Algorithms for Graph Visualization

Summer Semester 2019
Lecture #7

Hierarchical Drawings

References:
Drawing Graphs: Eds. K. & W. (Ch. 5)
Graph Drawing: D. E. T. & T. (Ch. 9)
(based on slides from Marcus Krug, KIT)
Example

E-Mail-Graph between groups in Computer Science, KIT
Hierarchical Drawing

Problem statement:

- **Input:** directed graph $D = (V, A)$
- **Output:** Drawing of D which *closely* reproduces the hierarchical properties of D.

Desireable Properties

- vertices occur on (few) horizontal lines
- edges directed upwards
- edge crossings minimized
- edges upward, straight, and short as possible
- vertices evenly spaced

Criteria can be contradictory!
Classical Approach

[Sugiyama, Tagawa, Toda '81]
Step 1: Cycle Breaking

Approach
- Find minimum set A^* of edges which are not upwards.
- Remove A^* and insert reversed edges.

Problem Minimum Feedback Arc Set (FAS):
- Input: directed graph $D = (V, A)$
- Output: min. set $A^* \subseteq A$, so that $D - A^*$ acyclic

... NP-hard :-(

Step 1: Cycle Breaking

Approach

- Find minimum set A^* of edges which are not upwards.
- Remove A^* and insert reversed edges.

Problem Minimum Feedback Arc Set (FAS):

- Input: directed graph $D = (V, A)$
- Output: min. set $A^* \subseteq A$, so that $D - A^* + A^*_r$ acyclic

... NP-hard :-(
Greedy-Heuristic for FAS

GreedyMakeAcyclic(Digraph \(D = (V, A) \))

\[
A' \leftarrow \emptyset \text{ (these will be the edges we keep)} \\
\text{foreach } v \in V \text{ do} \\
\quad \text{if } \text{outdeg}(v) > \text{indeg}(v) \text{ then} \\
\quad \quad A' \leftarrow A' \cup \text{out}(v) \\
\quad \text{else} \\
\quad \quad A' \leftarrow A' \cup \text{in}(v) \\
\quad A \leftarrow A \setminus (\text{out}(v) \cup \text{in}(v)) \\
\text{return } (V, A')
\]

- Timing: \(O(V + A) \)
- Quality guarantee: \(|A'| \geq |A|/2 \)
Improved Greedy-Heuristic for FAS

- Each iteration of `foreach`, first look for sources and sinks. If there are none, pick v such that $|\text{outdeg}(v) - \text{indeg}(v)|$ is maximized.

- Timing: $O(V + A)$

- Quality guarantee: $|A'| \geq \frac{|A|}{2} + \frac{|V|}{6}$
Step 2: Leveling

Problem

- Input: acyclic, directed graph \(D = (V, A) \)
- Output: Mapping \(y : V \rightarrow \{1, \ldots, |V|\} \), so that for every \(uv \in A \), \(y(u) < y(v) \).

Objective: minimize . . .

- Number of layers, i.e. \(|y(V)|\)
- Length of the longest edge, i.e. \(\max_{uv \in A} y(v) - y(u) \)
- Total edge length, i.e. number of dummy vertices
Algorithm to Minimize the Number of Layers

- for each source \(q \)
 set \(y(q) := 1 \)

- for each non-source \(v \)
 set \(y(v) := \max \{ y(u) \mid uv \in A \} + 1 \)

Obs. \(y(v) \) is...
Length of the longest path from a source to \(v \) plus 1.
...also optimal with respect to the number of layers!

Question: Can we do this in linear time?
Linear time implementation

ComputeLayering(AcyclicDigraph $D = (V, A)$)

$y = \text{new int}[1..|V|] // all == 0$

\begin{itemize}
 \item foreach source $q \in V$ do
 \begin{itemize}
 \item $y(q) \leftarrow 1$
 \end{itemize}
 \item foreach non-source $v \in V$ do
 \begin{itemize}
 \item ComputeYRec(D, v, y)
 \end{itemize}
\end{itemize}

return y

ComputeYRec(AcyclicDigraph $D = (V, A)$, Vertex v, int[] y)

if $y(v) == 0$ then
 \begin{itemize}
 \item $y(v) \leftarrow \max \{ \text{ComputeYRec}(D, u, y) | uv \in A \} + 1$
 \end{itemize}

return $y(v)$
Our Example

Looks good right?

The drawing can be very wide :-(
Goal: Narrower layer assignment.

Problem: Leveling with a given width.

- **Input:** acyclic, digraph $D = (V, A)$, width $W > 0$
- **Output:** Partition the vertex set into a minimum number of layers such that each layer contains at most W elements.

Problem: Precedence-Constrained Multi-Processor Scheduling

- **Input:** n jobs with unit (1) processing time, W identical machines, and a partial ordering $<$ on the jobs.
- **Output:** Schedule respecting $<$ and having minimum processing time.
- **NP-hard,** $(2 - \frac{2}{W})$-Approx., no $(\frac{4}{3} - \varepsilon)$-Approx. ($W \geq 3$).
Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

![Graph](image)

Number of Machines is $W = 2$.

Output: Schedule

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td></td>
</tr>
<tr>
<td>M_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>B</td>
<td>D</td>
<td>F</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Question: Good approximation factor?
Algorithm

• jobs stored in a list L
 (in any order, e.g., topologically sorted).
• for each time $t = 1, 2, \ldots$ schedule $\leq W$ available jobs.
• a job in L is available when all its predecessors have been scheduled.
• As long as there are free machines and available jobs, take the first available job and assign it to a free machine.
Analysis for $W = 2$

Precedence graph $G_<$

```
1 -> 2
3 -> 4
3 -> 5
5 -> 6
7 -> 8
9 -> C
A -> 9
D -> E
F -> 7
G
```

Schedule

```
<table>
<thead>
<tr>
<th>$M_1$</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_2$</td>
<td></td>
<td>-</td>
<td>-</td>
<td>7</td>
<td>9</td>
<td>B</td>
<td>D</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t$</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>
```

„*The art of the lower bound*“

\[
\text{OPT} \geq \left\lceil \frac{n}{2} \right\rceil \quad \text{and} \quad \text{OPT} \geq \ell := \text{Number of layers of} \ G_<
\]

Goal: measure the quality of our algorithm using the lower bound(s).

\[
\text{Gen.} \leq (2 - \frac{1}{W}) \cdot \text{OPT}
\]

Bound $\text{ALG} \leq \left\lceil \frac{n+\ell}{2} \right\rceil \approx \left\lceil \frac{n}{2} \right\rceil + \ell/2 \leq 3/2 \cdot \text{OPT}$

insertion of pauses (−) in the schedule (except the last) maps to layers of $G_<$
Step 3: Crossing minimization

Problem:

- **Input:** Graph G, layering $y : V \rightarrow \{1, \ldots, |V|\}$
- **Output:** (Re-)ordering of vertices in each layer so that the number of crossings in minimized.

- NP-hard, even for 2 layers [Garey & Johnson '83]
- hardly any approaches optimize over multiple layers :-(

Iterative crossing reduction – idea

- add dummy-vertices for edges connecting *far* layers.
- consider adjacent layers \((L_1, L_2), (L_2, L_3), \ldots\)
 bottom-to-top.
- minimize crossings by permuting \(L_{i+1}\) while keeping \(L_i\)
 fixed.

Obs. The number of crossings only depends on permutations
of adjacent layers.
Iterative crossing reduction – Algorithm

1. choose a random permutation of L_1.

2. iteratively consider adjacent layers L_i und L_{i+1}.

3. minimize crossings by permuting L_{i+1} and keeping $(L_i$ fixed). *one-sided crossing minimization*

4. repeat steps (2)–(3) in the reverse order (starting from L_h).

5. repeat steps (2)–(4) until no further improvement is achieved.

6. repeat steps (1)–(5) with different starting permutations.
One-sided Crossing Minimization

Problem

- **Input:** bipartite graph $G = (L_1 \cup L_2, E)$, permutation π_1 on L_1
- **Output:** permutation π_2 of L_2 minimizing the number of edge crossings.

One-sided crossing minimization is NP-hard.

Algorithms

- barycenter heuristic
- median heuristic
- Greedy-Switch
- ILP

\[\text{Abb. aus [Kaufmann und Wagner: Drawing Graphs]} \]
\(\text{(c) Springer-Verlag} \)
Barycentre Heuristic

- Intuition: few intersections occur when vertices are close to their neighbours.
- The barycentre of u is the average x-coordinate of the neighbours of u in layer L_1 \[x_1 \equiv \pi_1 \]
 \[x_2(u) := \text{bary}(u) := \frac{1}{\deg(u)} \sum_{v \in N(u)} x_1(v) \]
- Vertices with the same barycentre of are offset by a small δ.
- Linear runtime.
- Relatively good results.
- Optimal if no crossings are required \(\rightarrow \) exercise!
- $O(\sqrt{n})$-approximation factor.

\[x_2(u) := \text{bary}(u) := \frac{1}{\deg(u)} \sum_{v \in N(u)} x_1(v) \]

Worst case?
Median heuristic

- \{v_1, \ldots, v_k\} := N(u) \text{ with } \pi_1(v_1) < \pi_1(v_2) < \cdots < \pi_1(v_k)
- x_2(u) := \text{med}(u) := \begin{cases} 0 & \text{when } N(u) = \emptyset \\ \pi_1(v_{\lceil k/2 \rceil}) & \text{otherwise} \end{cases}
- \text{move vertices } u \text{ und } v \text{ by small } \delta, \text{ when } x_2(u) = x_2(v)

- linear runtime
- relatively good results
- optimal, if no crossings are required
- 3-Approximation factor

proof in [DETT]
Median heuristic

- \(\{v_1, \ldots, v_k\} := N(u) \) with \(\pi_1(v_1) < \pi_1(v_2) < \cdots < \pi_1(v_k) \)
-
 \[
 x_2(u) := \text{med}(u) := \begin{cases}
 0 & \text{when } N(u) = \emptyset \\
 \pi_1(v_{\lceil k/2 \rceil}) & \text{otherwise}
 \end{cases}
 \]
- move vertices \(u \) und \(v \) by small \(\delta \), when \(x_2(u) = x_2(v) \)

- linear runtime
- relatively good results
- optimal, if no crossings are required
- 3-Approximation factor

proof in [DETT]

Worst case?

\[
2k(k + 1) + k^2 \quad \text{vs.} \quad (k + 1)^2 \quad \#
\]
Greedy-Switch heuristic

- iteratively swap each adjacent node as long as crossings decrease.
- runtime $O(L_2)$ per iteration; at most $|L_2|$ iterations
- suitable as post-processing for other heuristics

Worst case?

\[
\approx \frac{k^2}{4} \quad \approx 2k
\]
Integer Linear Program

- Constant $c_{ij} := \text{num. of crossings between edges incident to } v_i \text{ or } v_j \text{ when } \pi_2(v_i) < \pi_2(v_j)$
- Variable x_{ij} for each $1 \leq i < j \leq n_2 := |L_2|$
 $$x_{ij} = \begin{cases}
1 & \text{when } \pi_2(v_i) < \pi_2(v_j) \\
0 & \text{otherwise}
\end{cases}$$
- The number of crossings of a permutations π_2
 $$\text{cross}(\pi_2) = \sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} (c_{ij} - c_{ji})x_{ij} + \sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} c_{ji}$$

constant

[Jünger & Mutzel, ’97]
ILP (cont.)

- Minimize the number of crossings:

\[
\text{minimize } \sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} (c_{ij} - c_{ji})x_{ij}
\]

- Constraints:

\[
0 \leq x_{ij} + x_{jk} - x_{ik} \leq 1 \quad \text{for } 1 \leq i < j < k \leq n_2
\]

i.e., if \(x_{ij} = 1 \) and \(x_{jk} = 1 \), then \(x_{ik} = 1 \)

\[
\begin{array}{cccc}
0 & 0 & 0 & 0 \\
\end{array}
\]

(Transitivity)

Solution can be found via Branch-and-Bound on small degree graphs relatively quickly.
Our Example – iterations
Step 4: Vertex positioning

Goal: paths should be close to straight, nodes evenly spaced

Exact: Quadratic Program (QP)

Heuristic: iterative approach
Quadratic Program

- Consider the path \(p_e = (v_1, \ldots, v_k) \) of an edge \(e = v_1v_k \) with dummy vertices: \(v_2, \ldots, v_{k-1} \)

- \(x \)-coordinate of \(v_i \) according to the line \(\overline{v_1v_k} \) (with equal spacing):
 \[
x(v_i) = x(v_1) + \frac{i - 1}{k - 1} (x(v_k) - x(v_1))
\]

- Define the deviation from the line
 \[
dev(p_e) := \sum_{i=2}^{k-1} \left(x(v_i) - \overline{x(v_i)} \right)^2
\]
QP (cont.)

- Objective function:

\[
\min \sum_{e \in E} \text{dev}(p_e)
\]

- Constraints: for all vertices \(v, w \) in the same layer with \(w \) right of \(v \)

\[
x(w) - x(v) \geq \rho(w, v)
\]

- \(\rho(w, v) \) is min. horizontal distance between \(w \) and \(v \)

- Problem: QP and potentially exponential width
Iterative Heuristic

- compute an Initial-Layout
- apply the following steps as long as improvements can be made.
 1. vertex positioning,
 2. edge straightening,
 3. compactifying the layout width.
Our Example
Step 5: drawing the edges
Step 5 – drawing the edges (vertices w/ +ve area)

All figs. from [Kaufmann und Wagner: Drawing Graphs]
Our Example
Classical Approach

[Sugiyama, Tagawa, Toda ’81]