Algorithms for Graph Visualization

Summer Semester 2019
Lecture #1

Divide-and-Conquer Algorithms:
Trees and Series-Parallel Graphs

(based on slides from Martin Nöllenburg and Robert Görke, KIT)

Refs: [GD: AVG, Ch. 3] and [DG: M&M, Ch. 3]
Uses of Divide & Conquer

Well suited for inductively/recursively defined Graph Classes

Rooted Binary Trees:
1. draw the left subtree
2. draw the right subtree
3. combine together + draw root

Terminology
- depth\((v) \): distance from the root
- traversal
 - preorder
 - inorder
 - postorder
Overview

- balanced drawings of binary trees $O(nh)$
- radial drawings of trees $O(nh)$
- compact drawings of trees $O(n \log n)$
- upward drawings of series parallel graphs exp.
Algorithm of Reingold and Tilford ('81)

Trivial: If $T = \{v\}$, draw v (e.g., as a small disk).

Divide: Run Alg. recursively on the left and right subtrees.

Conquer: shift the partial drawings to up to 2 units apart
place the root r one above and centrally btw. children.
Algorithm of Reingold and Tilford ('81)

Implementation in 2 Phases:

1. postorder (bottom-up):
 contours and x-offsets
 gather the predecessors

2. preorder (top-down):
 calculate absolute coordinates

Contour: linked list of vertices (-coordinates)
Algorithm of Reingold and Tilford ('81)

Phase 1:

1. compute $T_\ell(v)$ und $T_r(v)$
2. trace the right contour of $T_\ell(v)$ and left of $T_r(v)$
3. Find $d_v = \text{min. horiz. distance between } v_\ell \text{ und } v_r$
4. $\text{x-offset}(v_\ell) = -\lceil d_v / 2 \rceil$, $\text{x-offset}(v_r) = \lceil d_v / 2 \rceil$
5. Build left contour of T_v from:
 - v,
 - left contour of $T_\ell(v)$,
 - left contour of any low hanging part of $T_r(v)$
6. Symmetrically for right contour.
Algorithm of Reingold and Tilford ('81)

Phase 1:
1. compute $T_\ell(v)$ und $T_r(v)$
2. trace the right contour of $T_\ell(v)$ and left of $T_r(v)$
3. Find $d_v = \min$ horiz. distance between v_ℓ und v_r
4. x-offset(v_ℓ) = $-\lceil d_v/2 \rceil$, x-offset(v_r) = $\lceil d_v/2 \rceil$
5. Build left contour of T_v from:
 • v,
 • left contour of $T_\ell(v)$,
 • left contour of any low hanging part of $T_r(v)$
6. Symmetrically for right contour.

Runtime? $\sum_v (1 + \min\{h_\ell(v), h_r(v)\}) = n + \sum_v \min\{\ldots\} \leq n + n$
Phase 2:

- Set y-coordinate $y(v) = -\text{depth}(v)$ for each vertex v.
- Set $x(w) := 0$ for the root w, then in preorder for $v \in V$:
 - $x(v_\ell) := x(v) + x\text{-offset}(v_\ell)$ and
 - $x(v_r) := x(v) + x\text{-offset}(v_r)$.

Runtime? $O(n)$
Summary for Balanced Drawings of Binary Trees

Theorem [Reingold & Tilford ’81]

For a binary tree with n vertices, in $O(n)$ time we can produce a drawing Γ such that:

- Γ is layered, i.e., $y \equiv -\text{depth}$,
- Γ is planar, straightline, and strictly downward,
- Γ matches the embedding (i.e., right children on the right),
- all vertices: horiz. & vert. distances ≥ 1, and on the grid,
- the area is $O(n^2)$,
- parent always centered above children.

Min. width (but without the grid): by Linear Programming (LP)!

Min. width and on the grid: NP-hard! [Supowit & Reingold ’83]

Easily generalizes to arbitrary trees!
Example of width variation

Output of the Algorithm:

Optimal Drawing:
2. Radial Drawings of Trees

- balanced drawings of binary trees $O(nh)$
- radial drawings of trees $O(nh)$
- compact drawings of trees $O(n \log n)$
- upward drawings of series parallel graphs \exp
Example: Radial Tree Layouts
An Algorithm for Radial Layout?
Restricting to Smaller Sectors

\[\cos \tau = \frac{\rho_i}{\rho_{i+1}} \]

\[\begin{align*}
\alpha_{\text{min}} &= \alpha_v - \arccos \frac{\rho_i}{\rho_{i+1}} \\
\alpha_{\text{max}} &= \alpha_v + \arccos \frac{\rho_i}{\rho_{i+1}}
\end{align*} \]
Pseudocode for radial tree layout
RadialTreeLayout(tree T, root $r \in T$, radii $\rho_1 < \cdots < \rho_k$)

begin

postorder(r)
preorder(r, 0, 0, 2π)
return $(d_v, \alpha_v)_{v \in V(T)}$

{vertex pos./ polar coord.}

postorder(vertex v)

$n_v \leftarrow 1$

foreach child w of v do

postorder(w)

$n_v \leftarrow n_v + n_w$

size of the subtree $T(v)$

preorder(vertex v, t, α_{\min}, α_{\max})

$d_v \leftarrow \rho_t$

$\alpha_v \leftarrow (\alpha_{\min} + \alpha_{\max})/2$

if $t > 0$ then

$\alpha_{\min} \leftarrow$

$max\{\alpha_{\min}, \alpha_v - \arccos \frac{\rho_t}{\rho_{t+1}}\}$

$\alpha_{\max} \leftarrow$

$min\{\alpha_{\max}, \alpha_v + \arccos \frac{\rho_t}{\rho_{t+1}}\}$

left $\leftarrow \alpha_{\min}$

foreach child w of v do

right \leftarrow left $+$ $\frac{n_w}{n_v-1} \cdot (\alpha_{\max} - \alpha_{\min})$

preorder(w, $t + 1$, left, right)

left \leftarrow right

Runtime? $O(n)$. Correctness? ✓
Overview

- balanced drawings of binary trees $O(nh)$
- radial drawings of trees $O(nh)$
- compact drawings of trees $O(n \log n)$
- upward drawings of series parallel graphs $\exp.$
Definition.

An \textit{hv-drawing} of a binary tree is a straight line drawing, so that for each vertex v:

- each child of v is either directly right or directly below v.
- the smallest axis-parallel rectangle enclosing the subtrees of the children of v are disjoint.

\begin{itemize}
 \item \textit{horizontal combination}
 \item \textit{vertical combination}
\end{itemize}
Algorithm RightHeavyHVTreeDraw

- Recursively construct drawings of the left and right subtrees from the root.
- Place the larger subtree on the right using the horizontal combination, and the smaller on the left.

Size of a subtree := number of vertices

Obs. The drawing has width $\leq n$, height $\leq \log_2 n$.
Overview

• balanced drawings of binary trees $O(nh)$
• radial drawings of trees $O(nh)$
• compact drawings of trees $O(n \log n)$
• upward drawings of series parallel graphs $\exp.$

Grid Size

Steven Chaplick · Lehrstuhl für Informatik I · Universität Würzburg
Series Parallel Graphs

- simple series parallel graph

- Induction: combining two series parallel graphs $G_1, G_2 \ldots$

- \ldots series \ldots

- \ldots or parallel.

\[
\begin{align*}
s_1 & = s_2 \\
t_1 & = s_2 \\
G_1 & \quad G_2 \\
s_1 & = s_2 \\
t_1 & = t_2 \\
\end{align*}
\]
Decomposition Tree for SP-graphs

Generalization: SPQR-Tree
SP-Graphs: applications

Flow Charts

Provides: Linear time algorithms for NP-complete problems (e.g., Maximum Independent Set)

PERT-Diagrams
(Program Evaluation and Review Technique)
Grid Size

Theorem [Bertolazzi et al. ’92]

There is a family \((G_n)_{n \in \mathbb{N}}\) of embedded SP-graphs where \(G_n\) has \(2^n\) vertices and every upward planar drawing of \(G_n\) requires \(\Omega(4^n)\) area.

Proof:

\[
a(G_{n+1}) \geq a(\Pi) + a(\Delta_1) + a(\Delta_2) \geq 2 \cdot a(\Pi) \geq 4 \cdot a(G_n)
\]