x_1 \ x_2)
\]

"iso-profit line" (orthogonal to \((300 \ 500)\))

Set of feasible solutions:

\[
G(110, 40) =
\]

...
The Answer

linear constraints:

\[M_A: 4x_1 + 11x_2 \leq 880 \]
\[M_B: x_1 + x_2 \leq 150 \]
\[M_C: x_2 \leq 60 \]

\[x_1 \geq 0 \]
\[x_2 \geq 0 \]

linear objective fct.:

\[G(x_1, x_2) = 300x_1 + 500x_2 \]
\[= (300, 500) (x_1 \ x_2) \]

\[G(110, 40) = 53,000 \]

set of feasible solutions

„iso-profit line“ (orthogonal to (300, 500))
The Answer

linear constraints:

\[
\begin{align*}
M_A : & \quad 4x_1 + 11x_2 \leq 880 \\
M_B : & \quad x_1 + x_2 \leq 150 \\
M_C : & \quad x_2 \leq 60
\end{align*}
\]

\[
\begin{align*}
x_1 & \geq 0 \\
x_2 & \geq 0
\end{align*}
\]

linear objective fct.:

\[
G(x_1, x_2) = 300x_1 + 500x_2
\]

\[
= (300, 500)(x_1 \ x_2)
\]

set of feasible solutions

iso-profit line“ (orthogonal to \((300, 500)\))
The Answer

linear constraints:

- $M_A : 4x_1 + 11x_2 \leq 880$
- $M_B : x_1 + x_2 \leq 150$
- $M_C : x_2 \leq 60$

linear objective fct.:

$$G(x_1, x_2) = 300x_1 + 500x_2 = (300, 500)(x_1, x_2)$$

set of feasible solutions

The optimal solution is $G(110, 40) = 53,000$

"iso-profit line" (orthogonal to $(300, 500)$)
The Answer

linear constraints:
- \(MA: \ 4x_1 + 11x_2 \leq 880 \)
- \(MB: \ x_1 + x_2 \leq 150 \)
- \(MC: \ x_2 \leq 60 \)

linear objective fct.:
\[
G(x_1, x_2) = 300x_1 + 500x_2 = (300, 500)(x_1 \ x_2)
\]

set of feasible solutions

"iso-profit line" (orthogonal to \((300, 500)\))

\(G(110, 40) = 53,000 \)
The Answer

Linear constraints:

\[\begin{align*}
M_A : & \quad 4x_1 + 11x_2 \leq 880 \\
M_B : & \quad x_1 + x_2 \leq 150 \\
M_C : & \quad x_2 \leq 60
\end{align*} \]

Linear objective fct.:

\[G(x_1, x_2) = 300x_1 + 500x_2 = (300, 500)(x_1, x_2) \]

Set of feasible solutions:

"iso-profit line" (orthogonal to \((300, 500)\))

At \((110, 40)\), the profit is 53,000€.
The Answer

linear constraints:

\[M_A : \quad 4x_1 + 11x_2 \leq 880 \]
\[M_B : \quad x_1 + x_2 \leq 150 \]
\[M_C : \quad x_2 \leq 60 \]

\[x_1 \geq 0 \quad x_2 \geq 0 \]

linear objective fct.:

\[G(x_1, x_2) = 300x_1 + 500x_2 \]
\[= (300, 500)(x_1 \ x_2) \]
\[G(110, 40) = 53,000 \]

"iso-profit line" (orthogonal to \((300 \ 500)\))
The Answer

Linear constraints:

\[M_A : \quad 4x_1 + 11x_2 \leq 880 \]
\[M_B : \quad x_1 + x_2 \leq 150 \]
\[M_C : \quad x_2 \leq 60 \]

\[x_1 \geq 0 \]
\[x_2 \geq 0 \]

Linear objective function:

\[G(x_1, x_2) = 300x_1 + 500x_2 = (300, 500)(x_1, x_2) \]

\[G(110, 40) = 53,000 \]

"iso-profit line" (orthogonal to \((300, 500))\)
The Answer

linear constraints:

- \(M_A : \ 4x_1 + 11x_2 \leq 880 \)
- \(M_B : \ x_1 + x_2 \leq 150 \)
- \(M_C : \ x_2 \leq 60 \)

Ax ≤ b

\[
\begin{align*}
x_1 & \geq 0 \\
x_2 & \geq 0
\end{align*}
\]

linear objective fct.:

maximize \(c^T x \)

\[
G(x_1, x_2) = 300x_1 + 500x_2
\]

\[
= (300, 500)(x_1 \ x_2)
\]

\[
G(110, 40) = 53,000
\]

\(\Rightarrow \) maximum value of objective fct. given constraints

set of feasible solutions

**“iso-profit line’’ (orthogonal to \((300 \ 500)\))
The Answer

linear constraints:

- **M_A:** $4x_1 + 11x_2 \leq 880$
- **M_B:** $x_1 + x_2 \leq 150$
- **M_C:** $x_2 \leq 60$

$x_1 \geq 0$

$x_2 \geq 0$

linear objective fct.: maximize $c^T x$

$G(x_1, x_2) = 300x_1 + 500x_2$

$= (300, 500)(x_1 \quad x_2)$

$G(110, 40) = 53,000$

= maximum value of objective fct. given constraints

= $\max\{c^T x \mid Ax \leq b, x \geq 0\}$

"iso-profit line" (orthogonal to $(300 \quad 500))
Definition and Known Algorithms

Given a set H of n halfspaces in \mathbb{R}^d and a direction c, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).
Definition and Known Algorithms

Given a set H of n halfspaces in \mathbb{R}^d and a direction c, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

Many algorithms known, e.g.:
Given a set H of n halfspaces in \mathbb{R}^d and a direction c, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

Many algorithms known, e.g.:

– Simplex [Dantzig ’47]
Given a set H of n halfspaces in \mathbb{R}^d and a direction c, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

Many algorithms known, e.g.:
- Simplex [Dantzig '47]
- Ellipsoid method [Khatchiyan '79]
Definition and Known Algorithms

Given a set H of n halfspaces in \mathbb{R}^d and a direction c, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

Many algorithms known, e.g.:
- Simplex [Dantzig ’47]
- Ellipsoid method [Khatchiyan ’79]
- Inner-point method [Karmakar’ 84]
Given a set H of n halfspaces in \mathbb{R}^d and a direction c, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

Many algorithms known, e.g.:
- Simplex [Dantzig ’47]
- Ellipsoid method [Khatchiyan ’79]
- Inner-point method [Karmakar’ 84]

Good for instances where n and d are large.
Definition and Known Algorithms

Given a set H of n halfspaces in \mathbb{R}^d and a direction c, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

Many algorithms known, e.g.:
- Simplex [Dantzig '47]
- Ellipsoid method [Khatchiyan '79]
- Inner-point method [Karmakar' 84]

Good for instances where n and d are large.
We consider $d = 2$.
Definition and Known Algorithms

Given a set H of n halfspaces in \mathbb{R}^d and a direction c, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

Many algorithms known, e.g.:
- Simplex [Dantzig ’47]
- Ellipsoid method [Khatchiyan ’79]
- Inner-point method [Karmakar’ 84]

Good for instances where n and d are large.

We consider $d = 2$.

VERY important problem, e.g., in Operations Research.
[“Book” application: casting]
Definition and Known Algorithms

Given a set H of n halfspaces in \mathbb{R}^d and a direction c, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

Many algorithms known, e.g.:
- Simplex [Dantzig '47]
- Ellipsoid method [Khatchiyan '79]
- Inner-point method [Karmakar' 84]

Good for instances where n and d are large.

We consider $d = 2$.

VERY important problem, e.g., in Operations Research.
[“Book” application: casting]
Definition and Known Algorithms

Given a set H of n halfspaces in \mathbb{R}^d and a direction c, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

Many algorithms known, e.g.:
- Simplex [Dantzig ’47]
- Ellipsoid method [Khatchiyan ’79]
- Inner-point method [Karmakar’ 84]

Good for instances where n and d are large.

We consider $d = 2$.

VERY important problem, e.g., in Operations Research.

[“Book” application: casting]
Definition and Known Algorithms

Given a set H of n halfspaces in \mathbb{R}^d and a direction c, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

Many algorithms known, e.g.:
- Simplex [Dantzig '47]
- Ellipsoid method [Khatchiyan '79]
- Inner-point method [Karmakar' 84]

Good for instances where n and d are large.

We consider $d = 2$.

VERY important problem, e.g., in Operations Research.
["Book" application: casting]
Definition and Known Algorithms

Given a set H of n halfspaces in \mathbb{R}^d and a direction c, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

Many algorithms known, e.g.:
- Simplex [Dantzig ’47]
- Ellipsoid method [Khatchiyan ’79]
- Inner-point method [Karmakar’ 84]

Good for instances where n and d are large.

We consider $d = 2$.

VERY important problem, e.g., in Operations Research.
[“Book” application: casting]
Definition and Known Algorithms

Given a set H of n halfspaces in \mathbb{R}^d and a direction c, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

Many algorithms known, e.g.:
- Simplex [Dantzig ’47]
- Ellipsoid method [Khatchiyan ’79]
- Inner-point method [Karmakar’ 84]

Good for instances where n and d are large.

We consider $d = 2$.

VERY important problem, e.g., in Operations Research.
[“Book” application: casting]

\[\bigcap H = \emptyset \quad \bigcap H \text{ unbd. in dir. } c \]
Definition and Known Algorithms

Given a set H of n halfspaces in \mathbb{R}^d and a direction c, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

Many algorithms known, e.g.:
- Simplex [Dantzig ’47]
- Ellipsoid method [Khatchiyan ’79]
- Inner-point method [Karmakar’ 84]

Good for instances where n and d are large.

We consider $d = 2$.

VERY important problem, e.g., in Operations Research.
[“Book” application: casting]
Definition and Known Algorithms

Given a set H of n halfspaces in \mathbb{R}^d and a direction c, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

Many algorithms known, e.g.:

- Simplex \ [Dantzig ‘47]
- Ellipsoid method \ [Khatchiyan ’79]
- Inner-point method \ [Karmakar’ 84]

Good for instances where n and d are large.

We consider $d = 2$.

VERY important problem, e.g., in Operations Research.

[“Book” application: casting]

\[\bigcap H = \varnothing \quad \bigcap H \text{ unbd. in dir. } c \]
Definition and Known Algorithms

Given a set H of n halfspaces in \mathbb{R}^d and a direction c, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

Many algorithms known, e.g.:
- Simplex [Dantzig '47]
- Ellipsoid method [Khatchiyan '79]
- Inner-point method [Karmakar '84]

Good for instances where n and d are large.

We consider $d = 2$.

VERY important problem, e.g., in Operations Research. ["Book" application: casting]

\[\bigcap H = \emptyset \quad \bigcap H \text{ unbounded in dir. } c \quad \text{set of optima: segment} \quad \bigcap H \text{ bounded.} \]
Definition and Known Algorithms

Given a set H of n halfspaces in \mathbb{R}^d and a direction c, find a point $x \in \bigcap H$ such that cx is maximum (or minimum).

Many algorithms known, e.g.:
- Simplex [Dantzig ’47]
- Ellipsoid method [Khatchiyan ’79]
- Inner-point method [Karmakar’ 84]

Good for instances where n and d are large.

We consider $d = 2$.

VERY important problem, e.g., in Operations Research.
[“Book” application: casting]

$\bigcap H$ bounded.
First Approach

- compute $\cap H$ iteratively
First Approach

- **compute** $\cap H$ **iteratively**

- **walk** $\partial (\cap H)$, find vertex x w/ cx maximum, $O(n)$ time
First Approach

- compute \(\cap H \) iteratively
- walk \(\partial (\cap H) \), find vertex \(x \) w/ \(c_x \) maximum, \(O(n) \) time

IntersectHalfplanes(\(H \))

Let \(H = (h_1, \ldots, h_n) \)
\[C \leftarrow h_1 \]
\[\text{foreach } i \text{ from } 2 \text{ to } n \text{ do} \]
\[C \leftarrow C \cap h_i \]
\[\text{return } C \]
First Approach

- compute $\bigcap H$ iteratively
- walk $\partial (\bigcap H)$, find vertex x w/ cx maximum, $O(n)$ time

```plaintext
IntersectHalfplanes(H)

Let $H = (h_1, \ldots, h_n)$
$C \leftarrow h_1$

foreach $i$ from 2 to $n$ do
    $C \leftarrow C \cap h_i$
return $C$
```

Running time:
First Approach

- compute $\bigcap H$ iteratively
- walk $\partial (\bigcap H)$, find vertex x w/ cx maximum, $O(n)$ time

IntersectHalfplanes(H)

Let $H = (h_1, \ldots, h_n)$
$C \leftarrow h_1$
$\text{foreach } i \text{ from } 2 \text{ to } n \text{ do}$
$\quad C \leftarrow C \cap h_i$
return C

Running time: $T_{IH}(n) = n \cdot $ [Blank]

How??
First Approach

• compute $\cap H$ iteratively

• walk $\partial (\cap H)$, find vertex x w/ cx maximum, $O(n)$ time

```
IntersectHalfplanes(H)

Let $H = (h_1, \ldots, h_n)$
C ← $h_1$
foreach $i$ from 2 to $n$ do
  C ← C $\cap$ $h_i$
return C
```

$T_{IH}(n) = n \cdot$ How??

$C :=$ chain of line segments (s_1, \ldots, s_t)
First Approach

- compute $\bigcap H$ iteratively
- walk $\partial (\bigcap H)$, find vertex x w/ cx maximum, $O(n)$ time

```plaintext
IntersectHalfplanes(H)

Let $H = (h_1, \ldots, h_n)$

$C \leftarrow h_1$

foreach $i$ from 2 to $n$ do

$C \leftarrow C \cap h_i$

return $C$
```

Running time: $T_{IH}(n) = n$. How??

$C :=$ chain of line segments (s_1, \ldots, s_t)

Walk around C to find $s_j, s_j' \in C$ intersecting h_i
First Approach

- compute $\cap H$ iteratively
- walk $\partial (\cap H)$, find vertex x w/ cx maximum, $O(n)$ time

IntersectHalfplanes(H)

Let $H = (h_1, \ldots, h_n)$

$C \leftarrow h_1$

foreach i from 2 to n do

$C \leftarrow C \cap h_i$

return C

Running time: $T_{IH}(n) = n$. How??

C := chain of line segments (s_1, \ldots, s_t)

Walk around C to find $s_j, s_j' \in C$ intersecting h_i

Update C
First Approach

- compute $\bigcap H$ iteratively
- walk $\partial (\bigcap H)$, find vertex x w/ cx maximum, $O(n)$ time

IntersectHalfplanes(H)

Let $H = (h_1, \ldots, h_n)$

$C \leftarrow h_1$

foreach i from 2 to n

$C \leftarrow C \cap h_i$

return C

Running time: $T_{IH}(n) = n \cdot O(n)$

$C :=$ chain of line segments (s_1, \ldots, s_t)

Walk around C to find $s_j, s_j' \in C$ intersecting h_i

Update C
First Approach

• compute $\cap H$ iteratively

• walk $\partial (\cap H)$, find vertex x w/ cx maximum, $O(n)$ time

IntersectHalfplanes(H)

Let $H = (h_1, \ldots, h_n)$

$C \leftarrow h_1$

foreach i from 2 to n do

$C \leftarrow C \cap h_i$

return C

$C := \text{chain of line segments } (s_1, \ldots, s_t)$

Walk around C to find $s_j, s_j' \in C$ intersecting h_i

Update C

Running time: $T_{IH}(n) = n \cdot O(n)$

Total Time: $O(n^2)$:(

First Approach

- compute $\cap H$ iteratively
- walk $\partial (\cap H)$, find vertex x w/ cx maximum, $O(n)$ time

```
IntersectHalfplanes(H)
Let $H = (h_1, \ldots, h_n)$
$C \leftarrow h_1$
foreach $i$ from 2 to $n$ do
  $C \leftarrow C \cap h_i$
return $C$
```

$T_{IH}(n) = n \cdot O(n)$

Total Time: $O(n^2)$

Exercise: Compute $C \cap h_i$ faster.
Second Approach

• compute $\cap H$ via divide and conquer

• walk $\partial (\cap H)$, find vertex x w/ cx maximum, $O(n)$ time
Second Approach

- compute $\bigcap H$ via divide and conquer
- walk $\partial (\bigcap H)$, find vertex x w/ cx maximum, $O(n)$ time

IntersectHalfplanes(H)

```java
if |$H$| = 1 then
    $C \leftarrow h$, where $\{h\} = H$
else

return $C$
```
Second Approach

- compute $\cap H$ via divide and conquer
- walk $\partial (\cap H)$, find vertex x w/ cx maximum, $O(n)$ time

\[
\text{IntersectHalfplanes}(H) \ni \\
\text{if } |H| = 1 \text{ then} \\
\quad C \leftarrow h, \text{ where } \{h\} = H \\
\text{else} \\
\quad \text{split } H \text{ into sets } H_1 \text{ and } H_2 \text{ with } |H_1|, |H_2| \approx |H|/2 \\
\quad C_1 \leftarrow \text{IntersectHalfplanes}(H_1) \\
\quad C_2 \leftarrow \text{IntersectHalfplanes}(H_2) \\
\quad C \leftarrow \text{IntersectConvexRegions}(C_1, C_2) \\
\text{return } C
\]
Second Approach

- compute $\cap H$ via divide and conquer
- walk $\partial (\cap H)$, find vertex x w/ cx maximum, $O(n)$ time

IntersectHalfplanes(H)

```plaintext
if $|H| = 1$ then
  $C \leftarrow h$, where $\{h\} = H$
else
  split $H$ into sets $H_1$ and $H_2$ with $|H_1|, |H_2| \approx |H|/2$
  $C_1 \leftarrow \text{IntersectHalfplanes}(H_1)$
  $C_2 \leftarrow \text{IntersectHalfplanes}(H_2)$
  $C \leftarrow \text{IntersectConvexRegions}(C_1, C_2)$
return $C$
```

Running time:

- walk $\partial (\cap H)$, find vertex x w/ cx maximum, $O(n)$ time
Second Approach

- compute $\bigcap H$ via divide and conquer
- walk $\partial (\bigcap H)$, find vertex x w/ cx maximum, $O(n)$ time

IntersectHalfplanes(H)

\[
\text{if } |H| = 1 \text{ then} \\
C \leftarrow h, \text{ where } \{h\} = H \\
\text{else} \\
\text{split } H \text{ into sets } H_1 \text{ and } H_2 \text{ with } |H_1|, |H_2| \approx |H|/2 \\
C_1 \leftarrow \text{IntersectHalfplanes}(H_1) \\
C_2 \leftarrow \text{IntersectHalfplanes}(H_2) \\
C \leftarrow \text{IntersectConvexRegions}(C_1, C_2) \\
\text{return } C
\]

Running time: $T_{IH}(n) = 2T_{IH}(n/2) + T_{ICR}(n)$
Second Approach

- compute $\cap H$ via divide and conquer
- walk $\partial (\cap H)$, find vertex x w/ cx maximum, $O(n)$ time

IntersectHalfplanes(H)

```plaintext
if $|H| = 1$ then
    $C \leftarrow h$, where $\{h\} = H$
else
    split $H$ into sets $H_1$ and $H_2$ with $|H_1|, |H_2| \approx |H|/2$
    $C_1 \leftarrow \text{IntersectHalfplanes}(H_1)$
    $C_2 \leftarrow \text{IntersectHalfplanes}(H_2)$
    $C \leftarrow \text{IntersectConvexRegions}(C_1, C_2)$
return $C$
```

Running time:

$$T_{IH}(n) = 2T_{IH}(n/2) + T_{ICR}(n)$$
Second Approach

- compute $\cap H$ via divide and conquer
- walk $\partial (\cap H)$, find vertex x w/ cx maximum, $O(n)$ time

```
IntersectHalfplanes(H)
if |H| = 1 then
    C ← h, where \{h\} = H
else
    split $H$ into sets $H_1$ and $H_2$ with $|H_1|, |H_2| \approx |H|/2$
    $C_1$ ← IntersectHalfplanes($H_1$)
    $C_2$ ← IntersectHalfplanes($H_2$)
    $C$ ← IntersectConvexRegions($C_1, C_2$)
return C
```

Running time: $T_{IH}(n) = 2T_{IH}(n/2) + T_{ICR}(n)$

How complex can the new region be?
Second Approach

- compute $\bigcap H$ via divide and conquer
- walk $\partial (\bigcap H)$, find vertex x w/ cx maximum, $O(n)$ time

IntersectHalfplanes(H)

if $|H| = 1$ then
 $C \leftarrow h$, where $\{h\} = H$
else
 split H into sets H_1 and H_2 with $|H_1|, |H_2| \approx |H|/2$
 $C_1 \leftarrow \text{IntersectHalfplanes}(H_1)$
 $C_2 \leftarrow \text{IntersectHalfplanes}(H_2)$
 $C \leftarrow \text{IntersectConvexRegions}(C_1, C_2)$
return C

Running time: $T_{IH}(n) = 2T_{IH}(n/2) + T_{ICR}(n)$

How complex can the new region be?
Intersecting Convex Regions

C_1 \hspace{1cm} C_2
Intersecting Convex Regions

\(C_1 \)

\(C_2 \)

\(\ell \)
Intersecting Convex Regions

How many segments on ℓ?
Intersecting Convex Regions

How many segments on ℓ?
Intersecting Convex Regions

How many segments on \(\ell \)?
Intersecting Convex Regions

How many segments on \(\mathcal{L} \)?
Intersecting Convex Regions

\(\ell \)

- \(\overline{\text{leftEdge}\, C_1} \)
- \(\overline{\text{left}\,(C_1)} \)
- \(\overline{\text{right}\,(C_1)} \)
- \(\overline{\text{rightEdge}\, C_1} \)
- \(\overline{\text{leftEdge}\, C_2} \)
- \(\overline{\text{right}\,(C_2)} \)
- \(\overline{\text{rightEdge}\, C_2} \)
- \(\overline{\text{Lleft}\,(C_2)} \)
- \(\overline{\text{Lright}\,(C_2)} \)

How many segments on \(\ell \)?

Is > 4 possible?
Intersecting Convex Regions

How many segments on ℓ?

$\mathcal{L}_{\text{left}}(C_1)$

$\mathcal{L}_{\text{left}}(C_2)$

$\mathcal{L}_{\text{right}}(C_1)$

$\mathcal{L}_{\text{right}}(C_2)$

leftEdgeC_1

rightEdgeC_1

leftEdgeC_2

rightEdgeC_2

C_1

C_2

Is > 4 possible?

No!
Intersecting Convex Regions

How does this help us?

Is \(> 4 \) possible?

No!

How many segments on \(\ell \)?

\(\mathcal{L}_{\text{left}}(C_1) \)

leftEdge\(C_1 \)

leftEdge\(C_2 \)

rightEdge\(C_1 \)

rightEdge\(C_2 \)

\(\mathcal{L}_{\text{right}}(C_1) \)

\(\mathcal{L}_{\text{right}}(C_2) \)

\(C_1 \)

\(C_2 \)
Theorem. The intersection of two convex polygonal regions can be computed in linear time.
Sweep-Line Algorithm
Sweep-Line Algorithm

- C_1
- C_2

sweep line

events
Sweep-Line Algorithm
Sweep-Line Algorithm

The diagram illustrates two curves, C_1 and C_2, with event points and line segments connecting them. The event points are marked along the vertical axis.
Sweep-Line Algorithm
Sweep-Line Algorithm

next event?

C1

C2
Sweep-Line Algorithm

next event?

events

C_1

C_2
Sweep-Line Algorithm

C1

C2

events
Sweep-Line Algorithm

C_1

C_2

events
Sweep-Line Algorithm

C_1

C_2

events
Sweep-Line Algorithm

C_1

C_2
Sweep-Line Algorithm

C_1 C_2

events
Sweep-Line Algorithm
Sweep-Line Algorithm

next event?

C_1

C_2

events
Sweep-Line Algorithm

next event?

C_1

C_2

events
Sweep-Line Algorithm

\[C_1 \]

\[C_2 \]
Sweep-Line Algorithm

Done, since we have finished C!
Data Structures

1) event (-point) queue Q

2) (sweep-line) status \mathcal{T}
Data Structures

1) event (-point) queue Q

$p \prec q \iff \text{def.}$

2) (sweep-line) status T
Data Structures

1) event (-point) queue \mathcal{Q}

$p \prec q \iff_{\text{def.}} y_p > y_q$

2) (sweep-line) status \mathcal{T}
Data Structures

1) event (-point) queue \mathcal{Q}

\[p \prec q \iff \text{def.} \quad y_p > y_q \]

2) (sweep-line) status \mathcal{T}
Data Structures

1) event (-point) queue \mathcal{Q}

$p \prec q \iff_{\text{def.}} y_p > y_q \quad \text{or} \quad (y_p = y_q \text{ and } x_p < x_q)$

2) (sweep-line) status \mathcal{T}
Data Structures

1) event (-point) queue Q

$p \prec q \iff_{\text{def.}} y_p > y_q \quad \text{or} \quad (y_p = y_q \text{ and } x_p < x_q)$

2) (sweep-line) status T
Data Structures

1) event (-point) queue Q

\[p \prec q \iff_{\text{def.}} y_p > y_q \quad \text{or} \quad (y_p = y_q \text{ and } x_p < x_q) \]

2) (sweep-line) status T
1) event (-point) queue Q

\[p \prec q \iff y_p > y_q \quad \text{or} \quad (y_p = y_q \text{ and } x_p < x_q) \]

Store event pts in sorted order acc. to \prec

2) (sweep-line) status \mathcal{T}
Data Structures

1) event (-point) queue Q

$p \prec q \iff_{\text{def.}} y_p > y_q \quad \text{or} \quad (y_p = y_q \text{ and } x_p < x_q)$

Store event pts in sorted order acc. to \prec ... linear time?

2) (sweep-line) status \mathcal{T}
Data Structures

1) event (-point) queue Q

\[p \prec q \iff_{\text{def.}} y_p > y_q \quad \text{or} \quad (y_p = y_q \text{ and } x_p < x_q) \]

Store event pts in \textit{sorted order} acc. to \prec

nextEvent() : either, next point (by \prec), or the intersection pt. of two active segments (below the sweep-line)

2) (sweep-line) status T
1) event (-point) queue Q

$p \prec q \iff_{\text{def.}} y_p > y_q \quad \text{or} \quad (y_p = y_q \text{ and } x_p < x_q)$

Store event pts in *sorted order* acc. to \prec

nextEvent(): either, next point (by \prec), or the intersection pt. of two active segments (below the sweep-line)

... runtime?

2) (sweep-line) status \mathcal{T}
Data Structures

1) event (-point) queue \mathcal{Q}

\[p \prec q \iff \text{def. } y_p > y_q \quad \text{or} \quad (y_p = y_q \text{ and } x_p < x_q) \]

Store event pts in sorted order acc. to \prec

nextEvent(): either, next point (by \prec), or the intersection pt. of two active segments (below the sweep-line)

... runtime? $O(1)$, since num. active segments ≤ 4 :)

2) (sweep-line) status \mathcal{T}
Data Structures

1) event (-point) queue Q

\[p \prec q \iff_{\text{def.}} y_p > y_q \text{ or } (y_p = y_q \text{ and } x_p < x_q) \]

Store event pts in \emph{sorted order} acc. to \prec

nextEvent() : either, next point (by \prec), or the intersection pt. of two active segments (below the sweep-line)

... runtime? $O(1)$, since num. active segments ≤ 4 :)

2) (sweep-line) status \mathcal{T}
Data Structures

1) event (-point) queue Q

\[p \prec q \iff \text{def. } y_p > y_q \quad \text{or} \quad (y_p = y_q \text{ and } x_p < x_q) \]

Store event pts in sorted order acc. to \prec

nextEvent() : either, next point (by \prec), or the intersection pt. of two active segments (below the sweep-line)

... runtime? $O(1)$, since num. active segments ≤ 4 :)

2) (sweep-line) status \mathcal{T}

Store the segments intersected by ℓ in left-to-right order.
Data Structures

1) event (-point) queue Q

$p ≺ q \iff_{\text{def.}} y_p > y_q \text{ or } (y_p = y_q \text{ and } x_p < x_q)$

Store event pts in \textit{sorted order} acc. to $≺$

nextEvent() : either, next point (by $≺$), or the intersection pt. of two active segments (below the sweep-line)

... runtime? $O(1)$, since num. active segments ≤ 4 :)

2) (sweep-line) status \mathcal{T}

Store the segments intersected by ℓ in left-to-right order.
Also, maintain the new convex hull.
Second Approach: Halfplane Intersection

Theorem. The intersection of two convex polygonal regions can be computed in linear time.
Second Approach: Halfplane Intersection

Theorem. The intersection of two convex polygonal regions can be computed in linear time.

```plaintext
IntersectHalfplanes(H)

if |H| = 1 then C ← h, where \{h\} = H
else
    split H into sets H₁ and H₂ with |H₁|, |H₂| ≈ |H|/2
    C₁ ← IntersectHalfplanes(H₁)
    C₂ ← IntersectHalfplanes(H₂)
    C ← IntersectConvexRegions(C₁, C₂)

return C
```

Running time:

\[T_{IH}(n) = 2T_{IH}(n/2) + T_{ICR}(n) \]
Theorem. The intersection of two convex polygonal regions can be computed in linear time.

$$\text{IntersectHalfplanes}(H)$$

\[
\begin{align*}
\text{if } |H| = 1 \text{ then } C &\leftarrow h, \text{ where } \{h\} = H \\
\text{else} \\
\quad \text{split } H \text{ into sets } H_1 \text{ and } H_2 \text{ with } |H_1|, |H_2| \approx |H|/2 \\
\quad C_1 &\leftarrow \text{IntersectHalfplanes}(H_1) \\
\quad C_2 &\leftarrow \text{IntersectHalfplanes}(H_2) \\
\quad C &\leftarrow \text{IntersectConvexRegions}(C_1, C_2)
\end{align*}
\]

return C

Running time: $T_{\text{IH}}(n) = 2T_{\text{IH}}(n/2) + T_{\text{ICR}}(n)$

Corollary. The intersection of n half planes can be computed in $O(n \log n)$ time.
Second Approach: Halfplane Intersection

Theorem. The intersection of two convex polygonal regions can be computed in linear time.

\[
\text{IntersectHalfplanes}(H)
\begin{align*}
\text{if } |H| &= 1 \text{ then } C \leftarrow h, \text{ where } \{h\} = H \\
\text{else} \\
\quad &\text{split } H \text{ into sets } H_1 \text{ and } H_2 \text{ with } |H_1|, |H_2| \approx |H|/2 \\
\quad &\quad C_1 \leftarrow \text{IntersectHalfplanes}(H_1) \\
\quad &\quad C_2 \leftarrow \text{IntersectHalfplanes}(H_2) \\
\quad &\quad C \leftarrow \text{IntersectConvexRegions}(C_1, C_2)
\end{align*}
\]

Running time: \[T_{IH}(n) = 2T_{IH}(n/2) + T_{ICR}(n) \]

Corollary. The intersection of \(n \) half planes can be computed in \(O(n \log n) \) time.

Can we do better?
A Small Trick: Make Solution Unique

\[\cap H = \emptyset \]
\[\cap H \text{ unbd. in dir. } c \]
\[\cap H \text{ bounded.} \]
A Small Trick: Make Solution Unique

\[\bigcap H = \emptyset \quad \bigcap H \text{ unbd. in dir. } c \quad \bigcap H \text{ bounded.} \]

- Add two bounding halfplanes \(m_1 \) and \(m_2 \)
A Small Trick: Make Solution Unique

\[\cap H = \emptyset \quad \cap H \text{ unbounded in dir. } c \quad \cap H \text{ bounded.} \]

- Add two bounding halfplanes \(m_1 \) and \(m_2 \)
A Small Trick: Make Solution Unique

\[\bigcap H = \emptyset \]
\[\bigcap H \text{ unbd. in dir. } c \]
\[\bigcap H \text{ bounded.} \]

- Add two bounding halfplanes \(m_1 \) and \(m_2 \)
A Small Trick: Make Solution Unique

- \(\cap H = \emptyset \)
- \(\cap H \) unbd. in dir. \(c \)
- \(\cap H \) bounded.

• Add two bounding halfplanes \(m_1 \) and \(m_2 \)
A Small Trick: Make Solution Unique

\[\cap H = \emptyset \]

\[\cap H \text{ unbd. in dir. } c \]

\[\cap H \text{ bounded.} \]

• Add two bounding halfplanes \(m_1 \) and \(m_2 \)

\[
m_1 = \begin{cases}
x \leq M & \text{if } c_x > 0, \\
x \geq M & \text{otherwise,}
\end{cases}
\]

for some sufficiently large \(M \)
A Small Trick: Make Solution Unique

\[\bigcap H = \emptyset \]

\[\bigcap H \text{ unbd. in dir. } c \]

\[\bigcap H \text{ bounded.} \]

- Add two bounding halfplanes \(m_1 \) and \(m_2 \)

\[
m_1 = \begin{cases} x \leq M & \text{if } c_x > 0, \\ x \geq M & \text{otherwise,} \end{cases} \text{ for some sufficiently large } M
\]

\[
m_2 = \begin{cases} y \leq M & \text{if } c_y > 0, \\ y \geq M & \text{otherwise.} \end{cases}
\]
A Small Trick: Make Solution Unique

\[\bigcap H = \emptyset \]
\[\bigcap H \text{ unbd. in dir. } c \]
\[\bigcap H \text{ bounded.} \]

- Add two bounding halfplanes \(m_1 \) and \(m_2 \)

\[m_1 = \begin{cases}
 x \leq M & \text{if } c_x > 0, \\
 x \geq M & \text{otherwise,}
\end{cases} \]

\[m_2 = \begin{cases}
 y \leq M & \text{if } c_y > 0, \\
 y \geq M & \text{otherwise.}
\end{cases} \]

for some sufficiently large \(M \)

Idea: \(M \) based on obj.fct. \(c \).
see §4.5 of CG: A&A for more on unbounded LPs.
A Small Trick: Make Solution Unique

\[\bigcap H = \emptyset \quad \bigcap H \text{ unbd. in dir. } c \quad \bigcap H \text{ bounded.} \]

- Add two bounding halfplanes \(m_1 \) and \(m_2 \)

\[
m_1 = \begin{cases}
 x \leq M & \text{if } c_x > 0, \\
 x \geq M & \text{otherwise,}
\end{cases}
\]

\[
m_2 = \begin{cases}
 y \leq M & \text{if } c_y > 0, \\
 y \geq M & \text{otherwise.}
\end{cases}
\]

- Take the lexicographically largest solution.

Idea: \(M \) based on obj.fct. \(c \).
see §4.5 of CG: A&A for more on unbounded LPs.
A Small Trick: Make Solution Unique

- Add two bounding halfplanes m_1 and m_2

$$m_1 = \begin{cases}
 x \leq M & \text{if } cx > 0, \\
 x \geq M & \text{otherwise,}
\end{cases}$$

for some sufficiently large M

$$m_2 = \begin{cases}
 y \leq M & \text{if } cy > 0, \\
 y \geq M & \text{otherwise.}
\end{cases}$$

- Take the lexicographically largest solution.

Idea: M based on obj.fct. c. see §4.5 of CG: A&A for more on unbounded LPs.
A Small Trick: Make Solution Unique

\(\cap H = \emptyset \quad \cap H \text{ unbd. in dir. } c \quad \cap H \text{ bounded.} \)

- Add two bounding halfplanes \(m_1 \) and \(m_2 \)

\[
m_1 = \begin{cases}
 x \leq M & \text{if } c_x > 0, \\
 x \geq M & \text{otherwise,}
\end{cases}
\]

for some sufficiently large \(M \)

\[
m_2 = \begin{cases}
 y \leq M & \text{if } c_y > 0, \\
 y \geq M & \text{otherwise.}
\end{cases}
\]

- Take the lexicographically largest solution.

\(\Rightarrow \) Set of solutions is either empty or a uniquely defined pt.

Idea: \(M \) based on obj.fct. \(c \).
see §4.5 of CG: A&A for more on unbounded LPs.
Incremental Approach

Idea: Don’t compute $\cap H$, but just *one* (optimal) point!
Incremental Approach

Idea: Don’t compute $\cap H$, but just *one* (optimal) point!

\[
2DBoundedLP(H, c, m_1, m_2)
\]

\[
H_0 = \{m_1, m_2\}
\]

\[
v_0 \leftarrow \text{corner of } m_1 \cap m_2
\]

\[
\text{return } v_n
\]
Incremental Approach

Idea: Don’t compute $\cap H$, but just *one* (optimal) point!

\[
2D\text{BoundedLP}(H, c, m_1, m_2)
\]

\[
\begin{align*}
H_0 &= \{m_1, m_2\} \\
\nu_0 &\leftarrow \text{corner of } m_1 \cap m_2 \\
\text{for } i &\leftarrow 1 \text{ to } n \text{ do} \\
&\quad \text{if } \nu_{i-1} \in h_i \text{ then} \\
\text{return } \nu_n
\end{align*}
\]
Incremental Approach

Idea: Don’t compute $\cap H$, but just one (optimal) point!

$2DBoundedLP(H, c, m_1, m_2)$

$H_0 = \{m_1, m_2\}$
$v_0 \leftarrow$ corner of $m_1 \cap m_2$

for $i \leftarrow 1$ to n do
 if $v_{i-1} \in h_i$ then
 $v_i \leftarrow$
 else
 $v_i \leftarrow$

$H_i = H_{i-1} \cup \{h_i\}$

return v_n
Incremental Approach

Idea: Don’t compute $\cap H$, but just one (optimal) point!

\[
2DBoundedLP(H, c, m_1, m_2)
\]

\[
\begin{align*}
H_0 &= \{m_1, m_2\} \\
v_0 &\leftarrow \text{corner of } m_1 \cap m_2 \\
\text{for } i &\leftarrow 1 \text{ to } n \text{ do} \\
&\quad \text{if } v_{i-1} \in h_i \text{ then} \\
&\quad \quad v_i \leftarrow v_{i-1} \\
&\quad \text{else} \\
&\quad \quad v_i \leftarrow \ldots \\
&\text{ } \\
&H_i = H_{i-1} \cup \{h_i\} \\
\text{return } v_n
\end{align*}
\]
Incremental Approach

Idea: Don’t compute $\cap H$, but just one (optimal) point!

```
2DBoundedLP(H, c, m₁, m₂)

H₀ = \{m₁, m₂\}
v₀ ← corner of m₁ \cap m₂
for i ← 1 to n do
    if vᵢ₋₁ ∈ hᵢ then
        vᵢ ← vᵢ₋₁
    else
        vᵢ ← 1DBoundedLP(π∂hᵢ(Hᵢ₋₁), π∂hᵢ(c))
    if vᵢ = nil then
        return nil
    Hi = Hᵢ₋₁ ∪ \{hᵢ\}
return vₙ
```
Incremental Approach

Idea: Don’t compute $\cap H$, but just one (optimal) point!

2DBoundedLP(H, c, m_1, m_2)

\[
H_0 = \{m_1, m_2\}
\]
\[
v_0 \leftarrow \text{corner of } m_1 \cap m_2
\]
\[\text{for } i \leftarrow 1 \text{ to } n \text{ do}\]
\[
\quad \text{if } v_{i-1} \in h_i \text{ then}\n\quad \quad v_i \leftarrow v_{i-1}
\]
\[
\text{else}
\quad v_i \leftarrow 1\text{DBoundedLP}(\pi_{\partial h_i}(H_{i-1}), \pi_{\partial h_i}(c))
\]
\[
\quad \text{if } v_i = \text{nil } \text{ then}\n\quad \quad \text{return nil}
\]
\[
\quad H_i = H_{i-1} \cup \{h_i\}
\]
\[\text{return } v_n\]
Incremental Approach

Idea: Don’t compute $\cap H$, but just one (optimal) point!

\[
\text{2DBoundedLP}(H, c, m_1, m_2)
\]

\[
H_0 = \{m_1, m_2\}
\]

\[
v_0 \leftarrow \text{corner of } m_1 \cap m_2
\]

\[
\text{for } i \leftarrow 1 \text{ to } n \text{ do}
\]

\[
\begin{align*}
\quad & \text{if } v_{i-1} \in h_i \text{ then} \\
& \quad v_i \leftarrow v_{i-1}
\end{align*}
\]

\[
\begin{align*}
\quad & \text{else} \\
& \quad v_i \leftarrow \text{1DBoundedLP}\left(\pi_{\partial h_i}(H_{i-1}), \pi_{\partial h_i}(c)\right)
\end{align*}
\]

\[
\begin{align*}
\quad & \text{if } v_i = \text{nil} \text{ then} \\
& \quad \text{return } \text{nil}
\end{align*}
\]

\[
H_i = H_{i-1} \cup \{h_i\}
\]

\[
\text{return } v_n
\]
Incremental Approach

Idea: Don’t compute $\cap H$, but just one (optimal) point!

\[\text{2DBoundedLP}(H, c, m_1, m_2)\]

\[
H_0 = \{m_1, m_2\}
\]

\[
v_0 \leftarrow \text{corner of } m_1 \cap m_2
\]

for \(i \leftarrow 1\) to \(n\) do

\[
\begin{cases}
\text{if } v_{i-1} \in h_i \text{ then} & v_i \leftarrow v_{i-1} \\
\text{else} & v_i \leftarrow \text{1DBoundedLP}(\pi_{\partial h_i}(H_{i-1}), \pi_{\partial h_i}(c))
\end{cases}
\]

if \(v_i = \text{nil}\) then

\[
\text{return } \text{nil}
\]

\[H_i = H_{i-1} \cup \{h_i\}\]

return \(v_n\)
Incremental Approach

Idea: Don’t compute $\cap H$, but just one (optimal) point!

2DBoundedLP(H, c, m_1, m_2)

$$H_0 = \{m_1, m_2\}$$
$$v_0 \leftarrow \text{corner of } m_1 \cap m_2$$

for $i \leftarrow 1$ to n do

if $v_{i-1} \in h_i$ then

$v_i \leftarrow v_{i-1}$

else

$v_i \leftarrow 1DBoundedLP(\pi_{\partial h_i}(H_{i-1}), \pi_{\partial h_i}(c))$

if $v_i = \text{nil}$ then

return nil

return v_n
Incremental Approach

Idea: Don’t compute $\bigcap H$, but just one (optimal) point!

2DBoundedLP(H, c, m_1, m_2)

$H_0 = \{m_1, m_2\}$
$v_0 \leftarrow \text{corner of } m_1 \cap m_2$

for $i \leftarrow 1$ to n do
 if $v_{i-1} \in h_i$ then
 $v_i \leftarrow v_{i-1}$
 else
 $v_i \leftarrow 1DBoundedLP(\pi_{\partial h_i}(H_{i-1}), \pi_{\partial h_i}(c))$
 if $v_i = \text{nil}$ then
 return nil
 $H_i = H_{i-1} \cup \{h_i\}$
 return v_n
Incremental Approach

Idea: Don’t compute ∩ H, but just one (optimal) point!

2DBoundedLP\((H, c, m_1, m_2)\)

\[
\begin{align*}
H_0 &= \{m_1, m_2\} \\
v_0 &\leftarrow \text{corner of } m_1 \cap m_2 \\
\text{for } i \leftarrow 1 \text{ to } n \text{ do} \\
&\quad \text{if } v_{i-1} \in h_i \text{ then} \\
&\quad \quad v_i \leftarrow v_{i-1} \\
&\quad \text{else} \\
&\quad \quad v_i \leftarrow \text{1DBoundedLP}\left(\pi_{\partial h_i}(H_{i-1}), \pi_{\partial h_i}(c)\right) \\
&\quad \quad \text{if } v_i = \text{nil} \text{ then} \\
&\quad \quad \quad \text{return nil} \\
&\quad \quad H_i = H_{i-1} \cup \{h_i\} \\
\text{return } v_n
\end{align*}
\]
Incremental Approach

Idea: Don’t compute $\cap H$, but just one (optimal) point!

\[2DBoundedLP(H, c, m_1, m_2)\]

\[
H_0 = \{m_1, m_2\}
\]

\[
v_0 \leftarrow \text{corner of } m_1 \cap m_2
\]

for $i \leftarrow 1$ to n do

if $v_{i-1} \in h_i$ then

\[
v_i \leftarrow v_{i-1}
\]

else

\[
v_i \leftarrow 1DBoundedLP(\pi_{\partial h_i}(H_{i-1}), \pi_{\partial h_i}(c))
\]

if $v_i = \text{nil}$ then

\[
\text{return nil}
\]

\[
H_i = H_{i-1} \cup \{h_i\}
\]

return v_n
Incremental Approach

Idea: Don’t compute $\cap H$, but just one (optimal) point!

$$2DBoundedLP(H, c, m_1, m_2)$$

$$H_0 = \{m_1, m_2\}$$

$$v_0 \leftarrow \text{corner of } m_1 \cap m_2$$

for $i \leftarrow 1$ to n do

if $v_{i-1} \in h_i$ then

$$v_i \leftarrow v_{i-1}$$

else

$$v_i \leftarrow 1DBoundedLP(\pi_{\partial h_i}(H_{i-1}), \pi_{\partial h_i}(c))$$

if $v_i = \text{nil}$ then

return nil

$H_i = H_{i-1} \cup \{h_i\}$

return v_n
Incremental Approach

Idea: Don’t compute \(\cap H \), but just one (optimal) point!

\[
H_0 = \{ m_1, m_2 \}
\]

\[
v_0 \leftarrow \text{corner of } m_1 \cap m_2
\]

for \(i \leftarrow 1 \) to \(n \) do

if \(v_{i-1} \in h_i \) then

\[
v_i \leftarrow v_{i-1}
\]

else

\[
v_i \leftarrow \text{1DBoundedLP}(\pi_{\partial h_i}(H_{i-1}), \pi_{\partial h_i}(c))
\]

if \(v_i = \text{nil} \) then

\[
\text{return nil}
\]

\[
H_i = H_{i-1} \cup \{ h_i \}
\]

return \(v_n \)
Incremental Approach

Idea: Don’t compute $\bigcap H$, but just one (optimal) point!

2DBoundedLP(\(H, c, m_1, m_2\))

- \(H_0 = \{m_1, m_2\}\)
- \(v_0 \leftarrow \text{corner of } m_1 \cap m_2\)
- For \(i \leftarrow 1\) to \(n\) do
 - If \(v_{i-1} \in h_i\) then
 - \(v_i \leftarrow v_{i-1}\)
 - Else
 - \(v_i \leftarrow 1\text{DBoundedLP} (\pi_{\partial h_i} (H_{i-1}), \pi_{\partial h_i} (c))\)
 - If \(v_i = \text{nil}\) then
 - Return nil
 - \(H_i = H_{i-1} \cup \{h_i\}\)
- Return \(v_n\)

w-c running time:
Incremental Approach

Idea: Don’t compute $\cap H$, but just one (optimal) point!

$2DBoundedLP(H, c, m_1, m_2)$

\[
H_0 = \{m_1, m_2\} \\
v_0 \leftarrow \text{corner of } m_1 \cap m_2 \\
\text{for } i \leftarrow 1 \text{ to } n \text{ do} \\
\quad \text{if } v_{i-1} \in h_i \text{ then} \\
\quad \quad \quad v_i \leftarrow v_{i-1} \\
\quad \text{else} \\
\quad \quad \quad v_i \leftarrow 1DBoundedLP(\pi_{\partial h_i}(H_{i-1}), \pi_{\partial h_i}(c)) \\
\quad \text{if } v_i = \text{nil} \text{ then} \\
\quad \quad \quad \text{return} \text{ nil} \\
\text{return } v_n \\
\]

∂h_i

$\pi_{\partial h_i}(c)$

w-c running time:
Incremental Approach

Idea: Don’t compute $\cap H$, but just one (optimal) point!

$2DBoundedLP(H, c, m_1, m_2)$

\[
\begin{align*}
H_0 &= \{m_1, m_2\} \\
v_0 &\leftarrow \text{corner of } m_1 \cap m_2 \\
\text{for } i \leftarrow 1 \text{ to } n \text{ do} \\
&\quad \text{if } v_{i-1} \in h_i \text{ then} \\
&\quad \quad v_i \leftarrow v_{i-1} \\
&\quad \text{else} \\
&\quad \quad v_i \leftarrow 1DBoundedLP(\pi_{\partial h_i}(H_{i-1}), \pi_{\partial h_i}(c)) \\
&\quad \quad \text{if } v_i = \text{nil} \text{ then} \\
&\quad \quad \quad \text{return nil} \\
&\quad \quad \text{H}_i = H_{i-1} \cup \{h_i\} \\
\text{return } v_n
\end{align*}
\]

w-c running time: $O(1)$
Incremental Approach

Idea: Don’t compute $\cap H$, but just one (optimal) point!

2DBoundedLP(H, c, m_1, m_2)

$H_0 = \{m_1, m_2\}$
$v_0 \leftarrow$ corner of $m_1 \cap m_2$

for $i \leftarrow 1$ to n do
 if $v_{i-1} \in h_i$ then
 $v_i \leftarrow v_{i-1}$
 else
 $v_i \leftarrow 1$DBoundedLP($\pi_{\partial h_i}(H_{i-1}), \pi_{\partial h_i}(c)$)
 if $v_i = \text{nil}$ then
 return nil
 $H_i = H_{i-1} \cup \{h_i\}$
 return v_n

w-c running time:

- $O(1)$
- $O(i)$

Idea: Don’t compute $\bigcap H$, but just one (optimal) point!
Incremental Approach

Idea: Don’t compute $\cap H$, but just one (optimal) point!

2DBoundedLP(H, c, m_1, m_2)

$H_0 = \{m_1, m_2\}$
$v_0 \leftarrow$ corner of $m_1 \cap m_2$

for $i \leftarrow 1$ to n do

if $v_{i-1} \in h_i$ then

$v_i \leftarrow v_{i-1}$

else

$v_i \leftarrow \text{1DBoundedLP}(\pi_{\partial h_i}(H_{i-1}), \pi_{\partial h_i}(c))$

if $v_i = \text{nil}$ then

return nil

$H_i = H_{i-1} \cup \{h_i\}$

return v_n

w-c running time:

$T(n) = \sum_{i=1}^{n} O(i) = O(n)$
Incremental Approach

Idea: Don’t compute $\cap H$, but just one (optimal) point!

2DBoundedLP(H, c, m_1, m_2)

$H_0 = \{m_1, m_2\}$
$v_0 \leftarrow$ corner of $m_1 \cap m_2$

for $i \leftarrow 1$ to n do

if $v_{i-1} \in h_i$ then

$v_i \leftarrow v_{i-1}$

else

$v_i \leftarrow 1$DBoundedLP$(\pi_{\partial h_i}(H_{i-1}), \pi_{\partial h_i}(c))$

if $v_i = \text{nil}$ then

return nil

$H_i = H_{i-1} \cup \{h_i\}$

return v_n

w-c running time:

$T(n) = \sum_{i=1}^{n} O(i) = O(n^2)$
Incremental Approach

Idea: Don’t compute $\cap H$, but just one (optimal) point!

Randomized

\[
2DBoundedLP(H, c, m_1, m_2)
\]

\[
H_0 = \{m_1, m_2\}
\]

\[
v_0 \leftarrow \text{corner of } m_1 \cap m_2
\]

\[
\text{for } i \leftarrow 1 \text{ to } n \text{ do}
\]

- if $v_{i-1} \in h_i$ then
 - $v_i \leftarrow v_{i-1}$
- else
 - $v_i \leftarrow 1DBoundedLP(\pi_{\partial h_i}(H_{i-1}), \pi_{\partial h_i}(c))$

 - if $v_i = \text{nil}$ then
 - return nil
 - else
 - $H_i = H_{i-1} \cup \{h_i\}$

return v_n

\[
O(1)
\]

\[
O(i)
\]

w-c running time:

\[
T(n) = \sum_{i=1}^{n} O(i) = O(n^2)
\]
Incremental Approach

Idea: Don’t compute $\cap H$, but just one (optimal) point!

Randomized

\[
2DBoundedLP(H, c, m_1, m_2)
\]

compute random permutation of H

\[H_0 = \{m_1, m_2\} \]

\[v_0 \leftarrow \text{corner of } m_1 \cap m_2 \]

for $i \leftarrow 1$ to n do

if $v_{i-1} \in h_i$ then

\[v_i \leftarrow v_{i-1} \]

else

\[v_i \leftarrow 1DBoundedLP(\pi_{\partial h_i}(H_{i-1}), \pi_{\partial h_i}(c)) \]

if $v_i = \text{nil}$ then

\[\text{return nil} \]

\[H_i = H_{i-1} \cup \{h_i\} \]

return v_n

\[
\begin{align*}
\text{w-c running time:} & \\
T(n) &= \sum_{i=1}^{n} O(i) = \\
&= O(n^2) \quad :-(
\end{align*}
\]
Theorem. The 2D bounded LP problem can be solved in $O(n)$ expected time.
Result

Theorem. The 2D bounded LP problem can be solved in $O(n)$ expected time.

Proof. Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random variable).
Theorem. The 2D bounded LP problem can be solved in $O(n)$ expected time.

Proof. Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random variable).

Then the expected running time is $E[T_{2d}(n)] = \ldots$
Result

Theorem. The 2D bounded LP problem can be solved in $O(n)$ expected time.

Proof. Let $X_i = \begin{cases}
1 & \text{if } v_{i-1} \notin h_i, \\
0 & \text{else.}
\end{cases}$ (indicator random variable).

Then the expected running time is

$$
E[T_{2d}(n)] = E[\sum_{i=1}^{n}(1 - X_i) \cdot O(1) + X_i \cdot O(i)]
$$
Theorem. The 2D bounded LP problem can be solved in $O(n)$ expected time.

Proof. Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random variable).

Then the expected running time is

$$E[T_{2d}(n)] = E[\sum_{i=1}^{n} (1 - X_i) \cdot O(1) + X_i \cdot O(i)]$$

$$= O(n) + \sum E[X_i] \cdot O(i)$$
Result

Theorem. The 2D bounded LP problem can be solved in $O(n)$ expected time.

Proof. Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random variable).

Then the expected running time is

$$E[T_{2d}(n)] = E\left[\sum_{i=1}^{n} (1 - X_i) \cdot O(1) + X_i \cdot O(i)\right]$$

$$= O(n) + \sum E[X_i] \cdot O(i)$$

$$= O(n) + \sum \Pr[X_i = 1] \cdot O(i)$$
Result

Theorem. The 2D bounded LP problem can be solved in $O(n)$ expected time.

Proof. Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \not\in h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random variable).

Then the expected running time is

\[
E[T_{2d}(n)] = E[\sum_{i=1}^{n} (1 - X_i) \cdot O(1) + X_i \cdot O(i)] \\
= O(n) + \sum E[X_i] \cdot O(i) \\
= O(n) + \sum \Pr[X_i = 1] \cdot O(i)
\]

We fix the i random halfplanes in H_i.
Theorem. The 2D bounded LP problem can be solved in $O(n)$ expected time.

Proof. Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random variable).

Then the expected running time is
\[
E[T_{2d}(n)] = E[\sum_{i=1}^{n}(1 - X_i) \cdot O(1) + X_i \cdot O(i)] \\
= O(n) + \sum E[X_i] \cdot O(i) \\
= O(n) + \sum \Pr[X_i = 1] \cdot O(i)
\]

We fix the i random halfplanes in H_i.

$\Pr[X_i = 1] = \text{probability that the optimal solution changes when } h_i \text{ is added to } H_{i-1}$.
Theorem. The 2D bounded LP problem can be solved in \(O(n) \) expected time.

Proof. Let \(X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases} \) (indicator random variable).

Then the expected running time is

\[
E[T_{2d}(n)] = E[\sum_{i=1}^{n} (1 - X_i) \cdot O(1) + X_i \cdot O(i)] \\
= O(n) + \sum E[X_i] \cdot O(i) \\
= O(n) + \sum \Pr[X_i = 1] \cdot O(i)
\]

We fix the \(i \) random halfplanes in \(H_i \).

\(\Pr[X_i = 1] = \) probability that the optimal solution changes when \(h_i \) is added to \(H_{i-1} \).
The 2D bounded LP problem can be solved in $O(n)$ expected time.

Let $X_i = \begin{cases}
1 & \text{if } v_{i-1} \notin h_i, \\
0 & \text{else.}
\end{cases}$ (indicator random variable).

Then the expected running time is

$$E[T_{2d}(n)] = E[\sum_{i=1}^{n} (1 - X_i) \cdot O(1) + X_i \cdot O(i)]$$

$$= O(n) + \sum E[X_i] \cdot O(i)$$

$$= O(n) + \sum \Pr[X_i = 1] \cdot O(i)$$

We fix the i random halfplanes in H_i.

$\Pr[X_i = 1] = \text{probability that the optimal solution changes when } h_i \text{ is added to } H_{i-1}.$

$= \text{probability that the optimal solution changes when } h_i \text{ is removed from } H_i.$
Result

Theorem.

The 2D bounded LP problem can be solved in $O(n)$ expected time.

Proof.

Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random variable).

Then the expected running time is

$$E[T_{2d}(n)] = E\left[\sum_{i=1}^{n} (1 - X_i) \cdot O(1) + X_i \cdot O(i)\right]$$

$$= O(n) + \sum E[X_i] \cdot O(i)$$

$$= O(n) + \sum \Pr[X_i = 1] \cdot O(i)$$

We fix the i random halfplanes in H_i.

$\Pr[X_i = 1] =$ probability that the optimal solution changes when h_i is added to H_{i-1}.

$= probability that the optimal solution changes when h_i is removed from H_i.

i.e., when $v_i \in \partial h_i$ and $v_i \in \partial h_j$ for exactly one $j < i$.

Result

Theorem. The 2D bounded LP problem can be solved in $O(n)$ expected time.

Proof. Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random variable).

Then the expected running time is
\[
E[T_{2d}(n)] = E[\sum_{i=1}^{n} (1 - X_i) \cdot O(1) + X_i \cdot O(i)] \\
= O(n) + \sum E[X_i] \cdot O(i) \\
= O(n) + \sum \Pr[X_i = 1] \cdot O(i)
\]

We fix the i random halfplanes in H_i.

\[
\Pr[X_i = 1] = \text{probability that the optimal solution changes when } h_i \text{ is added to } H_{i-1}.
\]

i.e., when $v_i \in \partial h_i$ and $v_i \in \partial h_j$ for exactly one $j < i$.

\[
\Pr[X_i = 1] = \text{probability that the optimal solution changes when } h_i \text{ is removed from } H_i.
\]

$\leq 2/i.$
Result

Theorem. The 2D bounded LP problem can be solved in $O(n)$ expected time.

Proof.

Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \not\in h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random variable).

Then the expected running time is

$$E[T_{2d}(n)] = E[\sum_{i=1}^{n} (1 - X_i) \cdot O(1) + X_i \cdot O(i)]$$

$$= O(n) + \sum E[X_i] \cdot O(i)$$

$$= O(n) + \sum \Pr[X_i = 1] \cdot O(i)$$

We fix the i random halfplanes in H_i.

$$\Pr[X_i = 1] = \text{probability that the optimal solution changes when } h_i \text{ is added to } H_{i-1}.$$

$$= \text{probability that the optimal solution changes when } h_i \text{ is removed from } H_i.$$

$$\leq 2/i. \text{ This is independent of the choice of } H_i.$$

i.e., when $v_i \in \partial h_i$ and $v_i \in \partial h_j$ for exactly one $j < i.$
Result

Theorem. The 2D bounded LP problem can be solved in $O(n)$ expected time.

Proof. Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random variable).

Then the expected running time is

$$E[T_{2d}(n)] = E[\sum_{i=1}^{n} (1 - X_i) \cdot O(1) + X_i \cdot O(i)]$$

$$= O(n) + \sum E[X_i] \cdot O(i)$$

$$= O(n) + \sum \Pr[X_i = 1] \cdot O(i)$$

We fix the i random halfplanes in H_i.

$$\Pr[X_i = 1] = \text{probability that the optimal solution changes when } h_i \text{ is added to } H_{i-1}.$$

$$= \text{probability that the optimal solution changes when } h_i \text{ is removed from } H_i.$$

$$\leq 2/i. \text{ This is independent of the choice of } H_i.$$
Result

Theorem. The 2D bounded LP problem can be solved in $O(n)$ expected time.

Proof. Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random variable).

Then the expected running time is

$$E[T_{2d}(n)] = E[\sum_{i=1}^{n} (1 - X_i) \cdot O(1) + X_i \cdot O(i)] = O(n) + \sum E[X_i] \cdot O(i) = O(n) + \sum \Pr[X_i = 1] \cdot O(i) = O(n).$$

We fix the i random halfplanes in H_i.

$\Pr[X_i = 1] =$ probability that the optimal solution changes when h_i is added to H_{i-1}.

$= \text{probability that the optimal solution changes when } h_i \text{ is removed from } H_i.$

$\leq \frac{2}{i}. \text{This is independent of the choice of } H_i.$
Result

Theorem. The 2D bounded LP problem can be solved in $O(n)$ expected time.

Proof.

Let $X_i = \begin{cases} 1 & \text{if } v_{i-1} \notin h_i, \\ 0 & \text{else.} \end{cases}$ (indicator random variable).

Then the expected running time is

$$E[T_{2d}(n)] = E[\sum_{i=1}^{n} (1 - X_i) \cdot O(1) + X_i \cdot O(i)]$$

$$= O(n) + \sum E[X_i] \cdot O(i)$$

$$= O(n) + \sum \Pr[X_i = 1] \cdot O(i) = O(n).$$

We fix the i random halfplanes in H_i.

$\Pr[X_i = 1] = \text{probability that the optimal solution changes when } h_i \text{ is added to } H_{i-1}.$

$\Pr[X_i = 1] = \text{probability that the optimal solution changes when } h_i \text{ is removed from } H_i.$

$\leq 2/i.$ This is independent of the choice of H_i.

Proof technique: Backward analysis!
Alt. for Intersecting Convex Regions

Use sweep-line alg. for \textbf{map overlay} (line-segment intersections)!

Running time $T_{MO}(n) =$

\textbf{CG: A & A §2}
Alt. for Intersecting Convex Regions

Use sweep-line alg. for map overlay (line-segment intersections)!

Running time $T_{MO}(n) = O((n + I) \log n)$, where $I = \#$ intersection points.
Alt. for Intersecting Convex Regions

Use sweep-line alg. for map overlay (line-segment intersections)!

Running time $T_{MO}(n) = O((n + I) \log n)$,
where $I = \#$ intersection points.
here: $I \leq \ldots$

CG: A & A §2
Alt. for Intersecting Convex Regions

Use sweep-line alg. for map overlay (line-segment intersections)!

Running time $T_{MO}(n) = O((n + I) \log n)$,

where $I = \#$ intersection points.

here: $I \leq n \rightarrow O(n \log n)$ for ICR
Alt. for Intersecting Convex Regions

Use sweep-line alg. for **map overlay** (line-segment intersections)!

Running time $T_{MO}(n) = O((n + I) \log n)$,
where $I = \#$ intersection points.

here: $I \leq n \rightarrow O(n \log n)$ for ICR

Running time $T_{IH}(n) = 2T_{IH}(n/2) + T_{ICR}(n)$

CG: A & A §2
Alt. for Intersecting Convex Regions

Use sweep-line alg. for map overlay (line-segment intersections)!

Running time $T_{MO}(n) = O((n + I) \log n)$,

where $I = \#\text{ intersection points}$.

Here: $I \leq n \rightarrow O(n \log n)$ for ICR

Running time $T_{IH}(n) = 2T_{IH}(n/2) + T_{ICR}(n)$

$\leq 2T_{IH}(n/2) + O(n \log n)$

\in
Alt. for Intersecting Convex Regions

Use sweep-line alg. for map overlay (line-segment intersections)!

Running time \(T_{\text{MO}}(n) = O((n + I) \log n) \),
where \(I = \# \) intersection points.

Running time \(T_{\text{IH}}(n) = 2T_{\text{IH}}(n/2) + T_{\text{ICR}}(n) \)
\[\leq 2T_{\text{IH}}(n/2) + O(n \log n) \]
\[\in O(n \log^2 n) \]
Alt. for Intersecting Convex Regions

Use sweep-line alg. for map overlay (line-segment intersections)!

Running time $T_{MO}(n) = O((n + I) \log n)$,
where $I =$ # intersection points.

here: $I \leq n \rightarrow O(n \log n)$ for ICR

Running time $T_{IH}(n) = 2T_{IH}(n/2) + T_{ICR}(n)$
$\leq 2T_{IH}(n/2) + O(n \log n)$
$\in O(n \log^2 n)$

As this is more general, it is unsurprisingly worse ... *

* it can happen sometimes that general algorithms give optimal runtimes for special cases
Alt. for Intersecting Convex Regions

Use sweep-line alg. for map overlay (line-segment intersections)!

Running time $T_{MO}(n) = O((n + I) \log n)$, where $I = \#$ intersection points.

Here: $I \leq n \rightarrow O(n \log n)$ for ICR

Running time $T_{IH}(n) = 2T_{IH}(n/2) + T_{ICR}(n)$

$\leq 2T_{IH}(n/2) + O(n \log n)$

$\in O(n \log^2 n)$

As this is more general, it is unsurprisingly worse ... *

\rightsquigarrow Better to use specialized algorithm for intersecting convex regions/polygons

* it can happen sometimes that general algorithms give optimal runtimes for special cases