Computational Geometry

Simple Range Searching

Lecture #11
Range-Counting Query

area affected by the construction of a new airport

Observation.

Query range depends on, e.g., dominant wind directions

⇒ non-orthogonal
Non-orthogonal range queries

Query range:

Problem. Given a set P of n points, preprocess P such that half-space range-counting queries can be answered quickly.

Task Design a data structure for the 1-dim. case:

– Given a number x, return $|P \cap [x, \infty)|$.

– Consider P static / dynamic!
The 1-Dimensional Case

Task. Design a data structure for the 1-dim. case!

Solution.
- use balanced binary search trees
- augment each node with the number of nodes in its subtree [see Cormen et al., *Introduction to Algorithms*, MIT press, 3rd ed., 2009]

Lesson. On each level, visit \(\leq 1 \) subtree recursively!
Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree ... recursively!

Definition. $\Psi(S) = \{(S_1, t_1), (S_2, t_2), \ldots, (S_r, t_r)\}$ is a simplicial partition (of size r) for S if

- S is partitioned by S_1, \ldots, S_r and
- for $1 \leq i \leq r$, t_i is a triangle and $S_i \subset t_i$.

$\Psi(S)$ is fine if $|S_i| \leq 2\frac{|S|}{r}$ for every $1 \leq i \leq r$.
Generalizing to 2 Dimensions

Partition the input! Query... in a *partition tree* ... recursively!

Definition. The *crossing number* of ℓ (w.r.t. $\Psi(S)$) is the number of triangles t_1, \ldots, t_r crossed by ℓ.

The *crossing number* of $\Psi(S)$ is the maximum crossing number over all possible lines.
Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree... recursively!

Theorem. [Matoušek, DCG 1992] For any set S of n pts and any $1 \leq r \leq n$, a fine simplicial partition of size r and crossing number $O(\sqrt{r})$ exists. For any $\varepsilon > 0$, such a partition can be built in $O(n^{1+\varepsilon})$ time.

Lemma. A partition tree for S can be constructed in $O(n^{1+\varepsilon})$ time. The tree uses $O(n)$ storage.
Example for a Query

point set S

h: query range

partition tree for S

partition by triangles

= selected node

= visited node

recursively visited subtrees
Query Algorithm

`SelectInHalfplane` (half-plane h, partit. tree T for pt set S)

$N \leftarrow \emptyset$

// set of selected nodes

if $T = \{\mu\}$ **then**

if point stored at μ lies in h **then**

$N \leftarrow \{\mu\}$

else

foreach child ν of the root of T **do**

if $t(\nu) \subset h$ **then**

$N \leftarrow N \cup \{\nu\}$

else

if $t(\nu) \cap h \neq \emptyset$ **then**

$N \leftarrow N \cup SelectInHalfplane(h, T_\nu)$

return N

// with $S \cap h = \bigcup_{\nu \in N} S(\nu)$
Query Algorithm

SelectInHalfplane(half-plane h, partit. tree T for pt set S)

$N \leftarrow \emptyset$ // set of selected nodes

if $T = \{\mu\}$ then
 if point stored at μ lies in h then
 $N \leftarrow \{\mu\}$
 else
 foreach child ν of the root of T do
 if $t(\nu) \subseteq h$ then
 $N \leftarrow N \cup \{\nu\} + |S(\nu)|$
 else
 if $t(\nu) \cap h \neq \emptyset$ then
 $N \leftarrow N \cup \text{SelectInHalfplane}(h, T_\nu)$ + \text{Count}

return N // with $|S \cap h| = \bigcup_{v \in N} S(v)$

Task:

Turn this into a range counting query algorithm!
Analysis of the Partition Tree

Lemma. For any \(\varepsilon > 0 \), there is a partition tree \(\mathcal{T} \) for \(S \) s.t.:
for a query half-plane \(h \),
\(\text{SELECTINHALFPLANE} \) selects in \(O(n^{1/2+\varepsilon}) \) time
a set \(N \) of \(O(n^{1/2+\varepsilon}) \) nodes of \(\mathcal{T} \)
with the property that \(h \cap S = \bigcup_{v \in N} S(v) \).

Proof. Let \(\varepsilon > 0 \). Let \(r = 2(\sqrt{2}c)^{1/\varepsilon} \).
\[Q(n) \leq \begin{cases} 1 & \text{if } n = 1, \\ r + \sum_{v \in C(h)} Q(|S(v)|) & \text{if } n > 1. \end{cases} \]

\(C(h) \) : all children \(v \) of the root s.t. \(h \) crosses \(t(v) \)

Theorem. For any set \(S \) of \(n \) pts and any \(1 \leq r \leq n \), a **fine** simplicial partition of size \(r \) and crossing number \(c\sqrt{r} \) exists. For any \(\varepsilon > 0 \), such a partition can be built in \(O(n^{1+\varepsilon}) \) time.

[Matoušek, DCG 1992]
Analysis of the Partition Tree

Lemma. A partition tree for S can be constructed in $O(n^{1+\varepsilon})$ time. The tree uses $O(n)$ storage.

Lemma. For any $\varepsilon > 0$, there is a partition tree \mathcal{T} for S s.t.: for a query half-plane h, SelectInHalfplane selects in $O(n^{1/2+\varepsilon})$ time a set N of $O(n^{1/2+\varepsilon})$ nodes of \mathcal{T} with the property that $h \cap S = \bigcup_{\nu \in N} S(\nu)$.

Corollary. Half-plane range counting queries can be answered in $O(n^{1/2+\varepsilon})$ time using $O(n)$ space and $O(n^{1+\varepsilon})$ prep.
Any ideas? Just use SelectInHalfplane!

Theorem. Given a set S of n pts in the plane, for any $\varepsilon > 0$, a triangular range-counting query can be answered in $O(n^{1/2+\varepsilon})$ time using a partition tree. The tree can be built in $O(n^{1+\varepsilon})$ time and uses $O(n)$ space. The points inside the query range can be reported in $O(k)$ additional time, where k is the number of reported pts.

Can we do better?

Use cutting trees! (Chapter 16.3) Query time $O(\log^3 n)$, prep. & storage $O(n^{2+\varepsilon})$.
Multi-Level Partition Trees

Idea. Store with each internal node not just a number, but another data structure!

Task. Design a fast data structure for line segments that counts all segments intersecting a query line ℓ.

$p_{\text{left}}(s')$ $p_{\text{right}}(s')$
Query Algorithm

\[
N \leftarrow \emptyset
\]

\[
\text{if } T = \{\mu\} \text{ then}
\]

\[
\text{if segment stored in } \mu \text{ intersects } \ell \text{ then } N \leftarrow \{\mu\}
\]

\[
\text{else}
\]

\[
\text{foreach child } \nu \text{ of } \mathcal{T}'s \text{ root do}
\]

\[
\text{if } t(\nu) \subseteq \ell^+ \text{ then}
\]

\[
N \leftarrow N \cup \text{SelectInHalfplane}(\ell^-, \mathcal{T}_{assoc}^\nu)
\]

\[
\text{else}
\]

\[
\text{if } t(\nu) \cap \ell \neq \emptyset \text{ then}
\]

\[
N \leftarrow N \cup \text{SelectIntSegments}(\ell, \mathcal{T}_\nu)
\]

\[
\text{return } N
\]

For \(S' \subseteq S \), let

\[
P_{\text{right}}(S') = \{p_{\text{right}}(s) \mid s \in S'\}
\]

-- first-level tree stores \(P_{\text{right}}(S) \)

-- second-level trees store subsets of \(P_{\text{left}}(S) \)

stores \(P_{\text{left}}(S_{\text{seg}}(\nu)) \), where

\[
S_{\text{seg}}(\nu) = \{s \mid p_{\text{right}}(s) \in S(\nu)\}
\]

For \(S' \subseteq S \), let

\[
P_{\text{left}}(S') = \{p_{\text{left}}(s) \mid s \in S'\}
\]

\[
\bigcup_{\nu \in N} S(\nu) = \{s \in S \mid p_{\text{right}}(s) \text{ above } \ell \text{ and } p_{\text{left}}(s) \text{ below } \ell\}
\]
Results

Lemma. A 2-level partition tree for line-intersection queries among a set of n segments uses $O(n \log n)$ storage.

Lemma. Let S be a set of n segments in the plane. For any $\varepsilon > 0$, there is a 2-level partition tree \mathcal{T} for S s.t.

- given a query line ℓ, we can select $O(n^{1/2+\varepsilon})$ nodes from \mathcal{T} whose canonical subsets represent the segments intersected by ℓ.

- The selection takes $O(n^{1/2+\varepsilon})$ time.

Corollary. Let S be a set of n segments in the plane. We can count the number of segments in S intersected by a query line in $O(n^{1/2+\varepsilon})$ time using $O(n \log n)$ space and $O(n^{1+\varepsilon})$ prep.
Results

Lemma. A 2-level partition tree for line-intersection queries among a set of n segments uses $O(n \log n)$ storage.

Lemma. Let S be a set of n segments in the plane. For any $\varepsilon > 0$, there is a 2-level partition tree T for S s.t.

- given a query line ℓ, we can select $O(n^{1/2+\varepsilon})$ nodes from T whose canonical subsets represent the segments intersected by ℓ.
- The selection takes $O(n^{1/2+\varepsilon})$ time.

Corollary. Let S be a set of n segments in the plane. We can count the number of segments in S intersected by a query line in $O(n^{1/2+\delta\varepsilon})$ time using $O(n \log^{\delta-1} n)$ space and $O(n^{1+\delta\varepsilon})$ prep.