Algorithms for Graph Visualization

Summer Semester 2019
Lecture #7

Hierarchical Drawings

References:
Drawing Graphs: Eds. K. & W. (Ch. 5)
Graph Drawing: D. E. T. & T. (Ch. 9)
(based on slides from Marcus Krug, KIT)
Example
Example
Example

E-Mail-Graph between groups in Computer Science, KIT
Hierarchical Drawing

Problem statement:

- **Input:** directed graph $D = (V, A)$
- **Output:** Drawing of D which *closely* reproduces the hierarchical properties of D.
Hierarchical Drawing

Problem statement:

- Input: directed graph $D = (V, A)$
- Output: Drawing of D which *closely* reproduces the hierarchical properties of D.

Desireable Properties

- vertices occur on (few) horizontal lines
- edges directed upwards
- edge crossings minimized
- edges upward, straight, and short as possible
- vertices evenly spaced
Hierarchical Drawing

Problem statement:

- **Input:** directed graph $D = (V, A)$
- **Output:** Drawing of D which *closely* reproduces the hierarchical properties of D.

Desireable Properties

- vertices occur on (few) horizontal lines
- edges directed upwards
- edge crossings minimized
- edges upward, straight, and short as possible
- vertices evenly spaced
Hierarchical Drawing

Problem statement:

- **Input:** directed graph $D = (V, A)$
- **Output:** Drawing of D which *closely* reproduces the hierarchical properties of D.

Desireable Properties

- vertices occur on (few) horizontal lines
- edges directed upwards
- edge crossings minimized
- edges upward, straight, and short as possible
- vertices evenly spaced
Hierarchical Drawing

Problem statement:
• Input: directed graph $D = (V, A)$
• Output: Drawing of D which *closely* reproduces the hierarchical properties of D.

Desireable Properties
• vertices occur on (few) horizontal lines
• edges directed upwards
• edge crossings minimized
Hierarchical Drawing

Problem statement:

- Input: directed graph $D = (V, A)$
- Output: Drawing of D which *closely* reproduces the hierarchical properties of D.

Desirable Properties

- vertices occur on (few) horizontal lines
- edges directed upwards
- edge crossings minimized
- edges upward, straight, and short as possible
Hierarchical Drawing

Problem statement:

- **Input:** directed graph $D = (V, A)$
- **Output:** Drawing of D which *closely* reproduces the hierarchical properties of D.

Desireable Properties

- vertices occur on (few) horizontal lines
- edges directed upwards
- edge crossings minimized
- edges upward, straight, and short as possible
- vertices evenly spaced
Hierarchical Drawing

Problem statement:

- **Input:** directed graph \(D = (V, A) \)
- **Output:** Drawing of \(D \) which *closely* reproduces the hierarchical properties of \(D \).

Desireable Properties

- vertices occur on (few) horizontal lines
- edges directed upwards
- edge crossings minimized
- edges upward, straight, and short as possible
- vertices evenly spaced

Criteria can be contradictory!
Classical Approach

[Sugiyama, Tagawa, Toda '81]

Input

```plaintext
   3
  / \
 4   2
 /   /
1   6   7
```

```plaintext
5
```
Classical Approach [Sugiyama, Tagawa, Toda ’81]

Input → Cycle breaking

Diagram showing cycle breaking in a graph.
Classical Approach

[Sugiyama, Tagawa, Toda ’81]
Classical Approach

[Sugiyama, Tagawa, Toda ’81]

Input → Cycle breaking → Leveling

Crossing minimization
Classical Approach

[Sugiyama, Tagawa, Toda ’81]

Input → Cycle breaking → Leveling

Cycle breaking

Leveling

Input

Cycle breaking

Leveling

Crossing minimization

Vertex positioning
Classical Approach

[Sugiyama, Tagawa, Toda '81]

Input → Cycle breaking → Leveling

Crossing minimization → Vertex positioning → Edge drawing
Step 1: Cycle Breaking

Approach

- Find minimum set A^* of edges which are not upwards.
- Remove A^* and insert reversed edges.
Step 1: Cycle Breaking

Approach

- Find minimum set A^* of edges which are not upwards.
- Remove A^* and insert reversed edges.

Problem Minimum Feedback Arc Set (FAS):

- Input: directed graph $D = (V, A)$
- Output: min. set $A^* \subseteq A$, so that $D - A^*$ acyclic
Step 1: Cycle Breaking

Approach
- Find minimum set A^\star of edges which are not upwards.
- Remove A^\star and insert reversed edges.

Problem Minimum Feedback Arc Set (FAS):
- Input: directed graph $D = (V, A)$
- Output: min. set $A^\star \subseteq A$, so that $D - A^\star$ acyclic

... NP-hard :-(

Step 1: Cycle Breaking

Approach
- Find minimum set A^* of edges which are not upwards.
- Remove A^* and insert reversed edges.

Problem Minimum Feedback Arc Set (FAS):
- Input: directed graph $D = (V, A)$
- Output: min. set $A^* \subseteq A$, so that $D - A^* + A^*_r$ acyclic

\ldots NP-hard :-(
Greedy-Heuristic for FAS

GreedyMakeAcyclic(Digraph $D = (V, A)$)

$A' \leftarrow \emptyset$ (these will be the edges we keep)

return (V, A')
Greedy-Heuristic for FAS

GreedyMakeAcyclic(Digraph \(D = (V, A) \))

\[A' \leftarrow \emptyset \] (these will be the edges we keep)

\[\text{foreach } v \in V \text{ do} \]

\[\text{return } (V, A') \]
Greedy-Heuristic for FAS

GreedyMakeAcyclic(Digraph $D = (V, A)$)

$A' \leftarrow \emptyset$ (these will be the edges we keep)

\begin{verbatim}
foreach $v \in V$ do
 if outdeg(v) $>$ indeg(v) then
 $A' \leftarrow A' \cup \text{out}(v)$
 else
 $A' \leftarrow A' \cup \text{in}(v)$

$A \leftarrow A \setminus (\text{out}(v) \cup \text{in}(v))$

return (V, A')
\end{verbatim}
Greedy-Heuristic for FAS

GreedyMakeAcyclic(Digraph $D = (V, A)$)

$A' \leftarrow \emptyset$ (these will be the edges we keep)

foreach $v \in V$ do

if outdeg(v) > indeg(v) then

$A' \leftarrow A' \cup \text{out}(v)$

else

$A' \leftarrow A' \cup \text{in}(v)$

$A \leftarrow A \setminus (\text{out}(v) \cup \text{in}(v))$

return (V, A')

• Timing:

$$\{vw | vw \in A\} = \{uv | uv \in A\}$$

(these will be the edges we keep)
Greedy-Heuristic for FAS

GreedyMakeAcyclic(Digraph $D = (V, A)$)

$A' \leftarrow \emptyset$ (these will be the edges we keep)

foreach $v \in V$ do

if outdeg(v) $>$ indeg(v) then

$A' \leftarrow A' \cup out(v)$

else

$A' \leftarrow A' \cup in(v)$

$A \leftarrow A \setminus (out(v) \cup in(v))$

return (V, A')

• Timing: $O(V + A)$
Greedy-Heuristic for FAS

GreedyMakeAcyclic(Digraph $D = (V, A)$)

$A' \leftarrow \emptyset$ (these will be the edges we keep)

foreach $v \in V$ do

 if outdeg(v) $>$ indeg(v) then
 |
 $A' \leftarrow A' \cup \text{out}(v)$

 else
 |
 $A' \leftarrow A' \cup \text{in}(v)$

$A \leftarrow A \setminus (\text{out}(v) \cup \text{in}(v))$

return (V, A')

• Timing: $O(V + A)$

• Quality guarantee: $|A'| \geq \{vw | vw \in A\}$

(these will be the edges we keep)
Greedy-Heuristic for FAS

GreedyMakeAcyclic(Digraph $D = (V, A)$)

$A' \leftarrow \emptyset$ (these will be the edges we keep)

foreach $v \in V$ do

if $\text{outdeg}(v) > \text{indeg}(v)$ then

$A' \leftarrow A' \cup \text{out}(v)$

else

$A' \leftarrow A' \cup \text{in}(v)$

end if

$A \leftarrow A \setminus (\text{out}(v) \cup \text{in}(v))$

end foreach

return (V, A')

- Timing: $O(V + A)$
- Quality guarantee: $|A'| \geq |A|/2$
Improved Greedy-Heuristic for FAS

- Each iteration of `foreach`, first look for sources and sinks. If there are none, pick v such that $|\text{outdeg}(v) - \text{indeg}(v)|$ is maximized.
Improved Greedy-Heuristic for FAS

• Each iteration of **foreach**, first look for sources and sinks. If there are none, pick v such that $|\text{outdeg}(v) - \text{indeg}(v)|$ is maximized.

• Timing: ?

Improved Greedy-Heuristic for FAS

- Each iteration of `foreach`, first look for sources and sinks. If there are none, pick \(v \) such that \(|\text{outdeg}(v) - \text{indeg}(v)|\) is maximized.

- Timing: \(O(V + A) \) maintain partition of vertices ordered by \(|\text{outdeg}(v) - \text{indeg}(v)|\).
Improved Greedy-Heuristic for FAS

- Each iteration of `foreach`, first look for sources and sinks. If there are none, pick \(v \) such that \(|\text{outdeg}(v) - \text{indeg}(v)| \) is maximized.

- Timing: \(O(V + A) \) maintain partition of vertices ordered by \(|\text{outdeg}(v) - \text{indeg}(v)| \).

- Quality guarantee: \(|A'| \geq \)
Improved Greedy-Heuristic for FAS

- Each iteration of `foreach`, first look for sources and sinks. If there are none, pick \(v \) such that \(|\text{outdeg}(v) - \text{indeg}(v)| \) is maximized.

- Timing: \(O(V + A) \) maintain partition of vertices ordered by \(|\text{outdeg}(v) - \text{indeg}(v)| \).

- Quality guarantee: \(|A'| \geq |A|/2 + |V|/6 \)
Improved Greedy-Heuristic for FAS

- Each iteration of `foreach`, first look for sources and sinks. If there are none, pick v such that $|\text{outdeg}(v) - \text{indeg}(v)|$ is maximized.

- Timing: $O(V + A)$

- Quality guarantee: $|A'| \geq |A|/2 + |V|/6$
Improved Greedy-Heuristic for FAS

- Each iteration of `foreach`, first look for sources and sinks. If there are none, pick v such that $|\text{outdeg}(v) - \text{indeg}(v)|$ is maximized.

- Timing: $O(V + A)$

- Quality guarantee: $|A'| \geq |A|/2 + |V|/6$
Step 2: Leveling
Step 2: Leveling

Problem

- **Input:** acyclic, directed graph $D = (V, A)$
- **Output:**
Step 2: Leveling

Problem

- **Input:** acyclic, directed graph $D = (V, A)$
- **Output:** Mapping $y : V \rightarrow \{1, \ldots, |V|\}$, so that for every $uv \in A$, $y(u) < y(v)$.
Step 2: Leveling

Problem

- **Input:** acyclic, directed graph $D = (V, A)$
- **Output:** Mapping $y : V \rightarrow \{1, \ldots, |V|\}$, so that for every $uv \in A$, $y(u) < y(v)$.

Objective: minimize . . .
Step 2: Leveling

Problem

- Input: acyclic, directed graph $D = (V, A)$
- Output: Mapping $y: V \rightarrow \{1, \ldots, |V|\}$, so that for every $uv \in A$, $y(u) < y(v)$.

Objective: minimize . . .

- Number of layers, i.e. $|y(V)|$
- Length of the longest edge, i.e. $\max_{uv \in A} y(v) - y(u)$
- Total edge length, i.e. number of dummy vertices
Step 2: Leveling

Problem

- **Input:** acyclic, directed graph $D = (V, A)$
- **Output:** Mapping $y : V \rightarrow \{1, \ldots, \lvert V \rvert \}$, so that for every $uv \in A$, $y(u) < y(v)$.

Objective: **minimize** . . .

- **Number of layers**, i.e. $\lvert y(V) \rvert$
- **Length of the longest edge**, i.e. $\max_{uv \in A} y(v) - y(u)$
- **Total edge length**, i.e. number of dummy vertices
Algorithm to Minimize the Number of Layers
Algorithm to Minimize the Number of Layers

- for each source \(q \)
 set \(y(q) := 1 \)
Algorithm to Minimize the Number of Layers

- for each source q
 set $y(q) := 1$
- for each non-source v
 set $y(v) := \max\{y(u) \mid uv \in A\} + 1$
Algorithm to Minimize the Number of Layers

- for each source q
 set $y(q) := 1$
- for each non-source v
 set $y(v) := \max \{y(u) \mid uv \in A\} + 1$

Obs. $y(v)$ is...
Algorithm to Minimize the Number of Layers

- for each source q
 set $y(q) := 1$
- for each non-source v
 set $y(v) := \max \{ y(u) \mid uv \in A \} + 1$

Obs. $y(v)$ is... Length of the longest path from a source to v plus 1.
Algorithm to Minimize the Number of Layers

- for each source \(q \)
 set \(y(q) := 1 \)

- for each non-source \(v \)
 set \(y(v) := \max \{ y(u) \mid uv \in A \} + 1 \)

Obs. \(y(v) \) is...
Length of the longest path from a source to \(v \) plus 1.
...also optimal with respect to the number of layers!
Algorithm to Minimize the Number of Layers

- for each source \(q \)
 set \(y(q) := 1 \)

- for each non-source \(v \)
 set \(y(v) := \max \{ y(u) \mid uv \in A \} + 1 \)

Obs. \(y(v) \) is...
Length of the longest path from a source to \(v \) plus 1.
...also optimal with respect to the number of layers!

Question: Can we do this in linear time?
Linear time implementation

- for each source q
 set $y(q) := 1$

- for each non-source v
 set $y(v) := \max \{y(u) \mid uv \in A\} + 1$
Linear time implementation

ComputeLayering(AcyclicDigraph $D = (V, A)$)

$y = \text{new} \int[1..|V|]$ // all == 0

for each source $q \in V$

set $y(q) := 1$

for each non-source $v \in V$

set $y(v) := \max \{y(u) \mid uv \in A\} + 1$
Linear time implementation

ComputeLayering(AcyclicDigraph $D = (V, A)$)

\[
y = \text{new int}[1..|V|] \quad // \text{all } \equiv 0
\]

\textbf{foreach} source $q \in V$ \textbf{do}
\[
_ \quad y(q) \leftarrow 1
\]

\textbf{foreach} non-source $v \in V$ \textbf{do}
\[
_ \quad \text{ComputeYRec}(D, v, y)
\]

\textbf{return} y

\textbf{ComputeYRec}(AcyclicDigraph $D = (V, A)$, Vertex v, int[] y)

\textbf{if} $y(v) == 0$ \textbf{then}
\[
_ \quad y(v) \leftarrow
\]

\textbf{return} $y(v)$
Linear time implementation

ComputeLayering(AcyclicDigraph \(D = (V, A) \))

\[
y = \text{new} \ int[1..|V|] \quad \text{// all} = 0
\]

\[
\text{foreach source } q \in V \ \text{do}
\]
\[
\quad y(q) \leftarrow 1
\]

\[
\text{foreach non-source } v \in V \ \text{do}
\]
\[
\quad \text{ComputeYRec}(D, v, y)
\]

\text{return } y

ComputeYRec(AcyclicDigraph \(D = (V, A), \text{Vertex } v, \text{int}[] y \))

\[
\text{if } y(v) = 0 \ \text{then}
\]
\[
\quad y(v) \leftarrow \max \{ \text{ComputeYRec}(D, u, y) \mid uv \in A \} + 1
\]

\text{return } y(v)
Our Example
Our Example
Our Example

Looks good right?

The drawing can be very wide :-(
Goal: Narrower layer assignment.

Problem: Leveling with a given width.

- Input: acyclic, digraph $D = (V, A)$, width $W > 0$
- Output: Partition the vertex set into a minimum number of layers such that each layer contains at most W elements.
Goal: Narrower layer assignment.

Problem: Leveling with a given width.

- **Input:** acyclic, digraph $D = (V, A)$, width $W > 0$
- **Output:** Partition the vertex set into a minimum number of layers such that each layer contains at most W elements.

Problem: Precedence-Constrained Multi-Processor Scheduling

- **Input:** n jobs with unit (1) processing time, W identical machines, and a partial ordering $<$ on the jobs.
- **Output:** Schedule respecting $<$ and having minimum processing time.
Goal: Narrower layer assignment.

Problem: Leveling with a given width.

- **Input:** acyclic, digraph $D = (V, A)$, width $W > 0$
- **Output:** Partition the vertex set into a minimum number of layers such that each layer contains at most W elements.

Problem: Precedence-Constrained Multi-Processor Scheduling

- **Input:** n jobs with unit (1) processing time, W identical machines, and a partial ordering $<$ on the jobs.
- **Output:** Schedule respecting $<$ and having minimum processing time.
- **NP-hard,** $(2 - \frac{2}{W})$-Approx., no $(\frac{4}{3} - \varepsilon)$-Approx. $(W \geq 3)$.
Goal: Narrower layer assignment.

Problem: Leveling with a given width.

- Input: acyclic, digraph $D = (V, A)$, width $W > 0$
- Output: Partition the vertex set into a minimum number of layers such that each layer contains at most W elements.

Problem: Precedence-Constrained Multi-Processor Scheduling

- Input: n jobs with unit (1) processing time, W identical machines, and a partial ordering $<$ on the jobs.
- Output: Schedule respecting $<$ and having minimum processing time.
- NP-hard, $(2 - \frac{2}{W})$-Approx., no $(\frac{4}{3} - \varepsilon)$-Approx. ($W \geq 3$).
Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)
Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)
Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

Number of Machines is $W = 2$.

Graph representation:

```
1 -- 2
<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>
3 -- 4
```

```
5 -- 6
<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>
7 -- 8
```

```
A -- D
<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>
B -- C
```

```
E -- F
<p>| |</p>
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
</table>
G --
```
Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

Number of Machines is $W = 2$.

Output: Schedule
Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

Number of Machines is $W = 2$.

Output: Schedule

<table>
<thead>
<tr>
<th>M_1</th>
<th>M_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
</tr>
</tbody>
</table>
Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

![Precedence Graph](image)

Number of Machines is $W = 2$.

Output: Schedule

<table>
<thead>
<tr>
<th>M_1</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_2</td>
<td>-</td>
</tr>
<tr>
<td>t</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
</tr>
</tbody>
</table>
Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

Number of Machines is $W = 2$.

Output: Schedule

<table>
<thead>
<tr>
<th>M_1</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_2</td>
<td>−</td>
<td>3</td>
</tr>
<tr>
<td>t</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>
Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

Output: Schedule

\[
\begin{array}{c|ccc}
M_1 & 1 & 2 & 4 \\
M_2 & - & 3 & - \\
t & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
\end{array}
\]
Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

Number of Machines is $W = 2$.

Output: Schedule

<table>
<thead>
<tr>
<th>M_1</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_2</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>
Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

```
    1 -> 3 -> 5
      \   /   \
      4   2   6
        \____/    \
          7
```

Number of Machines is $W = 2$.

Output: Schedule

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>
Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

![Precedence graph](image)

Number of Machines is $W = 2$.

Output: Schedule

<table>
<thead>
<tr>
<th></th>
<th>M_1</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_2</td>
<td>–</td>
<td>3</td>
<td>–</td>
<td>–</td>
<td>7</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>
Approximating PCMPS

Input: Precendence graph (divided into layers of arbitrary width)

```
1 2 3 4 5 6 7 8 9 10
```

Output: Schedule

<table>
<thead>
<tr>
<th>M_1</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_2</td>
<td>–</td>
<td>3</td>
<td>–</td>
<td>–</td>
<td>7</td>
<td>9</td>
<td>B</td>
</tr>
<tr>
<td>t</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

Number of Machines is $W = 2$.
Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

Number of Machines is $W = 2$.

Output: Schedule

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>A</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>8</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>M_2</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td>9</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>t</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
</tr>
</tbody>
</table>
Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

![Precedence graph](image)

Number of Machines is $W = 2$.

Output: Schedule

<table>
<thead>
<tr>
<th>M_1</th>
<th>1 2 4 5 6 8 A C E</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_2</td>
<td>– 3 – – 7 9 B D F</td>
</tr>
<tr>
<td>t</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
</tr>
</tbody>
</table>
Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

Number of Machines is $W = 2$.

Output: Schedule

<table>
<thead>
<tr>
<th>M_1</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_2</td>
<td>–</td>
<td>3</td>
<td>–</td>
<td>–</td>
<td>7</td>
<td>9</td>
<td>B</td>
<td>D</td>
<td>F</td>
<td>–</td>
</tr>
<tr>
<td>t</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>
Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

Number of Machines is $W = 2$.

Output: Schedule

<table>
<thead>
<tr>
<th>M_1</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_2</td>
<td></td>
<td>3</td>
<td></td>
<td>7</td>
<td>9</td>
<td>B</td>
<td>D</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Question: Good approximation factor?
Algorithm

• jobs stored in a list L
 (in any order, e.g., topologically sorted).

• for each time $t = 1, 2, \ldots$ schedule $\leq W$ available jobs.

• a job in L is *available* when all its predecessors have been scheduled.

• As long as there are free machines and available jobs, take the first available job and assign it to a free machine.
Analysis for $W = 2$

Precedence graph $G <$

Schedule

\[
\begin{array}{c|cccccccccc}
M_1 & 1 & 2 & 4 & 5 & 6 & 8 & A & C & E & G \\
M_2 & - & 3 & - & - & 7 & 9 & B & D & F & - \\
t & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10
\end{array}
\]

„The art of the lower bound“
Analysis for $W = 2$

Precedence graph $G_{<}$

Schedule

<table>
<thead>
<tr>
<th>M_1</th>
<th>1 2 4 5 6 8 A C E G</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_2</td>
<td>- 3 -- 7 9 B D F --</td>
</tr>
</tbody>
</table>

t | 1 2 3 4 5 6 7 8 9 10 |

„The art of the lower bound“

$\text{OPT} \geq$
Analysis for $W = 2$

```
Analysis for $W = 2$

Precedence graph $G_<$

Schedule

<table>
<thead>
<tr>
<th>$M_1$</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_2$</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td>9</td>
<td>B</td>
<td>D</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>$t$</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

„The art of the lower bound“

$\text{OPT} \geq \lceil n/2 \rceil$
```
Analysis for $W = 2$

Precedence graph $G_<$

```
1  2  5  6  8  C  F  G
3  4  7  9  A  D  E
```

Schedule

<table>
<thead>
<tr>
<th>M_1</th>
<th>1 2 4 5 6 8 A C E G</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_2</td>
<td>- 3 - - 7 9 B D F -</td>
</tr>
<tr>
<td>t</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
</tr>
</tbody>
</table>

„The art of the lower bound“

$\text{OPT} \geq \lceil n/2 \rceil$ and $\text{OPT} \geq \lceil n/2 \rceil$
Analysis for $W = 2$

Precedence graph $G_<$

Schedule

```
 M_1 | 1 2 4 5 6 8 A C E G  
 M_2 | 3 - - 7 9 B D F -  
 t   | 1 2 3 4 5 6 7 8 9 10
```

"The art of the lower bound"

$$\text{OPT} \geq \lceil n/2 \rceil \quad \text{and} \quad \text{OPT} \geq \ell := \text{Number of layers of } G_<$$
Analysis for $W = 2$

Precedence graph $G_<$

```
1 -> 2, 3, 4
2 -> 5
3 -> 6, 7
4 -> 8
5 -> 9
6, 7 -> 8
8 -> C
9 -> D
C -> E
D -> F
E -> G
F -> A
G -> B
```

Schedule

<table>
<thead>
<tr>
<th>M_1</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_2</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td>9</td>
<td>B</td>
<td>D</td>
<td>F</td>
<td>-</td>
</tr>
</tbody>
</table>

t | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10

„The art of the lower bound“

$\text{OPT} \geq \lceil n/2 \rceil \quad \text{and} \quad \text{OPT} \geq \ell := \text{Number of layers of } G_<$

Goal: measure the quality of our algorithm using the lower bound(s).
Analysis for $W = 2$

Precedence graph $G_<$

Schedule

<table>
<thead>
<tr>
<th></th>
<th>M_1</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_2</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>9</td>
<td>B</td>
<td>D</td>
<td>F</td>
</tr>
<tr>
<td>t</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

„The art of the lower bound“

OPT $\geq \lceil n/2 \rceil$ and OPT $\geq \ell :=$ Number of layers of $G_<$

Goal: measure the quality of our algorithm using the lower bound(s).

Bound $\text{ALG} \leq$
Analysis for $W = 2$

Precedence graph $G_<$

```
1 -> 3 -> 5
2 -> 6
4

6 -> 8 -> C
7 -> A

9 -> D

E -> G
```

Schedule

<table>
<thead>
<tr>
<th>M_1</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_2</td>
<td>-</td>
<td>3</td>
<td>7</td>
<td>9</td>
<td>B</td>
<td>D</td>
<td>F</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

„The art of the lower bound“

$$\text{OPT} \geq \left\lceil \frac{n}{2} \right\rceil \quad \text{and} \quad \text{OPT} \geq \ell := \text{Number of layers of } G_<$$

Goal: measure the quality of our algorithm using the lower bound(s).

Bound $\text{ALG} \leq$
Analysis for $W = 2$

Precedence graph $G_<$

```
1 → 2 → 5 → 8 → E → F → G
3 → 6 → 9 → C → D
4
```

Schedule

<table>
<thead>
<tr>
<th>M_1</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_2</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>7</td>
<td>9</td>
<td>B</td>
<td>D</td>
<td>F</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

„The art of the lower bound“

$$\text{OPT} \geq \left\lceil \frac{n}{2} \right\rceil \quad \text{and} \quad \text{OPT} \geq \ell := \text{Number of layers of } G_<$$

Goal: measure the quality of our algorithm using the lower bound(s).

Bound $\text{ALG} \leq$

- insertion of pauses ($-$) in the schedule (except the last) maps to layers of $G_<$
Analysis for $W = 2$

```
Precedence graph $G <$

1 → 2 → 3 → 5 → 6 → 9 → C → D → E
4 → 7 → A → B → G

Schedule

<table>
<thead>
<tr>
<th>$M_1$</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_2$</td>
<td></td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td>9</td>
<td>B</td>
<td>D</td>
<td>F</td>
</tr>
<tr>
<td>$t$</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>
```

"The art of the lower bound"

OPT $\geq \lceil n/2 \rceil$ and OPT $\geq \ell : = \text{Number of layers of } G <$

Goal: measure the quality of our algorithm using the lower bound(s).

Bound $\text{ALG} \leq \lceil \frac{n+\ell}{2} \rceil$

insertion of pauses (−) in the schedule (except the last) maps to layers of $G <$
Analysis for $W = 2$

```
Precedence graph $G_<$
1 -> 2
1 -> 3
1 -> 4
2 -> 5
3 -> 6
4 -> 7
6 -> 8
6 -> 9
8 -> C
9 -> C

Schedule

<table>
<thead>
<tr>
<th>$M_1$</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_2$</td>
<td></td>
<td></td>
<td>-</td>
<td>3</td>
<td></td>
<td>-</td>
<td>7</td>
<td>9</td>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>$t$</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>
```

„The art of the lower bound“

$\text{OPT} \geq \lceil n/2 \rceil$ and $\text{OPT} \geq \ell := \text{Number of layers of } G_<$

Goal: measure the quality of our algorithm using the lower bound(s).

Bound $\text{ALG} \leq \lceil \frac{n+\ell}{2} \rceil \approx$

insertion of pauses (−) in the schedule (except the last) maps to layers of $G_<$
Analysis for $W = 2$

Precedence graph $G_<$

Schedule

„The art of the lower bound“

$\text{OPT} \geq \lceil n/2 \rceil$ and $\text{OPT} \geq \ell := \text{Number of layers of } G_<$

Goal: measure the quality of our algorithm using the lower bound(s).

Bound $\text{ALG} \leq \lceil \frac{n+\ell}{2} \rceil \approx \lceil n/2 \rceil + \ell/2$

insertion of pauses (−) in the schedule (except the last) maps to layers of $G_<$
Analysis for $W = 2$

Precedence graph $G_{<}$

Schedule

<table>
<thead>
<tr>
<th>M_1</th>
<th>1 2 4 5 6 8 A C E G</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_2</td>
<td>3 7 9 B D F -</td>
</tr>
<tr>
<td>t</td>
<td>1 2 3 4 5 6 7 8 9 10</td>
</tr>
</tbody>
</table>

‟The art of the lower bound‟

$\text{OPT} \geq \lceil n/2 \rceil$ and $\text{OPT} \geq \ell$:= Number of layers of $G_{<}$

Goal: measure the quality of our algorithm using the lower bound(s).

Bound $\text{ALG} \leq \left\lceil \frac{n+\ell}{2} \right\rceil \approx \lceil n/2 \rceil + \ell/2 \leq$

insertion of pauses (-) in the schedule (except the last) maps to layers of $G_{<}$
Analysis for $W = 2$

Precedence graph $G_<$

Schedule

<table>
<thead>
<tr>
<th>M_1</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_2</td>
<td></td>
<td>3</td>
<td></td>
<td>7</td>
<td>9</td>
<td>B</td>
<td>D</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>t</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

"The art of the lower bound"

$\text{OPT} \geq \lceil n/2 \rceil$ and $\text{OPT} \geq \ell := \text{Number of layers of } G_<$

Goal: measure the quality of our algorithm using the lower bound(s).

Bound $\text{ALG} \leq \lceil \frac{n+\ell}{2} \rceil \approx \lceil n/2 \rceil + \ell/2 \leq 3/2 \cdot \text{OPT}$

insertion of pauses (–) in the schedule (except the last) maps to layers of $G_<$
Analysis for $W = 2$

Precedence graph $G_<$

Schedule

Optimal bound on OPT

Goal: measure the quality of our algorithm using the lower bound(s).

Bound $\text{ALG} \leq \left\lceil \frac{n + \ell}{2} \right\rceil \approx \left\lceil \frac{n}{2} \right\rceil + \frac{\ell}{2} \leq \frac{3}{2} \cdot \text{OPT}$

"The art of the lower bound"

$\text{OPT} \geq \lceil n/2 \rceil$ and $\text{OPT} \geq \ell := \text{Number of layers of } G_<$

Insertion of pauses (−) in the schedule (except the last) maps to layers of $G_<$

Gen. $\leq (2 - 1/W) \cdot \text{OPT}$
Step 3: Crossing minimization
Step 3: Crossing minimization

Problem:

- Input:
- Output:
Step 3: Crossing minimization

Problem:

- Input: Graph G, layering $y: V \rightarrow \{1, \ldots, |V|\}$
- Output:
Step 3: Crossing minimization

Problem:

- **Input:** Graph G, layering $y : V \rightarrow \{1, \ldots, |V|\}$
- **Output:** (Re-)ordering of vertices in each layer so that the number of crossings in minimized.
Step 3: Crossing minimization

Problem:

- **Input:** Graph G, layering $y: V \rightarrow \{1, \ldots, |V|\}$
- **Output:** (Re-)ordering of vertices in each layer so that the number of crossings in minimized.

- NP-hard, even for 2 layers
- hardly any approaches optimize over multiple layers :-(

[Garey & Johnson '83]
Iterative crossing reduction – idea
Iterative crossing reduction – idea

- add dummy-vertices for edges connecting *far* layers.
- consider adjacent layers \((L_1, L_2), (L_2, L_3), \ldots\)
 bottom-to-top.
- minimize crossings by permuting \(L_{i+1}\) while keeping \(L_i\)
 fixed.
Iterative crossing reduction – idea

- add dummy-vertices for edges connecting *far* layers.
- consider adjacent layers \((L_1, L_2), (L_2, L_3), \ldots\) bottom-to-top.
- minimize crossings by permuting \(L_{i+1}\) while keeping \(L_i\) fixed.

Obs. The number of crossings only depends on permutations of adjacent layers.
Iterative crossing reduction – Algorithm

(1) choose a random permutation of L_1.
Iterative crossing reduction – Algorithm

1. choose a random permutation of L_1.
2. iteratively consider adjacent layers L_i und L_{i+1}.
3. minimize crossings by permuting L_{i+1} and keeping L_i fixed.
4. repeat steps 2–3 in the reverse order (starting from L_h).
5. repeat steps 2–4 until no further improvement is achieved.
6. repeat steps 1–5 with different starting permutations.
Iterative crossing reduction – Algorithm

(1) choose a random permutation of L_1.

(2) iteratively consider adjacent layers L_i und L_{i+1}.

(3) minimize crossings by permuting L_{i+1} and keeping (L_i fixed).

(4) repeat steps (2)–(3) in the reverse order (starting from L_h).

(5) repeat steps (2)–(4) until no further improvement is achieved.

(6) repeat steps (1)–(5) with different starting permutations.
Iterative crossing reduction – Algorithm

(1) choose a random permutation of L_1.

(2) iteratively consider adjacent layers L_i und L_{i+1}.

(3) minimize crossings by permuting L_{i+1} and keeping (L_i fixed).

(4) repeat steps (2)–(3) in the reverse order (starting from L_h).

(5) repeat steps (2)–(4) until no further improvement is achieved.

(6) repeat steps (1)–(5) with different starting permutations.
Iterative crossing reduction – Algorithm

(1) choose a random permutation of L_1.

(2) iteratively consider adjacent layers L_i und L_{i+1}.

(3) minimize crossings by permuting L_{i+1} and keeping (L_i fixed).

(4) repeat steps (2)–(3) in the reverse order (starting from L_h).

(5) repeat steps (2)–(4) until no further improvement is achieved.
Iterative crossing reduction – Algorithm

(1) choose a random permutation of L_1.

(2) iteratively consider adjacent layers L_i und L_{i+1}.

(3) minimize crossings by permuting L_{i+1} and keeping (L_i fixed).

(4) repeat steps (2)–(3) in the reverse order (starting from L_h).

(5) repeat steps (2)–(4) until no further improvement is achieved.

(6) repeat steps (1)–(5) with different starting permutations.
Iterative crossing reduction – Algorithm

(1) choose a random permutation of L_1.

(2) iteratively consider adjacent layers L_i und L_{i+1}.

(3) minimize crossings by permuting L_{i+1} and keeping (L_i fixed).

(4) repeat steps (2)–(3) in the reverse order (starting from L_h).

(5) repeat steps (2)–(4) until no further improvement is achieved.

(6) repeat steps (1)–(5) with different starting permutations.
Iterative crossing reduction – Algorithm

(1) choose a random permutation of L_1.

(2) iteratively consider adjacent layers L_i und L_{i+1}.

(3) minimize crossings by permuting L_{i+1} and keeping (L_i fixed).

(4) repeat steps (2)–(3) in the reverse order (starting from L_h).

(5) repeat steps (2)–(4) until no further improvement is achieved.

(6) repeat steps (1)–(5) with different starting permutations.
One-sided Crossing Minimization

Problem

• Input:

• Output:
One-sided Crossing Minimization

Problem

- **Input:** bipartite graph $G = (L_1 \cup L_2, E)$, permutation π_1 on L_1
- **Output:**

![Graph](image-url)
One-sided Crossing Minimization

Problem

- Input: bipartite graph $G = (L_1 \cup L_2, E)$, permutation π_1 on L_1
- Output: permutation π_2 of L_2 minimizing the number of edge crossings.
One-sided Crossing Minimization

Problem

- **Input:** bipartite graph \(G = (L_1 \cup L_2, E) \), permutation \(\pi_1 \) on \(L_1 \)
- **Output:** permutation \(\pi_2 \) of \(L_2 \) minimizing the number of edge crossings.

One-sided crossing minimization is NP-hard.

\[\text{Abb. aus [Kaufmann und Wagner: Drawing Graphs]} \]
One-sided Crossing Minimization

Problem

- **Input:** bipartite graph $G = (L_1 \cup L_2, E)$, permutation π_1 on L_1
- **Output:** permutation π_2 of L_2 minimizing the number of edge crossings.

One-sided crossing minimization is NP-hard.

Algorithms

- barycenter heuristic
- median heuristic
- Greedy-Switch
- ILP

...
Barycentre Heuristic

- Intuition: few intersections occur when vertices are close to their neighbours

[Sugiyama et al. '81]
Barycentre Heuristic

- Intuition: few intersections occur when vertices are close to their neighbours
- The barycentre of u is the average x-coordinate of the neighbours of u in layer L_1

$$x_2(u) := \text{bary}(u) := \frac{1}{\deg(u)} \sum_{v \in N(u)} x_1(v)$$
Barycentre Heuristic

- Intuition: few intersections occur when vertices are close to their neighbours
- The barycentre of u is the average x-coordinate of the neighbours of u in layer L_1

$$x_2(u) := \text{bary}(u) := \frac{1}{\deg(u)} \sum_{v \in N(u)} x_1(v)$$

- vertices with the same barycentre of are offset by a small δ
Barycentre Heuristic

[Sugiyama et al. ’81]

• Intuition: few intersections occur when vertices are close to their neighbours
• The barycentre of \(u \) is the average \(x \)-coordinate of the neighbours of \(u \) in layer \(L_1 \) \([x_1 \equiv \pi_1]\)

\[
x_2(u) := \text{bary}(u) := \frac{1}{\deg(u)} \sum_{v \in N(u)} x_1(v)
\]

• vertices with the same barycentre of are offset by a small \(\delta \)
• linear runtime
• relatively good results
• optimal if no crossings are required
• \(O(\sqrt{n}) \)-approximation factor
Barycentre Heuristic

[Sugiyama et al. ’81]

- Intuition: few intersections occur when vertices are close to their neighbours
- The barycentre of u is the average x-coordinate of the neighbours of u in layer $L_1\ [x_1 \equiv \pi_1]$
 \[x_2(u) := \text{bary}(u) := \frac{1}{\deg(u)} \sum_{v \in N(u)} x_1(v)\]
- vertices with the same barycentre of are offset by a small δ
- linear runtime
- relatively good results
- optimal if no crossings are required \(<\text{exercise}!>\)
- $O(\sqrt{n})$-approximation factor
Barycentre Heuristic

- Intuition: few intersections occur when vertices are close to their neighbours
- The barycentre of \(u \) is the average \(x \)-coordinate of the neighbours of \(u \) in layer \(L_1 \)

\[
x_2(u) := \text{bary}(u) := \frac{1}{\deg(u)} \sum_{v \in N(u)} x_1(v)
\]

- vertices with the same barycentre of are offset by a small \(\delta \)
- linear runtime
- relatively good results
- optimal if no crossings are required \(\rightarrow \text{exercise!} \)
- \(O(\sqrt{n}) \)-approximation factor

Worst case?

\([\text{Sugiyama et al. '81}]\)
Barycentre Heuristic

- Intuition: few intersections occur when vertices are close to their neighbours
- The barycentre of u is the average x-coordinate of the neighbours of u in layer L_1 \[x_1 \equiv \pi_1\]
 \[
x_2(u) := \text{bary}(u) := \frac{1}{\text{deg}(u)} \sum_{v \in N(u)} x_1(v)
\]
- vertices with the same barycentre of are offset by a small δ
- linear runtime
- relatively good results
- optimal if no crossings are required \leftarrow exercise!
- $O(\sqrt{n})$-approximation factor

Worst case?

\[u \rightarrow v\]

\[k^2 - 1\]

\[k - 1\]
Barycentre Heuristic

- Intuition: few intersections occur when vertices are close to their neighbours
- The barycentre of u is the average x-coordinate of the neighbours of u in layer L_1
 \[x_2(u) := \text{bary}(u) := \frac{1}{\deg(u)} \sum_{v \in N(u)} x_1(v) \]
- vertices with the same barycentre of are offset by a small δ
- linear runtime
- relatively good results
- optimal if no crossings are required \(\Rightarrow\) exercise!
- \(O(\sqrt{n})\)-approximation factor
Median heuristic

- $\{v_1, \ldots, v_k\} := N(u)$ with $\pi_1(v_1) < \pi_1(v_2) < \cdots < \pi_1(v_k)$

- $x_2(u) := \text{med}(u) := \begin{cases} 0 & \text{when } N(u) = \emptyset \\ \pi_1(v_{\lceil k/2 \rceil}) & \text{otherwise} \end{cases}$

- move vertices u und v by small δ, when $x_2(u) = x_2(v)$
Median heuristic

- \{v_1, \ldots, v_k\} := N(u) with \pi_1(v_1) < \pi_1(v_2) < \cdots < \pi_1(v_k)
- \begin{align*}
x_2(u) := \text{med}(u) := \begin{cases}
0 & \text{when } N(u) = \emptyset \\
\pi_1(v_{\lceil k/2 \rceil}) & \text{otherwise}
\end{cases}
\end{align*}
- move vertices \(u\) and \(v\) by small \(\delta\), when \(x_2(u) = x_2(v)\)

- linear runtime
- relatively good results
- optimal, if no crossings are required
- 3-Approximation factor
Median heuristic

- \{v_1, \ldots, v_k\} := N(u) with \pi_1(v_1) < \pi_1(v_2) < \cdots < \pi_1(v_k)

- \(x_2(u) := \text{med}(u) := \begin{cases} 0 & \text{when } N(u) = \emptyset \\ \pi_1(v_{\lceil k/2 \rceil}) & \text{otherwise} \end{cases}\)

- move vertices \(u\) und \(v\) by small \(\delta\), when \(x_2(u) = x_2(v)\)

- linear runtime
- relatively good results
- optimal, if no crossings are required
- 3-Approximation factor

proof in [DETT]

[Eades & Wormald '94]
Median heuristic

- \{v_1, \ldots, v_k\} := N(u) with \pi_1(v_1) < \pi_1(v_2) < \cdots < \pi_1(v_k)
- \[x_2(u) := \text{med}(u) := \begin{cases} 0 & \text{when } N(u) = \emptyset \\ \pi_1(v_{\lceil k/2 \rceil}) & \text{otherwise} \end{cases} \]
- move vertices \(u \) und \(v \) by small \(\delta \), when \(x_2(u) = x_2(v) \)

- linear runtime
- relatively good results
- optimal, if no crossings are required
- 3-Approximation factor

proof in [DETT]

Worst case?
Median heuristic

- \(\{v_1, \ldots, v_k\} := N(u) \) with \(\pi_1(v_1) < \pi_1(v_2) < \cdots < \pi_1(v_k) \)

- \(x_2(u) := \text{med}(u) := \begin{cases} 0 & \text{when } N(u) = \emptyset \\ \pi_1(v_{\lceil k/2 \rceil}) & \text{otherwise} \end{cases} \)

- move vertices \(u \) and \(v \) by small \(\delta \), when \(x_2(u) = x_2(v) \)

- linear runtime
- relatively good results
- optimal, if no crossings are required
- 3-Approximation factor

proof in [DETT]

[Worst case?]
Median heuristic

- \(\{v_1, \ldots, v_k\} := N(u) \) with \(\pi_1(v_1) < \pi_1(v_2) < \cdots < \pi_1(v_k) \)

- \(x_2(u) := \text{med}(u) := \begin{cases} 0 & \text{when } N(u) = \emptyset \\ \pi_1(v_{\lceil k/2 \rceil}) & \text{otherwise} \end{cases} \)

- move vertices \(u \) und \(v \) by small \(\delta \), when \(x_2(u) = x_2(v) \)

- linear runtime
- relatively good results
- optimal, if no crossings are required
- 3-Approximation factor

proof in [DETT]

\[
2k(k + 1) + k^2 \quad \text{vs.} \quad (k + 1)^2
\]
Greedy-Switch heuristic

- iteratively swap each adjacent node as long as crossings decrease.
- runtime $O(L^2)$ per iteration; at most $|L^2|$ iterations
- suitable as post-processing for other heuristics
Greedy-Switch heuristic

- iteratively swap each adjacent node as long as crossings decrease.
- runtime $O(L^2)$ per iteration; at most $|L^2|$ iterations
- suitable as post-processing for other heuristics

Worst case?
Greedy-Switch heuristic

- iteratively swap each adjacent node as long as crossings decrease.
- runtime $O(L_2)$ per iteration; at most $|L_2|$ iterations
- suitable as post-processing for other heuristics

Worst case?

![Diagram](image-url)
Greedy-Switch heuristic

- iteratively swap each adjacent node as long as crossings decrease.
- runtime $O(L_2)$ per iteration; at most $|L_2|$ iterations
- suitable as post-processing for other heuristics

Worst case?

![Diagram showing a worst-case scenario](image-url)
Greedy-Switch heuristic

- iteratively swap each adjacent node as long as crossings decrease.
- runtime $O(L_2)$ per iteration; at most $|L_2|$ iterations
- suitable as post-processing for other heuristics

Worst case?

![Diagram of worst case scenario]
Greedy-Switch heuristic

- iteratively swap each adjacent node as long as crossings decrease.
- runtime $O(L_2)$ per iteration; at most $|L_2|$ iterations
- suitable as post-processing for other heuristics

Worst case?

$\approx k^2/4$ $\approx 2k$
Integer Linear Program

- Constant $c_{ij} := \text{num. of crossings between edges incident to } v_i \text{ or } v_j \text{ when } \pi_2(v_i) < \pi_2(v_j)$

\[\text{Diagram: } v_i \quad v_j \]
Integer Linear Program

- Constant $c_{ij} := \text{num. of crossings between edges incident to } v_i \text{ or } v_j \text{ when } \pi_2(v_i) < \pi_2(v_j)$

- Variable x_{ij} for each $1 \leq i < j \leq n_2 := |L_2|$

$$x_{ij} = \begin{cases}
1 & \text{when } \pi_2(v_i) < \pi_2(v_j) \\
0 & \text{otherwise}
\end{cases}$$
Integer Linear Program

- Constant $c_{ij} := \text{num. of crossings between edges incident to } v_i \text{ or } v_j \text{ when } \pi_2(v_i) < \pi_2(v_j)$
- Variable x_{ij} for each $1 \leq i < j \leq n_2 := |L_2|$

\[
x_{ij} = \begin{cases}
1 & \text{when } \pi_2(v_i) < \pi_2(v_j) \\
0 & \text{otherwise}
\end{cases}
\]

- The number of crossings of a permutations π_2

\[
\text{cross}(\pi_2) = \sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} (c_{ij} - c_{ji})x_{ij} + \sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} c_{ji}
\]
ILP (cont.)

- Minimize the number of crossings:

\[
\text{minimize } \sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} (c_{ij} - c_{ji})x_{ij}
\]
ILP (cont.)

- Minimize the number of crossings:
 \[
 \text{minimize} \quad \sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} (c_{ij} - c_{ji})x_{ij}
 \]

- Constraints:
 \[
 0 \leq x_{ij} + x_{jk} - x_{ik} \leq 1 \quad \text{for } 1 \leq i < j < k \leq n_2
 \]
ILP (cont.)

- Minimize the number of crossings:

\[
\text{minimize } \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} (c_{ij} - c_{ji})x_{ij}
\]

- Constraints:

\[
0 \leq x_{ij} + x_{jk} - x_{ik} \leq 1 \quad \text{for } 1 \leq i < j < k \leq n^2
\]

i.e., if \(x_{ij} = 1 \) and \(x_{jk} = 1 \), then \(x_{ik} = 1 \)
ILP (cont.)

- Minimize the number of crossings:
 \[
 \text{minimize } \sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} (c_{ij} - c_{ji})x_{ij}
 \]

- Constraints:
 \[
 0 \leq x_{ij} + x_{jk} - x_{ik} \leq 1 \quad \text{for } 1 \leq i < j < k \leq n_2
 \]
 i.e., if \(x_{ij} = 1 \) and \(x_{jk} = 1 \), then \(x_{ik} = 1 \)

\[
\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
\end{array}
\]
ILP (cont.)

- Minimize the number of crossings:

\[
\text{minimize } \sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} (c_{ij} - c_{ji}) x_{ij}
\]

- Constraints:

\[
0 \leq x_{ij} + x_{jk} - x_{ik} \leq 1 \quad \text{for } 1 \leq i < j < k \leq n_2
\]

i.e., if \(x_{ij} = 1 \) and \(x_{jk} = 1 \), then \(x_{ik} = 1 \)

\[
\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
\end{array}
\]

(Transitivity)
ILP (cont.)

- Minimize the number of crossings:

\[
\text{minimize} \sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} (c_{ij} - c_{ji})x_{ij}
\]

- Constraints:

\[
0 \leq x_{ij} + x_{jk} - x_{ik} \leq 1 \quad \text{for } 1 \leq i < j < k \leq n_2
\]

i.e., if \(x_{ij} = 1 \) and \(x_{jk} = 1 \), then \(x_{ik} = 1 \)

\[
\begin{array}{cccc}
0 & 0 & 0 & 0 \\
\end{array}
\]

(Transitivity)

Solution can be found via Branch-and-Bound on small degree graphs relatively quickly.
Our Example – iterations
Step 4: Vertex positioning

Goal: paths should be close to straight, nodes evenly spaced
Step 4: Vertex positioning

Goal: paths should be close to straight, nodes evenly spaced

Exact: Quadratic Program (QP)

Heuristic: iterative approach
Quadratic Program

- Consider the path $p_e = (v_1, \ldots, v_k)$ of an edge $e = v_1v_k$ with dummy vertices: v_2, \ldots, v_{k-1}
Quadratic Program

- Consider the path $p_e = (v_1, \ldots, v_k)$ of an edge $e = v_1v_k$ with dummy vertices: v_2, \ldots, v_{k-1}

- x-coordinate of v_i according to the line v_1v_k (with equal spacing):

$$x(v_i) = x(v_1) + \frac{i - 1}{k-1} (x(v_k) - x(v_1))$$
Quadratic Program

- Consider the path $p_e = (v_1, \ldots, v_k)$ of an edge $e = v_1v_k$ with dummy vertices: v_2, \ldots, v_{k-1}

- x-coordinate of v_i according to the line v_1v_k (with equal spacing):
 \[x(v_i) = x(v_1) + \frac{i - 1}{k - 1} (x(v_k) - x(v_1)) \]

- Define the deviation from the line
 \[\text{dev}(p_e) := \sum_{i=2}^{k-1} \left(x(v_i) - \overline{x(v_i)} \right)^2 \]
Quadratic Program

- Consider the path $p_e = (v_1, \ldots, v_k)$ of an edge $e = v_1v_k$ with dummy vertices: v_2, \ldots, v_{k-1}

- x-coordinate of v_i according to the line v_1v_k (with equal spacing):
 \[x(v_i) = x(v_1) + \frac{i - 1}{k - 1} (x(v_k) - x(v_1)) \]

- define the deviation from the line
 \[\text{dev}(p_e) := \sum_{i=2}^{k-1} \left(x(v_i) - x(v_i) \right)^2 \]
Quadratic Program

- Consider the path $p_e = (v_1, \ldots, v_k)$ of an edge $e = v_1v_k$ with dummy vertices: v_2, \ldots, v_{k-1}

- x-coordinate of v_i according to the line v_1v_k (with equal spacing):

$$x(v_i) = x(v_1) + \frac{i - 1}{k - 1}(x(v_k) - x(v_1))$$

- Define the deviation from the line

$$\text{dev}(p_e) := \sum_{i=2}^{k-1} \left(x(v_i) - x(v_i)\right)^2$$
QP (cont.)

- Objective function:

\[
\min \sum_{e \in E} \text{dev}(p_e)
\]
QP (cont.)

- Objective function:

\[
\min \sum_{e \in E} \text{dev}(p_e)
\]

- Constraints: for all vertices \(v, w\) in the same layer with \(w\) right of \(v\)

\[
x(w) - x(v) \geq \rho(w, v)
\]
QP (cont.)

- Objective function:

 \[
 \min \sum_{e \in E} \text{dev}(p_e)
 \]

- Constraints: for all vertices \(v, w\) in the same layer with \(w\) right of \(v\)

 \[
 x(w) - x(v) \geq \rho(w, v)
 \]

- \(\rho(w, v)\) is min. horizontal distance between \(w\) and \(v\)
QP (cont.)

- Objective function:
 \[
 \min \sum_{e \in E} \text{dev}(p_e)
 \]

- Constraints: for all vertices \(v, w\) in the same layer with \(w\) right of \(v\)
 \[
 x(w) - x(v) \geq \rho(w, v)
 \]

- \(\rho(w, v)\) is min. horizontal distance between \(w\) and \(v\)

- Problem: QP and potentially exponential width
Iterative Heuristic

• compute an Initial-Layout
Iterative Heuristic

- compute an Initial-Layout
- apply the following steps as long as improvements can be made.
Iterative Heuristic

- compute an Initial-Layout
- apply the following steps as long as improvements can be made.
 1. vertex positioning,
 2. edge straightening,
 3. compactifying the layout width.
Our Example
Our Example
Step 5: drawing the edges
Step 5 – drawing the edges (vertices w/ +ve area)
Step 5 – drawing the edges (vertices w/ +ve area)
Step 5 – drawing the edges (vertices w/ +ve area)

All figs. from [Kaufmann und Wagner: Drawing Graphs]
Our Example
Our Example
Our Example
Classical Approach

[Sugiyama, Tagawa, Toda ’81]

Input → Cycle breaking → Leveling

- Crossing minimization
- Vertex positioning
- Edge drawing