Algorithms for Graph Visualization

Summer Semester 2019
Lecture #8

Planar Orientations
Tessellations and Visibility Representations

Ref: [GD: AVG, Ch. 4]
Topological Numbering

Let $G = (V, E)$ be a directed graph w/ edge weights $w : E \rightarrow \mathbb{N}$

- **Topological numbering** of G:
 mapping $\mu : V \rightarrow \mathbb{N}$ with $\mu(u) < \mu(v)$ for every edge (u, v)

- **Topological sort** of G:
 topological numbering where $\mu(V) = \{1, \ldots, n\}$

- **Weighted topological numbering** of (G, w):
 topol. numb. with $\mu(u) + w(u, v) \leq \mu(v)$ for every edge (u, v)
 optimal when: $\max_{v \in V} \mu(v) - \min_{v \in V} \mu(v)$ is minimized.

- Can be calculated in $O(n + m)$ time.
 Exercise!
st-graphs

st-graph: a directed *acyclic* graph $G = (V, E)$ with exactly one source and exactly one sink.

- G numbered topologically: each path traverses nodes in increasing order.
- For any vertex v, there is a directed (s, t)-path containing v.

Planar st-graph: an st-graph with a planar embedding such that s and t are on the outer face.
Planar \(st \)-graphs

- Normally drawn upwards planar.
- Two outer faces \(s^*/t^* \) left/right.
- For each \(e = (u, v) \in E \):
 - \(\text{orig}(e) = u \)
 - \(\text{dest}(e) = v \)
 - \(\text{left}(e) \in F \): face left of \(e \)
 - \(\text{right}(e) \in F \): face right of \(e \).
- \(G^* = (V^* = F, E^*) \):
 - \(e \in E \Rightarrow (\text{left}(e), \text{right}(e)) \in E^* \)
- Multigraph
- \(st^* \)-graph
Properties of Planar st-Graphs

Lemma 1 \ Every face f of G consists of two paths from its source $\text{orig}(f)$ to its sink $\text{dest}(f)$.

Lemma 2 \ At each vertex $v \in V$, the incoming/outgoing edges each form an interval, and these intervals are separated by the faces $\text{left}(v)/\text{right}(v)$.

Statements imply the same in the dual.
Properties of Planar st-graphs

Lemma 3 For faces f and g exactly one of the following is true:
- There is a path from $\text{dest}(f)$ to $\text{orig}(g)$ in G.
- There is a path from $\text{dest}(g)$ to $\text{orig}(f)$ in G.
- There is a path from f to g in G^\ast.
- There is a path from g to f in G^\ast.

For $v \in V$: let $\text{orig}(v) = \text{dest}(v) = v$.
For $f \in F$: let $\text{left}(f) = \text{right}(f) = f$.

Lemma 4 For objects $o_1, o_2 \in V \cup E \cup F$ exactly one of the following is true:
- There is a path from $\text{dest}(o_1)$ to $\text{orig}(o_2)$ in G.
- There is a path from $\text{dest}(o_2)$ to $\text{orig}(o_1)$ in G.
- There is a path from $\text{right}(o_1)$ to $\text{left}(o_2)$ in G^\ast.
- There is a path from $\text{right}(o_2)$ to $\text{left}(o_1)$ in G^\ast.

Proof: Exercise!
Tessellation / Tiling

- Tiles: axis-parallel rectangles

- can be unbounded, or degenerate (line segment/point)

- θ_1, θ_2 horizontally/vertically adjacent \iff common vertical/horizontal boundary

- we write $\theta = [x_1(\theta), x_2(\theta)] \times [y_1(\theta), y_2(\theta)]$
Tessellation / Tiling

Def. A tessellation θ of a planar \(st \)-graph \(G \) places each object \(o \in V \cup E \cup F \) onto a tile \(\theta(o) \), so that:

- \(o_1 \neq o_2 \Rightarrow \text{int}(\theta(o_1)) \cap \text{int}(\theta(o_2)) = \emptyset \)
- \(\bigcup_{o \in V \cup E \cup F} \theta(o) \) is a rectangle.
- \(\theta(o_1) \) and \(\theta(o_2) \) horizontally adjacent \(\iff \)
 \(o_1 = \text{left}(o_2) \) or \(o_1 = \text{right}(o_2) \) or
 \(o_2 = \text{left}(o_1) \) or \(o_2 = \text{right}(o_1) \)
- \(\theta(o_1) \) and \(\theta(o_2) \) vertically adjacent \(\iff \)
 \(o_1 = \text{orig}(o_2) \) or \(o_1 = \text{dest}(o_2) \) or
 \(o_2 = \text{orig}(o_1) \) or \(o_2 = \text{dest}(o_1) \)
Tessellation Algorithm (for a Planar st-Graph G)

- Compute the dual G^*.
- Compute topological numberings X of G^* and Y of G.
- For each object $o \in V \cup E \cup F$, set
 $$\theta(o) = [X(\text{left}(o)), X(\text{right}(o))] \times [Y(\text{orig}(o)), Y(\text{dest}(o))].$$
Tessellation Algorithm (for a Planar \(st\)-Graph \(G\))

- Compute the dual \(G^*\).
- Compute topological numberings \(X\) of \(G^*\) and \(Y\) of \(G\).
- For each object \(o \in V \cup E \cup F\), set
 \[\theta(o) = [X(\text{left}(o)), X(\text{right}(o))] \times [Y(\text{orig}(o)), Y(\text{dest}(o))].\]
Tessellation Algorithm (for a Planar st-Graph G)

- Compute the dual G^*.
- Compute topological numberings X of G^* and Y of G.
- For each object $o \in V \cup E \cup F$, set
 $$\theta(o) = [X(\text{left}(o)), X(\text{right}(o))] \times [Y(\text{orig}(o)), Y(\text{dest}(o))].$$

Correctness:

- Lemma 4 guarantees disjointness.
- Neighbourhood conditions follow from the coordinate mapping.

Runtime: $O(n)$
Size Conditions

Minimum height/width $h, w : E \rightarrow \mathbb{R}_{\geq 0}$ for each edge tile.

- Compute optimal *weighted* topological numberings Y of $G = (V, E; h)$ and X of $G^* = (F, E^*; w)$.

- Vertex/Face tiles: modify G to G'

 ![Diagram](image)

- Now each object of G corresponds to an edge in G'.

Thm: A minimum area tessellation of a planar st-graph G with minimum height/width $h, w : V \cup E \cup F \rightarrow \mathbb{R}_{\geq 0}$ can be computed in $O(n)$ time.
Visibility Representations

Def. A visibility representation Γ of a planar st-graph G has

- vertex v as a horizontal segment $\Gamma(v)$
- and edge (u, v) as a vertical segment $\Gamma(u, v)$

such that

- vertex segments are pairwise disjoint,
- edge segments are pairwise disjoint, and
- the edge segment $\Gamma(u, v)$ starts from the top of the vertex segment $\Gamma(u)$, ends on the bottom of vertex segment $\Gamma(v)$, and does not intersect other vertex segments.
Computing a Visibility Representation

- Use the tessellation: vertices are degenerate (i.e., line segments); faces are not degenerate

edge segments
Algorithm Visibility(planar st-graph G)

- Compute the dual G^*.
- Compute optimal weighted topological numberings Y of G and X of G^* with *unit weights*.
- For each vertex $v \in V$, set
 \[\Gamma(v) = [X(\text{left}(v)), X(\text{right}(v)) - 1] \times \{Y(v)\} . \]
- For each edge $e \in E$, set
 \[\Gamma(e) = \{X(\text{left}(e))\} \times [Y(\text{orig}(e)), Y(\text{dest}(e))] . \]
Algorithm Visibility(planar st-graph G)

- Compute the dual G^*.
- Compute optimal weighted topological numberings Y of G and X of G^* with unit weights.
- For each vertex $v \in V$, set
 $\Gamma(v) = [X(\text{left}(v)), X(\text{right}(v)) - 1] \times \{Y(v)\}$.
- For each edge $e \in E$, set
 $\Gamma(e) = \{X(\text{left}(e))\} \times [Y(\text{orig}(e)), Y(\text{dest}(e))]$.

Thm: In $O(n)$ time, the Visibility algorithm generates a visibility representation with integer coordinates and area $O(n^2)$.