Computational Geometry

Voronoi Diagrams

or

The Post-Office Problem

Lecture #7

Dr. Philipp Kindermann Winter Semester 2018/19
The Post-Office Problem
The Post-Office Problem

\[b(p, q) = \{ x \in \mathbb{R}^2 : |xp| = |xq| \} \]

\[h(p, q) = \{ x : |xp| < |xq| \} \]

\[h(q, p) = \{ x : |xq| < |xp| \} \]
The Voronoi diagram

Let P be a set of points in the plane and let $p, p', p'' \in P$.

[Voronoi diagram]

$\text{Vor}(P)$ subdivision of \mathbb{R}^2

geometric graph

$\text{V}(\{p\}) = \{x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\}\}$

$= \bigcap_{q \neq p} h(p, q)$

[Voronoi cell]

$\text{V}({p, p'}) = \{x : |xp| = |xp'| \text{ and } |xp| < |xq| \text{ for all } q \neq p, p'\}$

$= \text{rel-int}(\partial \text{V}(p) \cap \partial \text{V}(p')) \text{ (w/o the endpts)}$

[Voronoi edge]

$\text{V}({p, p', p''}) = \partial \text{V}(p) \cap \partial \text{V}(p') \cap \partial \text{V}(p'')$

$= \{x : |xp| = |xp'| = |xp''| \text{ and } |xp| \leq |xq| \text{ for all } q \}$
Overall Shape of $\text{Vor}(P)$

Theorem. Let $P \subset \mathbb{R}^2$ be a set of n pts (called sites). If all sites are collinear, $\text{Vor}(P)$ consists of $n - 1$ parallel lines. Otherwise, $\text{Vor}(P)$ is connected and its edges are line segments or half-lines.

Proof. Assume that P is not collinear.

– Assume that $\text{Vor}(P)$ contains an edge e that is a full line, say, $e = b(p, q)$.

Let $r \in P$ be not collinear with p and q. Then $e' = b(q, r)$ is not parallel to e.

$\Rightarrow e \cap h(r, q)$ is closer to r than to p or q.

$\Rightarrow e$ is bounded on at least one side. □
 Complexity

 Task: Construct a set P of point sites such that $\text{Vor}(P)$ has a cell of linear complexity!

 Theorem. Given a set $P \subset \mathbb{R}^2$ of n sites, $\text{Vor}(P)$ consists of at most $2n - 5$ vertices and $3n - 6$ edges.

 Proof. Problem: unbounded edges!

 \Rightarrow can’t apply Euler directly, but...

 $|F| = n \Rightarrow (|V| + 1) - |E| + n = 2$

 $\Rightarrow (|V| + 1) - \frac{3}{2}(|V| + 1) + n = 2$

 $\Rightarrow \frac{1}{2}(|V| + 1) = n - 2$
Characterization of Voronoi vtc and edges

\(CP(x) := \text{largest circle centered at } x \text{ w/o sites in its interior} \)

Theorem:

(i) \(x \) Voronoi vtx \(\iff \left| CP(x) \cap P \right| \geq 3 \)

(ii) \(b(p, p') \) contains a Voronoi edge \(\iff \exists x \in b(p, p') : CP(x) \cap P = \{p, p'\} \)
Computation

Brute force: For each \(p \in P \), compute \(\mathcal{V}(p) = \bigcap_{p' \neq p} h(p, p') \).

\[\text{[Lecture 4]} \quad O(n \log n) \text{ time} \]

in total: \(O(n^2 \log n) \) time
– but the complexity of \(\text{Vor}(P) \) is linear!

Sweep?

Problem: We don’t know all defining sites yet :(

\[\ell \]
Sweep?

Which part of the plane above ℓ is fixed by what we’ve seen?

Sweep?

Which part of the plane above ℓ is fixed by what we’ve seen?

Solution:

f^ℓ_p is the parabola with focus p and directrix ℓ.

Task: Compute f^ℓ_p for $p = (0, 1)$ and $\ell: y = -1$!

Definition. beachline $\beta \equiv$ lower envelope of $(f^\ell_p)_{p \in P \cap \ell^+}$

Observation. β is x-monotone.
The beachline β

Question: What does β have to do with $\operatorname{Vor}(P)$?

Answer: “Breakpoints” of β trace out the Voronoi edges!

Lemma. New arcs on β only appear through site events, that is, whenever ℓ hits a new site.

Corollary. β consists of at most $2n - 1$ arcs.

Definition. *Circle event:* ℓ reaches lowest pt of a circle through three sites above ℓ whose arcs are consecutive on β.

Lemma. Arcs disappear from β only at circle events.

Lemma. The Voronoi vtc correspond 1:1 to circle events.
Fortune’s Sweep

VoronoiDiagram($P \subset \mathbb{R}^2$)

$Q \leftarrow \text{new PriorityQueue}(P)$ // site events sorted by y-coord.
$T \leftarrow \text{new BalancedBinarySearchTree}()$ // sweep status (β)
$D \leftarrow \text{new DCEL}()$ // to-be Vor(P)

while not Q.empty() do

 $p \leftarrow Q$.ExtractMax()

 if p site event then

 HandleSiteEvent(p)

 else

 $\alpha \leftarrow \text{arc on } \beta \text{ that will disappear}$

 HandleCircleEvent(α)

 treat remaining int. nodes of T (\equiv unbnd. edges of Vor(P))

return D
Handling Events

HandleSiteEvent(point \(p \))

- Search in \(T \) for the arc \(\alpha \) vertically above \(p \).
 If \(\alpha \) has pointer to circle event in \(Q \), delete this event.
- Split \(\alpha \) into \(\alpha_0 \) and \(\alpha_2 \).
 Let \(\alpha_1 \) be the new arc of \(p \).
- Add Vor-edges \(\langle q, p \rangle \) and \(\langle p, q \rangle \) to DCEL.
- Check \(\langle \cdot, \alpha_0, \alpha_1 \rangle \) and \(\langle \alpha_1, \alpha_2, \cdot \rangle \) for circle events.

HandleCircleEvent(arc \(\alpha \))

- \(T.\text{delete}(\alpha) \); update breakpts
- Delete all circle events involving \(\alpha \) from \(Q \).
- Add Vor-vtx \(\alpha_{\text{left}} \cap \alpha_{\text{right}} \) and Vor-edge \(\langle \alpha_{\text{left}}, \alpha_{\text{right}} \rangle \) to DCEL.
- Check \(\langle \cdot, \alpha_{\text{left}}, \alpha_{\text{right}} \rangle \) and \(\langle \alpha_{\text{left}}, \alpha_{\text{right}}, \cdot \rangle \) for circle events.

Running time? \(O(\log n) \) per event...
Running Time?

VoronoiDiagram(P ⊂ R^2)

Q ← new PriorityQueue(P) // site events sorted by y-coord.
T ← new BalancedBinarySearchTree() // sweep status (β)
D ← new DCEL() // to-be Vor(P)

while not Q.empty() do
 p ← Q.ExtractMax()
 if p site event then
 HandleSiteEvent(p) // exactly n such events
 else
 α ← arc on β that will disappear
 HandleCircleEvent(α) // at most 2n − 5 such events
 treat remaining int. nodes of T (≡ unbnd. edges of Vor(P))

return D
Summary

Theorem. Given a set \(P \) of \(n \) pts in the plane, Fortune’s sweep computes \(\text{Vor}(P) \) in \(O(n \log n) \) time and \(O(n) \) space.

Steven Fortune
Bell Labs