Computational Geometry

Triangulating Polygons
or
Guarding Art Galleries

Lecture #2
Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)...
Guarding an Art Gallery

Given a *simple* polygon P (i.e., no holes, no self-intersection)
Guarding an Art Gallery

Given a *simple* polygon \(P \) (i.e., no holes, no self-intersection)...

![Diagram of a simple polygon](image)
Guarding an Art Gallery

Given a *simple* polygon P (i.e., no holes, no self-intersection)...

Observation. Camera c “sees” a star-shaped region
Guarding an Art Gallery

Given a *simple* polygon P (i.e., no holes, no self-intersection)...

Observation. Camera c “sees” a star-shaped region

Definition. A pt $q \in P$ is *visible* from $c \in P$ if $qc \subseteq P$.
Guarding an Art Gallery

Given a *simple* polygon P (i.e., no holes, no self-intersection)...

Observation. Camera c “sees” a star-shaped region

Definition. A pt $q \in P$ is *visible* from $c \in P$ if $\overline{qc} \subseteq P$.

Aim: Use few cameras!
Guarding an Art Gallery

Given a *simple* polygon P (i.e., no holes, no self-intersection)...

Observation. Camera c “sees” a star-shaped region

Definition. A pt $q \in P$ is *visible* from $c \in P$ if $\overline{qc} \subseteq P$.

Aim: Use few cameras! *But minimizing this is NP-hard*...
Guarding an Art Gallery

Observation. Camera c “sees” a star-shaped region

Definition. A pt $q \in P$ is visible from $c \in P$ if $qc \subseteq P$.

Aim: Use few cameras! *But minimizing this is NP-hard…*
Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)...

Observation. Camera c “sees” a star-shaped region

Definition. A pt $q \in P$ is visible from $c \in P$ if $\overline{qc} \subseteq P$.

Aim: Use few cameras! But minimizing this is NP-hard…
Guarding an Art Gallery

Given a \textit{simple} polygon P (i.e., no holes, no self-intersection)...

\textbf{Observation.} Camera c “sees” a star-shaped region

\textbf{Definition.} A pt $q \in P$ is \textit{visible} from $c \in P$ if $\overline{qc} \subseteq P$.

\textbf{Aim:} Use few cameras! \textit{But minimizing this is NP-hard}...
Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)...

Observation. Camera c “sees” a star-shaped region

Definition. A pt $q \in P$ is visible from $c \in P$ if $\overline{qc} \subseteq P$.

Aim: Use few cameras! But minimizing this is NP-hard…
Guarding an Art Gallery

Given a *simple* polygon P (i.e., no holes, no self-intersection)...

![Diagram showing a complex polygon and a camera's viewpoint](image)

Observation. Camera c "sees" a star-shaped region

Definition. A pt $q \in P$ is *visible* from $c \in P$ if $\overline{qc} \subseteq P$.

Aim: Use few cameras! *But minimizing this is NP-hard...*
Guarding an Art Gallery

Given a *simple* polygon P (i.e., no holes, no self-intersection)...

Observation. Camera c "sees" a star-shaped region

Definition. A pt $q \in P$ is *visible* from $c \in P$ if $qc \subseteq P$.

Aim: Use few cameras! But minimizing this is NP-hard…
Guarding an Art Gallery

Given a *simple* polygon P (i.e., no holes, no self-intersection)...

Observation. Camera c "sees" a star-shaped region

Definition. A pt $q \in P$ is *visible* from $c \in P$ if $\overline{qc} \subseteq P$.

Aim: Use few cameras! But minimizing this is NP-hard…
Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)...

Observation. Camera c “sees” a star-shaped region

Definition. A pt $q \in P$ is visible from $c \in P$ if $\overline{qc} \subseteq P$.

Aim: Use few cameras! But minimizing this is NP-hard…
Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)...

Observation. Camera c “sees” a star-shaped region

Definition. A pt $q \in P$ is visible from $c \in P$ if $\overline{qc} \subseteq P$.

Aim: Use few cameras! But minimizing this is NP-hard…
Guarding an Art Gallery

Given a *simple* polygon P (i.e., no holes, no self-intersection)...

Observation. Camera c “sees” a star-shaped region

Definition. A pt $q \in P$ is *visible* from $c \in P$ if $\overline{qc} \subseteq P$.

Aim: Use few cameras! But minimizing this is NP-hard…
Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)...

Observation. Camera c “sees” a star-shaped region

Definition. A pt $q \in P$ is visible from $c \in P$ if $\overline{qc} \subseteq P$.

Aim: Use few cameras! But minimizing this is NP-hard…

Theorem. 1. Every simple polygon can be triangulated.
Guarding an Art Gallery

Given a simple polygon P (i.e., no holes, no self-intersection)...

Observation. Camera c “sees” a star-shaped region

Definition. A pt $q \in P$ is visible from $c \in P$ if $\overline{qc} \subseteq P$.

Aim: Use few cameras! But minimizing this is NP-hard…

Theorem. 1. Every simple polygon can be triangulated.
2. Any triangulation of a simple polygon with n vertices consists of $n - 2$ triangles.
Guarding an Art Gallery

Given a *simple* polygon P (i.e., no holes, no self-intersection)...

Observation. Camera c “sees” a star-shaped region

Definition. A pt $q \in P$ is *visible* from $c \in P$ if $qc \subseteq P$.

Aim: Use few cameras! *But minimizing this is NP-hard…*

Theorem.

1. Every simple polygon can be triangulated.
2. Any triangulation of a simple polygon with n vertices consists of $n - 2$ triangles.

How can we prove these?
Existence of Triangulation

Theorem.
1. Every simple polygon can be triangulated.
2. Any triangulation of a simple polygon with n vertices consists of $n - 2$ triangles.
Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated. 2. Any triangulation of a simple polygon with \(n \) vertices consists of \(n - 2 \) triangles.

\[n = 3: \quad \text{1 triangle} \checkmark \]
Existence of Triangulation

Theorem.

1. Every simple polygon can be triangulated.
2. Any triangulation of a simple polygon with \(n \) vertices consists of \(n - 2 \) triangles.

\[n = 3: \quad \text{1 triangle } \checkmark \]

\(3, \ldots, n - 1 \rightarrow n: \)
Existence of Triangulation

Theorem.

1. Every simple polygon can be triangulated.
2. Any triangulation of a simple polygon with \(n \) vertices consists of \(n - 2 \) triangles.

\[n = 3: \quad \text{1 triangle } \checkmark \]

\[3, \ldots, n - 1 \rightarrow n: \]
Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.
2. Any triangulation of a simple polygon with n vertices consists of $n - 2$ triangles.

$n = 3$: 1 triangle ✓

3, ..., $n - 1 \rightarrow n$:
Existence of Triangulation

Theorem.

1. Every simple polygon can be triangulated.
2. Any triangulation of a simple polygon with n vertices consists of $n - 2$ triangles.

$n = 3$: \[\begin{array}{c} \text{1 triangle } \checkmark \\ \end{array} \]

3, \ldots, $n - 1 \rightarrow n$:

3, \ldots, $n - 1 \rightarrow n$:

\[\begin{array}{c} \text{v} \\ \text{w} \\ \text{u} \\ \end{array} \]
Existence of Triangulation

Theorem.
1. Every simple polygon can be triangulated.
2. Any triangulation of a simple polygon with \(n \) vertices consists of \(n - 2 \) triangles.

\[n = 3: \quad 1 \text{ triangle} \checkmark \]

\[3, \ldots, n - 1 \rightarrow n: \]
Existence of Triangulation

Theorem.
1. Every simple polygon can be triangulated.
2. Any triangulation of a simple polygon with n vertices consists of $n - 2$ triangles.

$n = 3$:
1 triangle

$3, \ldots, n - 1 \rightarrow n$:

x furthest from uw
Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.
2. Any triangulation of a simple polygon with \(n \) vertices consists of \(n - 2 \) triangles.

- For \(n = 3 \): One triangle
- For \(3, \ldots, n - 1 \rightarrow n \):
 - Select vertex \(x \) furthest from \(uw \)
Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.
2. Any triangulation of a simple polygon with n vertices consists of $n - 2$ triangles.

- $n = 3$: 1 triangle

3, ..., $n - 1 \rightarrow n$:

- x furthest from uw
Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.
2. Any triangulation of a simple polygon with \(n \) vertices consists of \(n - 2 \) triangles.

\[n = 3: \quad \text{1 triangle} \checkmark \]

3, \ldots, \(n - 1 \rightarrow n: \]

\[x \text{ furthest from } uw \]
Existence of Triangulation

Theorem.

1. Every simple polygon can be triangulated.
2. Any triangulation of a simple polygon with \(n \) vertices consists of \(n - 2 \) triangles.

\[
\begin{align*}
3, \ldots, n - 1 & \rightarrow n: \\
3 \text{ vertices } \Rightarrow 1 \text{ triangle}
\end{align*}
\]
Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.
2. Any triangulation of a simple polygon with n vertices consists of $n - 2$ triangles.

\[
\begin{align*}
n &= 3: & 1 \text{ triangle} & \checkmark \\
3, \ldots, n - 1 & \rightarrow n: & \\
\text{3 vtcs} & \Rightarrow 1 \text{ triangle} & \\
\text{n-1 vtcs} & \Rightarrow n-3 \text{ triangles}
\end{align*}
\]
Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.
 2. Any triangulation of a simple polygon with \(n \) vertices consists of \(n - 2 \) triangles.

\[
n = 3: \quad \text{1 triangle} \checkmark
\]

3, \ldots, \(n - 1 \) → \(n \):

- 3 vtcs ⇒ 1 triangle
- \(n - 1 \) vtcs ⇒ \(n - 3 \) triangles
 ⇒ \(n - 2 \) triangles

\(x \) furthest from \(uw \)
Existence of Triangulation

Theorem.

1. Every simple polygon can be triangulated.
2. Any triangulation of a simple polygon with n vertices consists of $n - 2$ triangles.

$n = 3$: \begin{tikzpicture}
\fill[blue!30] (0,0) -- (1,1) -- (1,-1) -- cycle;
\end{tikzpicture} 1 \text{ triangle} \checkmark

$3, \ldots, n - 1 \rightarrow n$:

3 vtcs \Rightarrow 1 triangle

$n - 1$ vtcs \Rightarrow $n - 3$ triangles

\Rightarrow $n - 2$ triangles

x furthest from uw
Existence of Triangulation

Theorem.

1. Every simple polygon can be triangulated.
2. Any triangulation of a simple polygon with n vertices consists of $n - 2$ triangles.

$n = 3$: 1 triangle

x furthest from uw

$3, \ldots, n - 1 \rightarrow n$: 3 vtcs \Rightarrow 1 triangle

m vtcs $\Rightarrow m - 2$ triangles

$n - 1$ vtcs $\Rightarrow n - 3$ triangles

$\Rightarrow n - 2$ triangles
Existence of Triangulation

Theorem. 1. Every simple polygon can be triangulated.
2. Any triangulation of a simple polygon with n vertices consists of $n - 2$ triangles.

$n = 3$: 1 triangle

$3, \ldots, n - 1 \rightarrow n$: 1 triangle

x furthest from uw

3 vtcs \Rightarrow 1 triangle

$n - 1$ vtcs \Rightarrow $n - 3$ triangles

\Rightarrow $n - 2$ triangles

m vtcs \Rightarrow $m - 2$ triangles

$n - m + 2$ vtcs \Rightarrow $n - m$ triangles
Existence of Triangulation

Theorem.

1. Every simple polygon can be triangulated.
2. Any triangulation of a simple polygon with \(n \) vertices consists of \(n - 2 \) triangles.

\[n = 3: \quad \text{1 triangle} \quad \checkmark \]

3, \ldots, \(n - 1 \) \(\rightarrow n: \)

- 3 \(\text{vtcs} \) \(\Rightarrow \) 1 triangle
- \(n - 1 \) \(\text{vtcs} \) \(\Rightarrow \) \(n - 3 \) triangles
- \(\Rightarrow n - 2 \) triangles

\[\text{x furthest from } uw \]

- \(m \) \(\text{vtcs} \) \(\Rightarrow m - 2 \) triangles
- \(n - m + 2 \) \(\text{vtcs} \) \(\Rightarrow n - m \) triangles
- \(\Rightarrow n - 2 \) triangles

\[\checkmark \]
Theorem. For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.
The Art Gallery Theorem

[Chvátal ’75]

Theorem. For surveilling a simple polygon with n vertices, $\lceil n/3 \rceil$ cameras are sometimes necessary and always sufficient.

Exercise. Find, for arbitrarily large n, a polygon with n vertices, where $\approx n/3$ cameras are necessary.

[2 minutes]
The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lceil n/3 \rceil$ cameras are sometimes necessary and always sufficient.

Exercise. Find, for arbitrarily large n, a polygon with n vertices, where $\approx n/3$ cameras are necessary.

[2 minutes]
The Art Gallery Theorem

[Chvátal '75]

Theorem. For surveilling a simple polygon with \(n \) vertices, \(\lceil n/3 \rceil \) cameras are sometimes necessary and always sufficient.

Exercise. Find, for arbitrarily large \(n \), a polygon with \(n \) vertices, where \(\approx n/3 \) cameras are necessary.

[2 minutes]
The Art Gallery Theorem

Theorem. For surveilling a simple polygon with \(n \) vertices, \(\lfloor n/3 \rfloor \) cameras are sometimes necessary and always sufficient.

Exercise. Find, for arbitrarily large \(n \), a polygon with \(n \) vertices, where \(\approx n/3 \) cameras are necessary.
The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lceil n/3 \rceil$ cameras are sometimes necessary and always sufficient.

Exercise. Find, for arbitrarily large n, a polygon with n vertices, where $\approx n/3$ cameras are necessary.

[Chvátal ’75]

[dBCvKO’08]
The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.
The Art Gallery Theorem

For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.
The Art Gallery Theorem

[Chvátal ’75]

Theorem. For surveilling a simple polygon with \(n\) vertices, \(\lfloor n/3 \rfloor\) cameras are sometimes necessary and always sufficient.
The Art Gallery Theorem

Theorem. For surveilling a simple polygon with \(n \) vertices, \(\lfloor n/3 \rfloor \) cameras are sometimes necessary and always sufficient.

3-color the vtcs

[Chvátal '75]
The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtc's
The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtcs
The Art Gallery Theorem

Theorem. For surveilling a simple polygon with \(n \) vertices, \(\lfloor n/3 \rfloor \) cameras are sometimes necessary and always sufficient.

3-color the vtc's
Theorem. For surveilling a simple polygon with \(n \) vertices, \(\lceil n/3 \rceil \) cameras are sometimes necessary and always sufficient.

3-color the vtc\(s \)
dual tree
The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\left\lfloor n/3 \right\rfloor$ cameras are sometimes necessary and always sufficient.
Theorem. For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

3-color the vtc's

dual tree
The Art Gallery Theorem

Theorem. For surveilling a simple polygon with \(n \) vertices, \(\lfloor n/3 \rfloor \) cameras are sometimes necessary and always sufficient.

3-color the vtcs
dual tree
The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lceil n/3 \rceil$ cameras are sometimes necessary and always sufficient.

3-color the vtcs
dual tree
Theorem. For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.
The Art Gallery Theorem

Theorem. For surveilling a simple polygon with \(n \) vertices, \(\lfloor n/3 \rfloor \) cameras are sometimes necessary and always sufficient.

3-color the vtcs

Traverse the dual tree
The Art Gallery Theorem

[Chvátal ’75]

Theorem. For surveilling a simple polygon with \(n\) vertices, \(\lfloor n/3 \rfloor\) cameras are sometimes necessary and always sufficient.

3-color the vtc's

Traverse the dual tree
The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lceil n/3 \rceil$ cameras are sometimes necessary and always sufficient.

3-color the vtc's
Traverse the dual tree
The Art Gallery Theorem

Theorem. For surveilling a simple polygon with \(n \) vertices, \(\lfloor n/3 \rfloor \) cameras are sometimes necessary and always sufficient.
The Art Gallery Theorem

Theorem. For surveilling a simple polygon with \(n \) vertices, \(\lceil n/3 \rceil \) cameras are sometimes necessary and always sufficient.

3-color the vtics

Traverse the dual tree
The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lceil n/3 \rceil$ cameras are sometimes necessary and always sufficient.

3-color the vtc's

 Traverse the dual tree
The Art Gallery Theorem

Theorem. For surveilling a simple polygon with \(n \) vertices, \(\lfloor n/3 \rfloor \) cameras are sometimes necessary and always sufficient.

3-color the vtcs

Traverse the dual tree
The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lceil n/3 \rceil$ cameras are sometimes necessary and always sufficient.

3-color the vtc's

Traverse the dual tree
The Art Gallery Theorem

Theorem. For surveilling a simple polygon with \(n \) vertices, \(\lfloor n/3 \rfloor \) cameras are sometimes necessary and always sufficient.

3-color the vtcs

Traverse the dual tree
The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\left\lfloor n/3 \right\rfloor$ cameras are sometimes necessary and always sufficient.

1. 3-color the vtcs
2. Traverse the dual tree
3. Pick “smallest” color
The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lceil n/3 \rceil$ cameras are sometimes necessary and always sufficient.

3-color the vtc's

Traverse the dual tree

Pick “smallest” color
The Art Gallery Theorem

[Chvátal ’75]

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!
The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lceil n/3 \rceil$ cameras are sometimes necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force:
The Art Gallery Theorem

Theorem. For surveilling a simple polygon with \(n \) vertices, \(\lfloor n/3 \rfloor \) cameras are sometimes necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion
The Art Gallery Theorem

[Chvátal '75]

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion running time:
The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion

running time: $O(n^2)$
The Art Gallery Theorem

Theorem. For surveilling a simple polygon with \(n \) vertices, \(\lfloor n/3 \rfloor \) cameras are sometimes necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion
running time: \(O(n^2) \)

Faster triangulation in two steps:
The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lfloor n/3 \rfloor$ cameras are sometimes necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion
running time: $O(n^2)$

Faster triangulation in two steps:

n-vtx polygon
The Art Gallery Theorem

Theorem. For surveilling a simple polygon with n vertices, $\lceil n/3 \rceil$ cameras are sometimes necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion
running time: $O(n^2)$

Faster triangulation in two steps:
n-vtx polygon \rightarrow “nice” pieces, n' vtc
The Art Gallery Theorem [Chvátal ’75]

Theorem. For surveilling a simple polygon with \(n \) vertices, \(\lfloor n/3 \rfloor \) cameras are sometimes necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion
running time: \(O(n^2) \)

Faster triangulation in two steps:

\(n \)-vtx polygon → “nice” pieces, \(n' \) vtc → \(n'' \) triangles
The Art Gallery Theorem

Theorem. For surveilling a simple polygon with \(n \) vertices, \(\lceil n/3 \rceil \) cameras are sometimes necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion
running time: \(O(n^2) \)

Faster triangulation in two steps:

\(n \)-vtx polygon \(\rightarrow \) “nice” pieces, \(n' \) vtc \(\rightarrow \) \(n'' \) triangles
\(O(n \log n) \)
The Art Gallery Theorem

Theorem. For surveilling a simple polygon with \(n \) vertices, \(\lceil n/3 \rceil \) cameras are sometimes necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion
running time: \(O(n^2) \)

Faster triangulation in two steps:

\[n \text{-vtx polygon} \rightarrow \text{“nice” pieces, } n' \text{ vtc} \rightarrow n'' \text{ triangles} \]

\[O(n \log n) \rightarrow O(n') \]
The Art Gallery Theorem

Theorem. For surveilling a simple polygon with \(n \) vertices, \(\lfloor n/3 \rfloor \) cameras are sometimes necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion running time: \(O(n^2) \)

Faster triangulation in two steps:
- \(n \)-vtx polygon \(\rightarrow \) “nice” pieces, \(n' \) vtc \(\rightarrow \) \(n'' \) triangles
 - \(O(n \log n) \)
 - \(O(n') \)

Definition. A polygon \(P \) is \(y \)-monotone if, for any horizontal line \(\ell \), \(\ell \cap P \) is connected.
The Art Gallery Theorem

Theorem. For surveilling a simple polygon with \(n \) vertices, \(\lfloor n/3 \rfloor \) cameras are sometimes necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion
running time: \(O(n^2) \)

Faster triangulation in two steps:

\(n \)-vtx polygon → “nice” pieces, \(n' \) vtc → \(n'' \) triangles

\(O(n \log n) \) \hspace{1cm} \(O(n') \)

Definition. A polygon \(P \) is \(y \)-monotone if, for any horizontal line \(\ell \), \(\ell \cap P \) is connected.
The Art Gallery Theorem

Theorem. For surveilling a simple polygon with \(n \) vertices, \(\lfloor n/3 \rfloor \) cameras are sometimes necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion running time: \(O(n^2) \)

Faster triangulation in two steps:

\[n \text{-vtx polygon} \rightarrow \text{“nice” pieces, } n' \text{ vtc} \rightarrow n'' \text{ triangles} \]

\[O(n \log n) \quad O(n') \]

Definition. A polygon \(P \) is \(y \)-monotone if, for any horizontal line \(\ell \), \(\ell \cap P \) is connected.
The Art Gallery Theorem

[Chvátal '75]

Theorem. For surveilling a simple polygon with n vertices, $\lceil n/3 \rceil$ cameras are sometimes necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion
running time: $O(n^2)$

Faster triangulation in two steps:

n-vtx polygon \rightarrow “nice” pieces, n' vtc $\rightarrow n''$ triangles

$O(n \log n)$ \rightarrow $O(n')$

Definition. A polygon P is y-monotone if, for any horizontal line ℓ, $\ell \cap P$ is connected.
The Art Gallery Theorem
[Chvátal ’75]

Theorem. For surveilling a simple polygon with \(n \) vertices, \(\lceil n/3 \rceil \) cameras are sometimes necessary and always sufficient.

To do: Find algo. for triangulating a simple polygon!

Brute force: follow existence proof, using recursion
running time: \(O(n^2) \)

Faster triangulation in two steps:

\[
\begin{align*}
\text{n-vtx polygon} & \rightarrow \text{“nice” pieces, n' vtc} & \rightarrow \text{n'' triangles} \\
O(n \log n) & & O(n')
\end{align*}
\]

Definition. A polygon \(P \) is \(y \)-monotone
if, for any horizontal line \(\ell \), \(\ell \cap P \) is connected.
Part. a Polygon into Monotone Pieces

Idea: Classify vertices of given simple polygon P
Part. a Polygon into Monotone Pieces

Idea: Classify vertices of given simple polygon P
- turn vertices:
- regular vertices
Part. a Polygon into Monotone Pieces

Idea: Classify vertices of given simple polygon P

– \textit{turn} vertices:
 vertical component of walking direction changes

– \textit{regular} vertices
Part. a Polygon into Monotone Pieces

Idea:
Classify vertices of given simple polygon P

- *turn* vertices:
 vertical component of walking direction changes

 • *start* vertex

- *regular* vertices

\[
\text{if } \alpha < 180^\circ
\]
Part. a Polygon into Monotone Pieces

Idea: Classify vertices of given simple polygon P

- **turn vertices:**
 - vertical component of walking direction changes

 - **start vertex**
 - if $\alpha < 180^\circ$
 - **split vertex**
 - if $\beta > 180^\circ$

- **regular vertices**
Part. a Polygon into Monotone Pieces

Idea: Classify vertices of given simple polygon P

- *turn* vertices:
 - vertical component of walking direction changes
 - *start* vertex
 - *split* vertex
 - *end* vertex

- *regular* vertices

- if $\alpha < 180^\circ$
- if $\beta > 180^\circ$
- if $\gamma < 180^\circ$
Part. a Polygon into Monotone Pieces

Idea: Classify vertices of given simple polygon \(P \)

- *turn* vertices:
 - vertical component of walking direction changes

 • *start* vertex

 • *split* vertex

 • *end* vertex

 • *merge* vertex

- *regular* vertices

If \(\alpha < 180^\circ \)

If \(\beta > 180^\circ \)

If \(\gamma < 180^\circ \)

If \(\delta > 180^\circ \)
Part. a Polygon into Monotone Pieces

Idea: Classify vertices of given simple polygon P

– **turn** vertices:
 - vertical component of walking direction changes
 - **start** vertex
 - **split** vertex
 - **end** vertex
 - **merge** vertex

– **regular** vertices

Lemma: Let P be a simple polygon. Then P is y-monotone if $\alpha < 180^\circ$ if $\beta > 180^\circ$ if $\gamma < 180^\circ$ if $\delta > 180^\circ$

P has neither split vertices nor merge vertices.
Towards an Algorithm

Idea: Add diagonals to “destroy” split and merge vtc's.
Towards an Algorithm

Idea: Add *diagonals* to “destroy” split and merge vtc's.
Towards an Algorithm

Idea: Add diagonals to “destroy” split and merge vtc.

Problem: Diagonals must not cross:
Towards an Algorithm

Idea: Add diagonals to “destroy” split and merge vtc.

Problem: Diagonals must not cross: – each other
– edges of P
Towards an Algorithm

Idea: Add diagonals to “destroy” split and merge vtc.

Problem: Diagonals must not cross: – each other – edges of P

1) Treating split vertices
Towards an Algorithm

Idea: Add diagonals to “destroy” split and merge vtc.

Problem: Diagonals must not cross: – each other – edges of P

1) Treating split vertices
Towards an Algorithm

Idea: Add diagonals to “destroy” split and merge vtc.

Problem: Diagonals must not cross: each other – edges of P

1) Treating split vertices
Towards an Algorithm

Idea: Add diagonals to “destroy” split and merge vtc's.

Problem: Diagonals must not cross: – each other – edges of P

1) Treating split vertices
Towards an Algorithm

Idea: Add diagonals to “destroy” split and merge vtcs.

Problem: Diagonals must not cross: – each other – edges of P

1) Treating split vertices
Towards an Algorithm

Idea: Add diagonals to “destroy” split and merge vtc's.

Problem: Diagonals must not cross: – each other
– edges of P

1) Treating split vertices

Connect v to vertex w^* having minimum y-coordinate among all vertices w above v and with $\text{left}(w) = \text{left}(v)$.
Towards an Algorithm

Idea: Add diagonals to “destroy” split and merge vtc{s.}

Problem: Diagonals must not cross: – each other
– edges of P

1) Treating split vertices

Connect v to vertex w^* having minimum y-coordinate among all vertices w above v and with $\text{left}(w) = \text{left}(v)$.
Towards an Algorithm

Idea: Add diagonals to “destroy” split and merge vtc.

Problem: Diagonals must not cross: – each other
– edges of P

1) Treating split vertices

Connect v to vertex w^* having minimum y-coordinate among all vertices w above v and with $\text{left}(w) = \text{left}(v)$.
Towards an Algorithm

Idea: Add diagonals to “destroy” split and merge vertices.

Problem: Diagonals must not cross: – each other
– edges of P

1) Treating split vertices

Connect v to vertex w^* having minimum y-coordinate among all vertices w above v and with $\text{left}(w) = \text{left}(v)$.

Think of a sweep-line algorithm:
Towards an Algorithm

Idea: Add diagonals to “destroy” split and merge vtc.

Problem: Diagonals must not cross: – each other
– edges of P

1) Treating split vertices

Connect v to vertex w^* having minimum y-coordinate among all vertices w above v and with $\text{left}(w) = \text{left}(v)$.

Think of a sweep-line algorithm:
Towards an Algorithm

Idea: Add diagonals to “destroy” split and merge vtc.

Problem: Diagonals must not cross: – each other – edges of P

1) Treating split vertices

Connect v to vertex w^* having minimum y-coordinate among all vertices w above v and with $\text{left}(w) = \text{left}(v)$.

Think of a sweep-line algorithm:
Towards an Algorithm

Idea: Add diagonals to “destroy” split and merge vtc's.

Problem: Diagonals must not cross: – each other
– edges of P

1) Treating split vertices

Connect v to vertex w^* having minimum y-coordinate among all vertices w above v and with $\text{left}(w) = \text{left}(v)$.

Think of a sweep-line algorithm:
Towards an Algorithm

Idea: Add diagonals to “destroy” split and merge vtcs.

Problem: Diagonals must not cross:
- each other
- edges of P

1) Treating split vertices

Connect v to vertex w^* having minimum y-coordinate among all vertices w above v and with $\text{left}(w) = \text{left}(v)$.

Think of a sweep-line algorithm:
Towards an Algorithm

Idea: Add diagonals to “destroy” split and merge vtc's.

Problem: Diagonals must not cross: – each other
– edges of P

1) Treating split vertices

Connect v to vertex w^* having minimum y-coordinate among all vertices w above v and with $\text{left}(w) = \text{left}(v)$.

Think of a sweep-line algorithm:
Connect v to $\text{helper} (\text{left}(v))$.
Towards an Algorithm

Idea: Add diagonals to “destroy” split and merge vtc's.

Problem: Diagonals must not cross: – each other
– edges of \(P \)

1) Treating split vertices

Connect \(v \) to vertex \(w^* \) having minimum \(y \)-coordinate among all vertices \(w \) above \(v \) and with \(\text{left}(w) = \text{left}(v) \).

Think of a sweep-line algorithm:

Connect \(v \) to \(\text{helper}(\text{left}(v)) \).
An Algorithm

2) Treating merge vertices

(left(v), ℓ)
An Algorithm

2) Treating merge vertices
2) Treating merge vertices
An Algorithm

2) Treating merge vertices

\textbf{makeMonotone(polygon }P)\)
\[D \leftarrow \text{DCEL}(V(P), E(P))\]
\[Q \leftarrow \text{priority queue on } V(P)\]
\[T \leftarrow \text{empty bin. search tree}\]
An Algorithm

2) Treating merge vertices

\[\text{makeMonotone}(\text{polygon } P) \]
\[D \leftarrow \text{DCEL}(V(P), E(P)) \]
\[Q \leftarrow \text{priority queue on } V(P) \]
\[T \leftarrow \text{empty bin. search tree} \]

\{doubly-connected edge list: data structure for planar subdivisions\}
An Algorithm

2) Treating merge vertices

\[
\text{makeMonotone}(\text{polygon } P) \\
D \gets \text{DCEL}(V(P), E(P)) \\
Q \gets \text{priority queue on } V(P) \\
T \gets \text{empty bin. search tree}
\]

\[
\begin{align*}
(x, y) \prec (x', y') & : \iff \\
y > y' & \lor (y = y' \land x < x')
\end{align*}
\]
An Algorithm

2) Treating merge vertices

```
makeMonotone(polygon P)
D ← DCEL(V(P), E(P))
Q ← priority queue on V(P)
T ← empty bin. search tree
while Q ≠ ∅ do
  v ← Q.extractMax()
  type ← type of vertex v ∈ start, split, end, merge, regular
  handleVertex_{type}(v)
return DCEL D
```

```
An Algorithm

2) Treating merge vertices

makeMonotone(polygon \( P \))

\[
D \leftarrow \text{DCEL}(V(P), E(P))
\]

\[
Q \leftarrow \text{priority queue on } V(P)
\]

\[
T \leftarrow \text{empty bin. search tree}
\]

while \( Q \neq \emptyset \) do

\[
v \leftarrow Q\text{-extractMax()}
\]

\[
\text{type} \leftarrow \text{type of vertex } v
\]

handleVertex_{\text{merge}}(vertex \( v \))

\[
e \leftarrow \text{edge following } v \text{ ccw}
\]

\[
\text{if helper}(e) \text{ merge vtx then}
\]

\[
D\text{-insert(diag}(v, \text{helper}(e)))
\]

\[
T\text{-delete}(e)
\]

\[
e' \leftarrow T\text{-edgeLeftOf}(v)
\]

\[
\text{if helper}(e') \text{ merge vtx then}
\]

\[
D\text{-insert(diag}(v, \text{helper}(e')))
\]

helper(e') \leftarrow v

return DCEL \( D \)
An Algorithm

2) Treating merge vertices

makeMonotone(polygon P)
\[ D \leftarrow \text{DCEL}(V(P), E(P)) \]
\[ Q \leftarrow \text{priority queue on } V(P) \]
\[ T \leftarrow \text{empty bin. search tree} \]

while \( Q \neq \emptyset \) do
\[ v \leftarrow Q.\text{extractMax()} \]
\[ \text{type } \leftarrow \text{type of vertex } v \]
\[ \text{handleVertex}_{\text{merge}}(v) \]

return \( \text{DCEL } D \)

handleVertex_{\text{merge}}(vertex v)
\[ e \leftarrow \text{edge following } v \text{ ccw} \]
if helper(e) merge vtx then
\[ D.\text{insert(diag}(v, \text{helper}(e))) \]
\[ T.\text{delete}(e) \]
\[ e' \leftarrow T.\text{edgeLeftOf}(v) \]
if helper(e') merge vtx then
\[ D.\text{insert(diag}(v, \text{helper}(e'))) \]
\[ \text{helper}(e') \leftarrow v \]
An Algorithm

2) Treating merge vertices

```plaintext
makeMonotone(polygon P)
D ← DCEL(V(P), E(P))
Q ← priority queue on V(P)
T ← empty bin. search tree
while Q ≠ ∅ do
 v ← Q.extractMax()
 type ← type of vertex v
 handleVertex_{merge}(v)
handleVertex_{merge}(vertex v)
e ← edge following v ccw
if helper(e) merge vtx then
 D.insert(diag(v, helper(e)))
T.delete(e)
e' ← T.edgeLeftOf(v)
if helper(e') merge vtx then
 D.insert(diag(v, helper(e')))
helper(e') ← v
return DCEL D
```

An Algorithm

2) Treating merge vertices

```
makeMonotone(polygon P)
D ← DCEL(V(P), E(P))
Q ← priority queue on V(P)
T ← empty bin. search tree
while Q ≠ ∅ do
 v ← Q.extractMax()
 type ← type of vertex v
 handleVertex_{merge}(v)
return DCEL D
```

```
handleVertex_{merge}(vertex v)
e ← edge following v ccw
if helper(e) merge vtx then
 D.insert(diag(v, helper(e)))
T.delete(e)
e′ ← T.edgeLeftOf(v)
if helper(e′) merge vtx then
 D.insert(diag(v, helper(e′)))
helper(e′) ← v
```
An Algorithm

2) Treating merge vertices

makeMonotone(polygon P)
\[ \mathcal{D} \leftarrow \text{DCEL}(V(P), E(P)) \]
\[ Q \leftarrow \text{priority queue on } V(P) \]
\[ T \leftarrow \text{empty bin. search tree} \]
while \( Q \neq \emptyset \) do
\[ v \leftarrow Q.\text{extractMax}() \]
\[ \text{type } \leftarrow \text{type of vertex } v \]
\[ \text{handleVertex}_{\text{merge}}(v) \]
return \( \text{DCEL } \mathcal{D} \)

handleVertex_{\text{merge}}(vertex v)
\[ e \leftarrow \text{edge following } v \text{ ccw} \]
if helper(e) merge vtx then
\[ \mathcal{D}.\text{insert}(\text{diag}(v, \text{helper}(e))) \]
\[ T.\text{delete}(e) \]
e′ ← T.edgeLeftOf(v)
if helper(e′) merge vtx then
\[ \mathcal{D}.\text{insert}(\text{diag}(v, \text{helper}(e'))) \]
helper(e′) ← v

while \( Q \neq \emptyset \) do
v ← Q.extractMax()
type ← type of vertex v
handleVertex_{\text{type}}(v)
return \( \text{DCEL } \mathcal{D} \)
An Algorithm

2) Treating merge vertices

\begin{align*}
\text{makeMonotone}(\text{polygon } P) & \\
D & \leftarrow \text{DCEL}(V(P), E(P)) \\
Q & \leftarrow \text{priority queue on } V(P) \\
T & \leftarrow \text{empty bin. search tree} \\
\text{while } Q \neq \emptyset \text{ do} & \\
& \quad v \leftarrow Q.\text{extractMax}() \\
& \quad \text{type } \leftarrow \text{type of vertex } v \\
& \quad \text{handleVertex}_{\text{merge}}(v) \\
\text{return } \text{DCEL } D
\end{align*}

\begin{align*}
\text{handleVertex}_{\text{merge}}(\text{vertex } v) & \\
e & \leftarrow \text{edge following } v \text{ ccw} \\
\text{if } \text{helper}(e) \text{ merge vtx then} & \\
& \quad D.\text{insert}(\text{diag}(v, \text{helper}(e))) \\
T & .\text{delete}(e) \\
e' & \leftarrow T.\text{edgeLeftOf}(v) \\
\text{if } \text{helper}(e') \text{ merge vtx then} & \\
& \quad D.\text{insert}(\text{diag}(v, \text{helper}(e')))) \\
\text{helper}(e') & \leftarrow v
\end{align*}
An Algorithm

2) Treating merge vertices

\textbf{makeMonotone}(polygon \( P \))
\[ D \leftarrow \text{DCEL}(V(P), E(P)) \]
\[ Q \leftarrow \text{priority queue on } V(P) \]
\[ T \leftarrow \text{empty bin. search tree} \]
\[ \text{while } Q \neq \emptyset \text{ do} \]
\[ v \leftarrow Q.\text{extractMax()} \]
\[ \text{type } \leftarrow \text{type of vertex } v \]
\[ \text{handleVertex}_{\text{merge}}(v) \]
\[ \text{return } \text{DCEL } D \]

\textbf{handleVertex}_{\text{merge}}(vertex \( v \))
\[ e \leftarrow \text{edge following } v \text{ ccw} \]
\[ \text{if } \text{helper}(e) \text{ merge vtx then} \]
\[ D.\text{insert(diag}(v, \text{helper}(e)))) \]
\[ T.\text{delete}(e) \]
\[ e' \leftarrow T.\text{edgeLeftOf}(v) \]
\[ \text{if } \text{helper}(e') \text{ merge vtx then} \]
\[ D.\text{insert(diag}(v, \text{helper}(e')))) \]
\[ \text{helper}(e') \leftarrow v \]
An Algorithm

2) Treating merge vertices

\textbf{makeMonotone}(polygon P)

\[
\begin{align*}
D & \leftarrow \text{DCEL}(V(P), E(P)) \\
Q & \leftarrow \text{priority queue on } V(P) \\
T & \leftarrow \text{empty bin. search tree} \\
\text{while } Q \neq \emptyset & \text{ do} \\
& \quad v \leftarrow Q.\text{extractMax}() \\
& \quad \text{type } \leftarrow \text{type of vertex } v \\
& \quad \text{handleVertex}_{\text{merge}}(v) \\
\text{return } \text{DCEL } D
\end{align*}
\]

\textbf{handleVertex}_{\text{merge}}(vertex v)

\[
\begin{align*}
& e \leftarrow \text{edge following } v \text{ ccw} \\
& \text{if } \text{helper}(e) \text{ merge vtx then} \\
& \quad \text{D.insert(diag}(v, \text{helper}(e))) \\
& \quad \text{T.delete}(e) \\
& \quad e' \leftarrow \text{T.edgeLeftOf}(v) \\
& \quad \text{if } \text{helper}(e') \text{ merge vtx then} \\
& \quad \text{D.insert(diag}(v, \text{helper}(e'))) \\
& \quad \text{helper}(e') \leftarrow v
\end{align*}
\]
An Algorithm

2) Treating merge vertices

\[
\text{makeMonotone}(\text{polygon } P) \\
D \leftarrow \text{DCEL}(V(P), E(P)) \\
Q \leftarrow \text{priority queue on } V(P) \\
T \leftarrow \text{empty bin. search tree} \\
\text{while } Q \neq \emptyset \text{ do} \\
\quad v \leftarrow Q.\text{extractMax()} \\
\quad \text{type } \leftarrow \text{type of vertex } v \\
\quad \text{handleVertex}_{\text{merge}}(v) \\
\text{return } \text{DCEL } D
\]

\[
\text{handleVertex}_{\text{merge}}(\text{vertex } v) \\
e \leftarrow \text{edge following } v \text{ ccw} \\
\text{if } \text{helper}(e) \text{ merge vtx then} \\
\quad D.\text{insert}(\text{diag}(v, \text{helper}(e))) \\
\quad T.\text{delete}(e) \\
\quad e' \leftarrow T.\text{edgeLeftOf}(v) \\
\text{if } \text{helper}(e') \text{ merge vtx then} \\
\quad D.\text{insert}(\text{diag}(v, \text{helper}(e'))) \\
\quad \text{helper}(e') \leftarrow v
\]
An Algorithm

2) Treating merge vertices

\[
\text{makeMonotone}(\text{polygon } P)
\]
\[
D \leftarrow \text{DCEL}(V(P), E(P))
\]
\[
Q \leftarrow \text{priority queue on } V(P)
\]
\[
T \leftarrow \text{empty bin. search tree}
\]

\[
\text{while } Q \neq \emptyset \text{ do}
\]
\[
\quad v \leftarrow Q.\text{extractMax()}
\]
\[
\quad \text{type } \leftarrow \text{type of vertex } v
\]
\[
\quad \text{handleVertex}_{\text{merge}}(v)
\]
\[
\text{return } \text{DCEL } D
\]

\[
\text{handleVertex}_{\text{merge}}(\text{vertex } v)
\]
\[
\quad e \leftarrow \text{edge following } v \text{ ccw}
\]
\[
\quad \text{if } \text{helper}(e) \text{ merge vtx then}
\]
\[
\quad \quad D.\text{insert(diag}(v, \text{helper}(e)))
\]
\[
\quad T.\text{delete}(e)
\]
\[
\quad e' \leftarrow T.\text{edgeLeftOf}(v)
\]
\[
\quad \text{if } \text{helper}(e') \text{ merge vtx then}
\]
\[
\quad \quad D.\text{insert(diag}(v, \text{helper}(e')))
\]
\[
\quad \quad \text{helper}(e') \leftarrow v
\]
An Algorithm

2) Treating merge vertices

makeMonotone(polygon P)
\[ D \leftarrow \text{DCEL}(V(P), E(P)) \]
\[ Q \leftarrow \text{priority queue on } V(P) \]
\[ T \leftarrow \text{empty bin. search tree} \]
while \( Q \neq \emptyset \) do
\[ v \leftarrow Q.\text{extractMax()} \]
\[ \text{type} \leftarrow \text{type of vertex } v \]
handleVertex\text{type}(v)
\]
return DCEL \( D \)

handleVertex\text{merge}(vertex v)
\[ e \leftarrow \text{edge following } v \text{ ccw} \]
if helper\text{merge}(e) merge vtx then
\[ D.\text{insert}(	ext{diag}(v, \text{helper}(e))) \]
\[ T.\text{delete}(e) \]
\[ e' \leftarrow T.\text{edgeLeftOf}(v) \]
if helper\text{merge}(e') merge vtx then
\[ D.\text{insert}(	ext{diag}(v, \text{helper}(e'))) \]
\]
helper\text{merge}(e') \leftarrow v
Analysis

Lemma. makeMonotone() adds a set of non-intersecting diagonals to $P$ such that $P$ is partitioned into $y$-monotone subpolygons.
Analysis

**Lemma.** makeMonotone() adds a set of non-intersecting diagonals to $P$ such that $P$ is partitioned into $y$-monotone subpolygons.

**Lemma.** A simple polygon with $n$ vertices can be subdivided into $y$-monotone polygons in $O(n \log n)$ time.
Triangulating a $y$-Monotone Polygon $P$

**Approach:** greedy, going from top to bottom
Triangulating a $y$-Monotone Polygon $P$

**Approach:** greedy, going from top to bottom
Triangulating a $y$-Monotone Polygon $P$

**Approach:** greedy, going from top to bottom
Triangulating a $y$-Monotone Polygon $P$

**Approach:** greedy, going from top to bottom

![Diagram of a y-Monotone Polygon](image_url)
Triangulating a $y$-Monotone Polygon $P$

**Approach:** greedy, going from top to bottom
Triangulating a $y$-Monotone Polygon $P$

**Approach:** greedy, going from top to bottom
Triangulating a $y$-Monotone Polygon $P$

**Approach:** greedy, going from top to bottom
Triangulating a $y$-Monotone Polygon $P$

**Approach:** greedy, going from top to bottom
Triangulating a $y$-Monotone Polygon $P$

**Approach:** greedy, going from top to bottom
Triangulating a $y$-Monotone Polygon $P$

**Approach:** greedy, going from top to bottom
Triangulating a \( y \)-Monotone Polygon \( P \)

**Approach:** greedy, going from top to bottom
Triangulating a $y$-Monotone Polygon $P$

**Approach:** greedy, going from top to bottom
Triangulating a $y$-Monotone Polygon $P$

**Approach:** greedy, going from top to bottom
Triangulating a $y$-Monotone Polygon $P$

**Approach:** greedy, going from top to bottom
Triangulating a $y$-Monotone Polygon $P$

**Approach:** greedy, going from top to bottom
Triangulating a $y$-Monotone Polygon $P$

**Approach:** greedy, going from top to bottom
Triangulating a \( y \)-Monotone Polygon \( P \)

**Approach:** greedy, going from top to bottom
Triangulating a $y$-Monotone Polygon $P$

**Approach:** greedy, going from top to bottom
Triangulating a $y$-Monotone Polygon $P$

**Approach:** greedy, going from top to bottom
Triangulating a $y$-Monotone Polygon $P$

**Approach:** greedy, going from top to bottom
Triangulating a $y$-Monotone Polygon $P$

**Approach:** greedy, going from top to bottom
Triangulating a $y$-Monotone Polygon $P$

**Approach:** greedy, going from top to bottom
Triangulating a $y$-Monotone Polygon $P$

**Approach:** greedy, going from top to bottom
Triangulating a $y$-Monotone Polygon $P$

**Approach:** greedy, going from top to bottom
Triangulating a $y$-Monotone Polygon $P$

**Approach:** greedy, going from top to bottom
Triangulating a $y$-Monotone Polygon $P$

**Approach:** greedy, going from top to bottom
Triangulating a $y$-Monotone Polygon $P$

**Approach:** greedy, going from top to bottom
Triangulating a $y$-Monotone Polygon $P$

**Approach:** greedy, going from top to bottom
Triangulating a $y$-Monotone Polygon $P$

**Approach:** greedy, going from top to bottom
Triangulating a $y$-Monotone Polygon $P$

**Approach:** greedy, going from top to bottom
Triangulating a \( y \)-Monotone Polygon \( P \)

**Approach:** greedy, going from top to bottom

Invariant?
Triangulating a $y$-Monotone Polygon $P$

**Approach:** greedy, going from top to bottom
Triangulating a \( y \)-Monotone Polygon \( P \)

**Approach:** greedy, going from top to bottom
Triangulating a $y$-Monotone Polygon $P$

**Approach:** greedy, going from top to bottom
Triangulating a $y$-Monotone Polygon $P$

**Approach:** greedy, going from top to bottom
Triangulating a y-Monotone Polygon $P$

**Approach:** greedy, going from top to bottom

Invariant?
Triangulating a $y$-Monotone Polygon $P$

**Approach:** greedy, going from top to bottom

**Invariant?**

The part of $P$ that we have seen but not yet triangulated is a *funnel*.
Triangulating a \( y \)-Monotone Polygon \( P \)

**Approach:** greedy, going from top to bottom

**Invariant?**

The part of \( P \) that we have seen but not yet triangulated is a *funnel*.
Triangulating a $y$-Monotone Polygon $P$

**Approach:** greedy, going from top to bottom

**Invariant?**

The part of $P$ that we have seen but not yet triangulated is a *funnel*.

- Angle in $P > 180°$
- Reflex vtc
- Chains of reflex vtc
Triangulating a $y$-Monotone Polygon $P$

**Approach:** greedy, going from top to bottom

**Invariant?**

The part of $P$ that we have seen but not yet triangulated is a *funnel*.

- **Angle in $P$**: $> 180^\circ$
- **Reflex VTC**
- **Convex VTC**

![Diagram of triangulation process with labeled angles and VTC types]
Triangulating a $y$-Monotone Polygon $P$

**Approach:** greedy, going from top to bottom

**Invariant?**

The part of $P$ that we have seen but not yet triangulated is a *funnel*.

Our funnels are special:

- angle in $P$ > $180^\circ$
- chains of reflex vtc
- convex vtc
- reflex vtc
Triangulating a $y$-Monotone Polygon $P$

**Approach:** greedy, going from top to bottom

**Invariant?**

The part of $P$ that we have seen but not yet triangulated is a funnel.

Our funnels are special: just 1 chain!
Triangulating a \( y \)-Monotone Polygon \( P \)

**Approach:** greedy, going from top to bottom

**Invariant?**
The part of \( P \) that we have seen but not yet triangulated is a *funnel*.

Our funnels are special: just 1 chain!

Easy!
Algorithm

`TriangulateMonotonePolygon(Polygon P as circular vertex list)`
merge left and right chain → seq. $u_1, \ldots, u_n$ with $y_1 \geq \ldots \geq y_n$
Stack $S$; $S$.push($u_1$); $S$.push($u_2$)
for $j \leftarrow 3$ to $n - 1$ do
**Algorithm**

`TriangulateMonotonePolygon(Polygon P as circular vertex list)`
merge left and right chain → seq. \( u_1, \ldots, u_n \) with \( y_1 \geq \ldots \geq y_n \)

Stack \( S; S.push(u_1); S.push(u_2) \)

**for** \( j \leftarrow 3 \) **to** \( n - 1 \) **do**

**if** \( u_j \) and \( S.top() \) lie on different chains **then**

**else**

`draw diagonals from \( u_n \) to all vtc on \( S \) except first and last one`
Algorithm

**TriangulateMonotonePolygon** *(Polygon P as circular vertex list)*
merge left and right chain → seq. \( u_1, \ldots, u_n \) with \( y_1 \geq \ldots \geq y_n \)
Stack \( S \); \( S.push(u_1) \); \( S.push(u_2) \)
for \( j \leftarrow 3 \) to \( n - 1 \) do
  if \( u_j \) and \( S.top() \) lie on different chains then
    while not \( S.empty() \) do
      \( v \leftarrow S.pop() \)
      if not \( S.empty() \) then draw diag. \( (u_j, v) \)
  else
    \( v \leftarrow S.pop() \)
    while not \( S.empty() \) and \( u_j \) sees \( S.top() \) do
      \( v \leftarrow S.pop() \)
      draw diagonal \( (u_j, v) \)
S.push(\( v \));
S.push(\( u_j \));

draw diagonals from \( u_n \) to all vtc on \( S \) except first and last one
Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list)
merge left and right chain → seq. $u_1, \ldots, u_n$ with $y_1 \geq \ldots \geq y_n$
Stack $S$; $S.push(u_1)$; $S.push(u_2)$
for $j \leftarrow 3$ to $n - 1$ do
  if $u_j$ and $S.top()$ lie on different chains then
    while not $S.empty()$ do
      $v \leftarrow S.pop()$
      if not $S.empty()$ then draw diag. $(u_j, v)$
    else
      $v \leftarrow S.pop()$
      while not $S.empty()$ and $u_j$ sees $S.top()$ do
        $v \leftarrow S.pop()$
        draw diagonal $(u_j, v)$
      $S.push(v)$; $S.push(u_j)$
draw diagonals from $u_n$ to all vtc on $S$ except first and last one
Algorithm

**TriangulateMonotonePolygon** (Polygon $P$ as circular vertex list)
merge left and right chain $\rightarrow$ seq. $u_1, \ldots, u_n$ with $y_1 \geq \ldots \geq y_n$
Stack $S$; $S$.push($u_1$); $S$.push($u_2$)
for $j \leftarrow 3$ to $n - 1$ do
  if $u_j$ and $S$.top() lie on different chains then
    while not $S$.empty() do
      $v \leftarrow S$.pop()
      if not $S$.empty() then draw diag. $(u_j, v)$
  else

draw diagonals from $u_n$ to all vtc on $S$ except first and last one
Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list)
merge left and right chain → seq. \( u_1, \ldots, u_n \) with \( y_1 \geq \ldots \geq y_n \)
Stack \( S; S.push(u_1); S.push(u_2) \)
for \( j \leftarrow 3 \) to \( n - 1 \) do
\[ \text{if } u_j \text{ and } S.top() \text{ lie on different chains then} \]
\[ \quad \text{while not } S.empty() \text{ do} \]
\[ \quad \quad v \leftarrow S.pop() \]
\[ \quad \quad \text{if not } S.empty() \text{ then draw diag. } (u_j, v) \]
\[ \text{else} \]
\[ \quad \text{draw diagonals from } u_n \text{ to all vtc on } S \text{ except first and last one} \]
Algorithm

\textbf{TriangulateMonotonePolygon}(\text{Polygon } P \text{ as circular vertex list})
merge left and right chain $\rightarrow$ seq. $u_1, \ldots, u_n$ with $y_1 \geq \ldots \geq y_n$
Stack $S$; $S$.push($u_1$); $S$.push($u_2$)
\textbf{for} $j \leftarrow 3$ \textbf{to} $n - 1$ \textbf{do}
  \textbf{if} $u_j$ and $S$.top() lie on different chains \textbf{then}
    \textbf{while} not $S$.empty() \textbf{do}
      \textbf{if} not $S$.empty() \textbf{then} draw diag. $(u_j, v)$
      $v \leftarrow S$.pop()
  \textbf{else}
\draw diagonals from $u_n$ to all vtc on $S$ except first and last one
Algorithm

`TriangulateMonotonePolygon` (Polygon P as circular vertex list)
merge left and right chain → seq. $u_1, \ldots, u_n$ with $y_1 \geq \ldots \geq y_n$

Stack S; S.push($u_1$); S.push($u_2$)

for $j \leftarrow 3$ to $n - 1$ do
  if $u_j$ and S.top() lie on different chains then
    while not S.empty() do
      $v \leftarrow$ S.pop()
      if not S.empty() then draw diag. $(u_j, v)$
    S.push($u_j$)
  else
    $v \leftarrow$ S.pop()
    while not S.empty() and $u_j$ sees S.top() do
      $v \leftarrow$ S.pop()
      draw diagonal $(u_j, v)$
    S.push($v$); S.push($u_j$)

draw diagonals from $u_n$ to all vtc on S except first and last one
Algorithm

TriangulateMonotonePolygon(Polygon \( P \) as circular vertex list)
merge left and right chain ➔ seq. \( u_1, \ldots, u_n \) with \( y_1 \geq \ldots \geq y_n \)
Stack \( S \); \( S.push(u_1); S.push(u_2) \)
for \( j \leftarrow 3 \) to \( n - 1 \) do
  if \( u_j \) and \( S.top() \) lie on different chains then
    while not \( S.empty() \) do
      \( v \leftarrow S.pop() \)
      if not \( S.empty() \) then draw diag. (\( u_j, v \))
  else
    draw diagonals from \( u_n \) to all vtc on \( S \) except first and last one
Algorithm

`TriangulateMonotonePolygon(Polygon P as circular vertex list)`

merge left and right chain → seq. \( u_1, \ldots, u_n \) with \( y_1 \geq \ldots \geq y_n \)

Stack \( S \); \( S.push(u_1) \); \( S.push(u_2) \)

for \( j \leftarrow 3 \) to \( n - 1 \) do

  if \( u_j \) and \( S.top() \) lie on different chains then

    while not \( S.empty() \) do

      \( v \leftarrow S.pop() \)

      if not \( S.empty() \) then draw diag. \((u_j, v)\)

  else

end for

draw diagonals from \( u_n \) to all vtc on \( S \) except first and last one
Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list)
merge left and right chain → seq. $u_1, \ldots, u_n$ with $y_1 \geq \ldots \geq y_n$
Stack $S$; $S$.push($u_1$); $S$.push($u_2$)
for $j \leftarrow 3$ to $n - 1$ do
  if $u_j$ and $S$.top() lie on different chains then
    while not $S$.empty() do
      $v \leftarrow S$.pop()
      if not $S$.empty() then draw diag. $(u_j, v)$
  else
    $v \leftarrow S$.pop()
    while not $S$.empty() and $u_j$ sees $S$.top() do
      $v \leftarrow S$.pop()
      draw diagonal $(u_j, v)$
    $S$.push($v$); $S$.push($u_j$)
draw diagonals from $u_n$ to all vtc on $S$ except first and last one
Algorithm

\textbf{TriangulateMonotonePolygon}(Polygon \textit{P} as circular vertex list)
merge left and right chain \rightarrow seq. \textit{u}_1, \ldots, \textit{u}_n with \textit{y}_1 \geq \ldots \geq \textit{y}_n
Stack \textit{S}; \textit{S}.push(\textit{u}_1); \textit{S}.push(\textit{u}_2)
\textbf{for} \textit{j} \leftarrow 3 \textbf{ to } \textit{n} - 1 \textbf{ do}
\hspace{1cm} \textbf{if} \textit{u}_j \text{ and } \textit{S}.top() \text{ lie on different chains} \textbf{then}
\hspace{2cm} \textbf{while} \textbf{not} \ \textit{S}.empty() \ \textbf{do}
\hspace{3cm} \textit{v} \leftarrow \textit{S}.pop()
\hspace{4cm} \textbf{if} \textbf{not} \ \textit{S}.empty() \ \textbf{then} \ \text{draw diag. } (\textit{u}_j, \textit{v})
\hspace{2cm} \textbf{else}
\hspace{3cm} \textit{v} \leftarrow \textit{S}.pop()
\hspace{4cm} \textbf{while} \not\textbf{S}.empty() \text{ and } \textit{u}_j \text{ sees } \textit{S}.top() \textbf{do}
\hspace{5cm} \textit{v} \leftarrow \textit{S}.pop()
\hspace{6cm} \text{draw diagonal } (\textit{u}_j, \textit{v})
\hspace{4cm} \textit{S}.push(\textit{v})
\hspace{4cm} \textit{S}.push(\textit{u}_j)
\hspace{2cm} \text{draw diagonals from } \textit{u}_n \text{ to all vtc on } \text{S except first and last one}
**Algorithm**

`TriangulateMonotonePolygon(Polygon P as circular vertex list)`
merge left and right chain → seq. $u_1, \ldots, u_n$ with $y_1 \geq \ldots \geq y_n$

Stack $S$; $S$.push($u_1$); $S$.push($u_2$)

for $j \leftarrow 3$ to $n - 1$ do
  if $u_j$ and $S$.top() lie on different chains then
    while not $S$.empty() do
      $v \leftarrow S$.pop()
      if not $S$.empty() then draw diag. $(u_j, v)$
      $S$.push($u_{j-1}$); $S$.push($u_j$)
  else
    $S$.push($u_{j-1}$); $S$.push($u_j$)

draw diagonals from $u_n$ to all vtc on $S$ except first and last one
Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list)
merge left and right chain → seq. $u_1, \ldots, u_n$ with $y_1 \geq \ldots \geq y_n$
Stack $S$; $S.push(u_1)$; $S.push(u_2)$
for $j \leftarrow 3$ to $n - 1$ do
  if $u_j$ and $S.top()$ lie on different chains then
    while not $S.empty()$ do
      $v \leftarrow S.pop()$
      if not $S.empty()$ then draw diag. $(u_j, v)$
      $S.push(u_{j-1})$; $S.push(u_j)$
  else
    $S.push(u_{j-1})$; $S.push(u_j)$

draw diagonals from $u_n$ to all vtc on $S$ except first and last one
Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list)
merge left and right chain → seq. \( u_1, \ldots, u_n \) with \( y_1 \geq \ldots \geq y_n \)
Stack \( S; S.push(u_1); S.push(u_2) \)
for \( j \leftarrow 3 \) to \( n - 1 \) do
  if \( u_j \) and \( S.top() \) lie on different chains then
    while not \( S.empty() \) do
      \( v \leftarrow S.pop() \)
      if not \( S.empty() \) then draw diag. \( (u_j, v) \)
     \( S.push(u_{j-1}); S.push(u_j) \)
  else
    \( \)
Algorithm

\textbf{TriangulateMonotonePolygon}(Polygon \( P \) as circular vertex list) 
merge left and right chain \( \rightarrow \) seq. \( u_1, \ldots, u_n \) with \( y_1 \geq \ldots \geq y_n \) 
Stack \( S; S.\text{push}(u_1); S.\text{push}(u_2) \) 
\textbf{for} \( j \leftarrow 3 \) \textbf{to} \( n - 1 \) \textbf{do} 
\hspace{1em} \textbf{if} \( u_j \) and \( S.\text{top}() \) lie on different chains \textbf{then} 
\hspace{2em} \textbf{while} \textbf{not} \( S.\text{empty}() \) \textbf{do} 
\hspace{3em} \( v \leftarrow S.\text{pop}() \) 
\hspace{4em} \textbf{if} \textbf{not} \( S.\text{empty}() \) \textbf{then} draw diag. \( (u_j, v) \) 
\hspace{5em} \( S.\text{push}(u_{j-1}); S.\text{push}(u_j) \) 
\hspace{1em} \textbf{else} 
\hspace{2em} \( v \leftarrow S.\text{pop}() \) 
\hspace{1em} draw diagonals from \( u_n \) to all vtc on \( S \) except first and last one
Algorithm

TriangulateMonotonePolygon(Polygon \( P \) as circular vertex list)
merge left and right chain \( \rightarrow \) seq. \( u_1, \ldots, u_n \) with \( y_1 \geq \ldots \geq y_n \)
Stack \( S; \) \( S.\)push\( (u_1); \) \( S.\)push\( (u_2) \)
for \( j \leftarrow 3 \) to \( n - 1 \) do
  if \( u_j \) and \( S.\)top() lie on different chains then
    while not \( S.\)empty() do
      \( v \leftarrow S.\)pop()
      if not \( S.\)empty() then draw diag. \( (u_j, v) \)
      \( S.\)push\( (u_{j-1}); \) \( S.\)push\( (u_j) \)
  else
    \( v \leftarrow S.\)pop()
    while not \( S.\)empty() and \( u_j \) sees \( S.\)top() do
      \( v \leftarrow S.\)pop()
      draw diagonal \( (u_j, v) \)
Algorithm

\textbf{TriangulateMonotonePolygon}(Polygon \ P \ as \ circular \ vertex \ list) \\
merge \ left \ and \ right \ chain \ \rightarrow \ seq. \ u_1, \ldots, u_n \ with \ y_1 \geq \ldots \geq y_n \\
Stack \ S; \ S.pop(u_1); \ S.pop(u_2) \\
\textbf{for} \ j \leftarrow 3 \ \textbf{to} \ n - 1 \ \textbf{do} \\
\quad \textbf{if} \ u_j \ \text{and} \ S.top() \ \text{lie on different chains} \ \textbf{then} \\
\quad \quad \textbf{while} \ \text{not} \ S.empty() \ \textbf{do} \\
\quad \quad \quad v \leftarrow S.pop() \\
\quad \quad \quad \textbf{if} \ \text{not} \ S.empty() \ \textbf{then} \ \text{draw} \ \text{diag.} \ (u_j, v) \\
\quad \quad S.pop(u_{j-1}); \ S.push(u_j) \\
\quad \textbf{else} \\
\quad \quad v \leftarrow S.pop() \\
\quad \quad \textbf{while} \ \text{not} \ S.empty() \ \text{and} \ u_j \ \text{sees} \ S.top() \ \textbf{do} \\
\quad \quad \quad v \leftarrow S.pop() \\
\quad \quad \quad \text{draw} \ \text{diagonal} \ (u_j, v) \\
\quad S.push(v); \ S.push(u_j) \\
\textbf{draw} \ \text{diagonals} \ \text{from} \ u_n \ \text{to} \ \text{all} \ \text{vtc} \ \text{on} \ S \ \text{except} \ \text{first} \ \text{and} \ \text{last} \ \text{one}
**Algorithm**

**TriangulateMonotonePolygon** (Polygon \( P \) as circular vertex list)
merge left and right chain → seq. \( u_1, \ldots, u_n \) with \( y_1 \geq \ldots \geq y_n \)
Stack \( S \); \( S.push(u_1); S.push(u_2) \)
for \( j \leftarrow 3 \) to \( n - 1 \) do
  if \( u_j \) and \( S.top() \) lie on different chains then
    while not \( S.empty() \) do
      \( v \leftarrow S.pop() \)
      if not \( S.empty() \) then draw diag. \((u_j, v)\)
      \( S.push(u_{j-1}); S.push(u_j) \)
  else
    \( v \leftarrow S.pop() \)
    while not \( S.empty() \) and \( u_j \) sees \( S.top() \) do
      \( v \leftarrow S.pop() \)
      draw diagonal \((u_j, v)\)
  draw diagonals from \( u_n \) to all vtc on \( S \) except first and last one
Algorithm

**TriangulateMonotonePolygon** (Polygon $P$ as circular vertex list)
merge left and right chain $\rightarrow$ seq. $u_1, \ldots, u_n$ with $y_1 \geq \ldots \geq y_n$
Stack $S$; $S.push(u_1)$; $S.push(u_2)$

```
for $j \leftarrow 3$ to $n - 1$ do
 if u_j and $S.top()$ lie on different chains then
 while not $S.empty()$ do
 $v \leftarrow S.pop()$
 if not $S.empty()$ then draw diag. (u_j, v)
 $S.push(u_{j-1})$; $S.push(u_j)$
 else
 $v \leftarrow S.pop()$
 while not $S.empty()$ and u_j sees $S.top()$ do
 $v \leftarrow S.pop()$
 draw diagonal (u_j, v)
```

draw diagonals from $u_n$ to all vtc on $S$ except first and last one
Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list)
merge left and right chain → seq. $u_1, \ldots, u_n$ with $y_1 \geq \ldots \geq y_n$
Stack $S$; $S.push(u_1); S.push(u_2)$
for $j \leftarrow 3$ to $n - 1$ do
  if $u_j$ and $S.top()$ lie on different chains then
    while not $S.empty()$ do
      $v \leftarrow S.pop()$
      if not $S.empty()$ then draw diagonal $(u_j, v)$
      $S.push(u_{j-1}); S.push(u_j)$
  else
    $v \leftarrow S.pop()$
    while not $S.empty()$ and $u_j$ sees $S.top()$ do
      $v \leftarrow S.pop()$
      draw diagonal $(u_j, v)$
    draw diagonals from $u_n$ to all vtc on $S$ except first and last one
TriangulateMonotonePolygon(Polygon P as circular vertex list)
merge left and right chain → seq. \( u_1, \ldots, u_n \) with \( y_1 \geq \ldots \geq y_n \)
Stack \( S \); \( S.push(u_1) \); \( S.push(u_2) \)
for \( j \leftarrow 3 \) to \( n - 1 \) do
  if \( u_j \) and \( S.top() \) lie on different chains then
    while not \( S.empty() \) do
      \( v \leftarrow S.pop() \)
      if not \( S.empty() \) then draw diagonal \( (u_j, v) \)
      \( S.push(u_{j-1}) \); \( S.push(u_j) \)
  else
    \( v \leftarrow S.pop() \)
    while not \( S.empty() \) and \( u_j \) sees \( S.top() \) do
      \( v \leftarrow S.pop() \)
      draw diagonal \( (u_j, v) \)
  end if
Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list)
merge left and right chain → seq. $u_1, \ldots, u_n$ with $y_1 \geq \ldots \geq y_n$
Stack $S$; $S.push(u_1)$; $S.push(u_2)$
for $j \leftarrow 3$ to $n - 1$ do
  if $u_j$ and $S.top()$ lie on different chains then
    while not $S.empty()$ do
      $v \leftarrow S.pop()$
      if not $S.empty()$ then draw diag. $(u_j, v)$
      $S.push(u_{j-1})$; $S.push(u_j)$
  else
    $v \leftarrow S.pop()$
    while not $S.empty()$ and $u_j$ sees $S.top()$ do
      $v \leftarrow S.pop()$
      draw diagonal $(u_j, v)$
    draw diagonals from $u_n$ to all vtc on $S$ except first and last one
Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list)
merge left and right chain → seq. \( u_1, \ldots, u_n \) with \( y_1 \geq \ldots \geq y_n \)
Stack \( S \); \( S \).push\( (u_1) \); \( S \).push\( (u_2) \)
for \( j \leftarrow 3 \) to \( n - 1 \) do
    if \( u_j \) and \( S \).top() lie on different chains then
        while not \( S \).empty() do
            \( v \) ← \( S \).pop()
            if not \( S \).empty() then draw diagonal \( (u_j, v) \)
            \( S \).push\( (u_{j-1}) \); \( S \).push\( (u_j) \)
    else
        \( v \) ← \( S \).pop()
        while not \( S \).empty() and \( u_j \) sees \( S \).top() do
            \( v \) ← \( S \).pop()
            draw diagonal \( (u_j, v) \)
Algorithm

**TriangulateMonotonePolygon**(Polygon P as circular vertex list)
merge left and right chain → seq. $u_1, \ldots, u_n$ with $y_1 \geq \ldots \geq y_n$
Stack S; S.push($u_1$); S.push($u_2$)

for $j \leftarrow 3$ to $n - 1$ do
    if $u_j$ and S.top() lie on different chains then
        while not S.empty() do
            $v \leftarrow$ S.pop()
            if not S.empty() then draw diag. $(u_j, v)$
            S.push($u_{j-1}$); S.push($u_j$)
    else
        $v \leftarrow$ S.pop()
        while not S.empty() and $u_j$ sees S.top() do
            $v \leftarrow$ S.pop()
            draw diagonal $(u_j, v)$

draw diagonals from $u_n$ to all vtc on S except first and last one
Algorithm

**TriangulateMonotonePolygon** (*Polygon* \( P \) as circular vertex list)
merge left and right chain \( \rightarrow \) seq. \( u_1, \ldots, u_n \) with \( y_1 \geq \ldots \geq y_n \)
Stack \( S \); \( S.push(u_1) \); \( S.push(u_2) \)
for \( j \leftarrow 3 \) to \( n - 1 \) do
  if \( u_j \) and \( S.top() \) lie on different chains then
    while not \( S.empty() \) do
      \( v \leftarrow S.pop() \)
      if not \( S.empty() \) then draw diag. \((u_j, v)\)
      \( S.push(u_{j-1}) \); \( S.push(u_j) \)
  else
    \( v \leftarrow S.pop() \)
    while not \( S.empty() \) and \( u_j \) sees \( S.top() \) do
      \( v \leftarrow S.pop() \)
      draw diagonal \((u_j, v)\)
    \( S.push(v) \); \( S.push(u_j) \)

draw diagonals from \( u_n \) to all vtc on \( S \) except first and last one
Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list) merge left and right chain → seq. \( u_1, \ldots, u_n \) with \( y_1 \geq \ldots \geq y_n \)

Stack \( S; S.push(u_1); S.push(u_2) \)

for \( j \leftarrow 3 \) to \( n - 1 \) do

if \( u_j \) and \( S.top() \) lie on different chains then

while not \( S.empty() \) do

\( v \leftarrow S.pop() \)

if not \( S.empty() \) then draw diag. \((u_j, v)\) \n
\( S.push(u_{j-1}); S.push(u_j) \)

else

\( v \leftarrow S.pop() \)

while not \( S.empty() \) and \( u_j \) sees \( S.top() \) do

\( v \leftarrow S.pop() \)

draw diagonal \((u_j, v)\) \n
\( S.push(v); S.push(u_j) \)

draw diagonals from \( u_n \) to all vtc on \( S \) except first and last one
Algorithm

\textbf{TriangulateMonotonePolygon}(Polygon \ P \ as \ circular \ vertex \ list) \\
merge \ left \ and \ right \ chain \ \rightarrow \ \text{seq.} \ u_1, \ldots, u_n \ \text{with} \ y_1 \geq \ldots \geq y_n \\
Stack \ S; \ S.\push(u_1); \ S.\push(u_2) \\
\textbf{for} \ j \leftarrow 3 \ \textbf{to} \ n - 1 \ \textbf{do} \\
\quad \textbf{if} \ u_j \ \text{and} \ S.\text{top}() \ \text{lie \ on \ different \ chains} \ \textbf{then} \\
\quad \quad \quad \textbf{while} \ \textbf{not} \ S.\text{empty}() \ \textbf{do} \\
\quad \quad \quad \quad v \leftarrow S.\pop() \\
\quad \quad \quad \quad \textbf{if} \ \textbf{not} \ S.\text{empty}() \ \textbf{then} \ \text{draw \ diagonal} \ \text{\((u_j, v)\)} \\
\quad \quad \quad \quad S.\push(u_{j-1}); \ S.\push(u_j) \\
\quad \textbf{else} \\
\quad \quad v \leftarrow S.\pop() \\
\quad \quad \textbf{while} \ \textbf{not} \ S.\text{empty}() \ \text{and} \ u_j \ \text{sees} \ S.\text{top}() \ \textbf{do} \\
\quad \quad \quad v \leftarrow S.\pop() \\
\quad \quad \quad \text{draw \ diagonal} \ \text{\((u_j, v)\)} \\
\quad \quad \quad S.\push(v); \ S.\push(u_j) \\
\text{draw \ diagonals \ from} \ u_n \ \text{to \ all \ vtc \ on} \ S \ \text{except \ first}
Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list)
merge left and right chain → seq. \( u_1, \ldots, u_n \) with \( y_1 \geq \ldots \geq y_n \)
Stack \( S \); \( S.push(u_1) \); \( S.push(u_2) \)
for \( j \leftarrow 3 \) to \( n - 1 \) do
  if \( u_j \) and \( S.top() \) lie on different chains then
    while not \( S.empty() \) do
      \( v \leftarrow S.pop() \)
      if not \( S.empty() \) then draw diag. \( (u_j, v) \)
      \( S.push(u_{j-1}); S.push(u_j) \)
  else
    \( v \leftarrow S.pop() \)
    while not \( S.empty() \) and \( u_j \) sees \( S.top() \) do
      \( v \leftarrow S.pop() \)
      draw diagonal \( (u_j, v) \)
      \( S.push(v); S.push(u_j) \)
  draw diagonals from \( u_n \) to all vtc on \( S \) except first.

Running time?
Algorithm

TriangulateMonotonePolygon(Polygon P as circular vertex list)
merge left and right chain → seq. \( u_1, \ldots, u_n \) with \( y_1 \geq \ldots \geq y_n \)
Stack \( S; S.push(u_1); S.push(u_2) \)
for \( j \leftarrow 3 \) to \( n - 1 \) do
  \( \text{if } u_j \text{ and } S.top() \text{ lie on different chains } \) then
    while not S.empty() do
      \( v \leftarrow S.pop() \)
      \( \text{if not } S.empty() \text{ then draw diag. } (u_j, v) \)
      S.push(\( u_{j-1} \)); S.push(\( u_j \))
  else
    \( v \leftarrow S.pop() \)
    while not S.empty() and \( u_j \) sees S.top() do
      \( v \leftarrow S.pop() \)
      draw diagonal \( (u_j, v) \)
      S.push(\( v \)); S.push(\( u_j \))

draw diagonals from \( u_n \) to all vtc on \( S \) except first

Running time? \( \Theta(n) \)
Summary

\begin{itemize}
\item \textit{n-vtx polygon} $\rightarrow$ \textit{“nice” pieces, n’ vtc} $\rightarrow$ \textit{n’’ triangles}
\end{itemize}

\text{\textit{O}(n \log n)} $\rightarrow$ \textit{O(n’)}
Summary

Lemma. A simple polygon with $n$ vertices can be subdivided into $y$-monotone polygons in $O(n \log n)$ time.
Summary

**Lemma.** A simple polygon with $n$ vertices can be subdivided into $y$-monotone polygons in $O(n \log n)$ time.

**Lemma.** A $y$-monotone polygon with $n$ vertices can be triangulated in $O(n)$ time.
Summary

Lemma.

A simple polygon with \( n \) vertices can be subdivided into \( y \)-monotone polygons in \( O(n \log n) \) time.

Lemma.

A \( y \)-monotone polygon with \( n \) vertices can be triangulated in \( O(n) \) time.

Lemma.

Subdividing a simple polygon with \( n \) vertices by drawing \( d \) (pairwise non-crossing) diagonals yields \( d + 1 \) simple polygons of total complexity \( O(n) \).
Summary

Lemma. A simple polygon with $n$ vertices can be subdivided into $y$-monotone polygons in $O(n \log n)$ time.

Lemma. A $y$-monotone polygon with $n$ vertices can be triangulated in $O(n)$ time.

Lemma. Subdividing a simple polygon with $n$ vertices by drawing $d$ (pairwise non-crossing) diagonals yields $d + 1$ simple polygons of total complexity $O(n)$.

Theorem. A simple polygon with $n$ vertices can be triangulated in $O(n \log n)$ time.
Summary

Lemma. A simple polygon with $n$ vertices can be subdivided into $y$-monotone polygons in $O(n \log n)$ time.

Lemma. A $y$-monotone polygon with $n$ vertices can be triangulated in $O(n)$ time.

Lemma. Subdividing a simple polygon with $n$ vertices by drawing $d$ (pairwise non-crossing) diagonals yields $d + 1$ simple polygons of total complexity $O(n)$.

Theorem. A simple polygon with $n$ vertices can be triangulated in $O(n \log n)$ time.

Is this it?
Summary

Lemma. A simple polygon with $n$ vertices can be subdivided into $y$-monotone polygons in $O(n \log n)$ time.

Lemma. A $y$-monotone polygon with $n$ vertices can be triangulated in $O(n)$ time.

Lemma. Subdividing a simple polygon with $n$ vertices by drawing $d$ (pairwise non-crossing) diagonals yields $d + 1$ simple polygons of total complexity $O(n)$.

Theorem. A simple polygon with $n$ vertices can be triangulated in $O(n \log n)$ time.

Is this it? Tarjan & van Wyk [1988]:

<table>
<thead>
<tr>
<th>$n$-vtx polygon</th>
<th>“nice” pieces</th>
<th>$n'$ vtc</th>
<th>$n''$ triangles</th>
</tr>
</thead>
<tbody>
<tr>
<td>$O(n \log n)$</td>
<td>$O(n')$</td>
<td>$O(n'')$</td>
<td></td>
</tr>
</tbody>
</table>
Summary

Lemma. A simple polygon with \( n \) vertices can be subdivided into \( y \)-monotone polygons in \( O(n \log n) \) time.

Lemma. A \( y \)-monotone polygon with \( n \) vertices can be triangulated in \( O(n) \) time.

Lemma. Subdividing a simple polygon with \( n \) vertices by drawing \( d \) (pairwise non-crossing) diagonals yields \( d + 1 \) simple polygons of total complexity \( O(n) \).

Theorem. A simple polygon with \( n \) vertices can be triangulated in \( O(n \log n) \) time.

Is this it? Tarjan & van Wyk [1988]: \( O(n \log \log n) \)
A simple polygon with $n$ vertices can be subdivided into $y$-monotone polygons in $O(n \log n)$ time.

A $y$-monotone polygon with $n$ vertices can be triangulated in $O(n)$ time.

Subdividing a simple polygon with $n$ vertices by drawing $d$ (pairwise non-crossing) diagonals yields $d + 1$ simple polygons of total complexity $O(n)$.

A simple polygon with $n$ vertices can be triangulated in $O(n \log n)$ time.

Is this it?  
Tarjan & van Wyk [1988]: $O(n \log \log n)$
Clarkson, Tarjan, van Wyk [1989]:

Summary

**Lemma.** A simple polygon with $n$ vertices can be subdivided into $y$-monotone polygons in $O(n \log n)$ time.

**Lemma.** A $y$-monotone polygon with $n$ vertices can be triangulated in $O(n)$ time.

**Lemma.** Subdividing a simple polygon with $n$ vertices by drawing $d$ (pairwise non-crossing) diagonals yields $d + 1$ simple polygons of total complexity $O(n)$.

**Theorem.** A simple polygon with $n$ vertices can be triangulated in $O(n \log n)$ time.

**Is this it?**
- Tarjan & van Wyk [1988]: $O(n \log \log n)$
- Clarkson, Tarjan, van Wyk [1989]: $O(n \log^* n)$
Summary

Lemma. A simple polygon with \( n \) vertices can be subdivided into \( y \)-monotone polygons in \( O(n \log n) \) time.

Lemma. A \( y \)-monotone polygon with \( n \) vertices can be triangulated in \( O(n) \) time.

Lemma. Subdividing a simple polygon with \( n \) vertices by drawing \( d \) (pairwise non-crossing) diagonals yields \( d + 1 \) simple polygons of total complexity \( O(n) \).

Theorem. A simple polygon with \( n \) vertices can be triangulated in \( O(n \log n) \) time.

Is this it? Tarjan & van Wyk [1988]: \( O(n \log \log n) \)
Clarkson, Tarjan, van Wyk [1989]: \( O(n \log^* n) \)
Chazelle [1991]:
Summary

Lemma. A simple polygon with \( n \) vertices can be subdivided into \( y \)-monotone polygons in \( O(n \log n) \) time.

Lemma. A \( y \)-monotone polygon with \( n \) vertices can be triangulated in \( O(n) \) time.

Lemma. Subdividing a simple polygon with \( n \) vertices by drawing \( d \) (pairwise non-crossing) diagonals yields \( d + 1 \) simple polygons of total complexity \( O(n) \).

Theorem. A simple polygon with \( n \) vertices can be triangulated in \( O(n \log n) \) time.

Is this it?

- Tarjan & van Wyk [1988]: \( O(n \log \log n) \)
- Clarkson, Tarjan, van Wyk [1989]: \( O(n \log^* n) \)
- Chazelle [1991]: \( O(n) \)
Summary

Lemma. A simple polygon with \( n \) vertices can be subdivided into \( y \)-monotone polygons in \( O(n \log n) \) time.

Lemma. A \( y \)-monotone polygon with \( n \) vertices can be triangulated in \( O(n) \) time.

Lemma. Subdividing a simple polygon with \( n \) vertices by drawing \( d \) (pairwise non-crossing) diagonals yields \( d + 1 \) simple polygons of total complexity \( O(n) \).

Theorem. A simple polygon with \( n \) vertices can be triangulated in \( O(n \log n) \) time.

Is this it? Tarjan & van Wyk [1988]: \( O(n \log \log n) \)  
Clarkson, Tarjan, van Wyk [1989]: \( O(n \log^* n) \)  
Chazelle [1991]: \( O(n) \)  
Kirkpatrick, Klawe, Tarjan [1992]
Summary

Lemma. A simple polygon with $n$ vertices can be subdivided into $y$-monotone polygons in $O(n \log n)$ time.

Lemma. A $y$-monotone polygon with $n$ vertices can be triangulated in $O(n)$ time.

Lemma. Subdividing a simple polygon with $n$ vertices by drawing $d$ (pairwise non-crossing) diagonals yields $d + 1$ simple polygons of total complexity $O(n)$.

Theorem. A simple polygon with $n$ vertices can be triangulated in $O(n \log n)$ time.

Is this it? Tarjan & van Wyk [1988]: $O(n \log \log n)$
Clarkson, Tarjan, van Wyk [1989]: $O(n \log^* n)$
Chazelle [1991]: $O(n)$
Kirkpatrick, Klawe, Tarjan [1992]: $O(n \log n)$
Seidel [1991]: randomized