Computational Geometry

Simplex Range Searching
Lecture #11

[Comp. Geom A&A : Chapter 16]
Range-Counting Query
Range-Counting Query

area affected by the construction of a new airport

Figure from *Computational Geometry: Algorithms and Applications*, De Berg et al., 3rd edition, Springer 2008.
Range-Counting Query

area affected by the construction of a new airport

Observation:
Query range depends on, e.g., dominant wind directions

Range-Counting Query

Observation:
Query range depends on, e.g., dominant wind directions

⇒ non-orthogonal
Non-orthogonal range queries

Query range:

Problem: Given a set P of n points, preprocess P such that half-space range-counting queries can be answered quickly.
Non-orthogonal range queries

Query range:

Problem: Given a set P of n points, preprocess P such that *half-space range-counting queries* can be answered quickly.

Task: Design a data structure for the 1-dim. case:
Non-orthogonal range queries

Query range:

Problem: Given a set P of n points, preprocess P such that half-space range-counting queries can be answered quickly.

Task: Design a data structure for the 1-dim. case:

– Given a number x, return $|P \cap [x, \infty)|$.
Non-orthogonal range queries

Query range:

Problem: Given a set P of n points, preprocess P such that half-space range-counting queries can be answered quickly.

Task: Design a data structure for the 1-dim. case:

- Given a number x, return $|P \cap [x, \infty)|$.
- Consider P static / dynamic!
The 1-Dimensional Case

Task: Design a data structure for the 1-dimensional case!

Solution:
The 1-Dimensional Case

Task: Design a data structure for the 1-dimensional case!

Solution: • use balanced binary search trees
The 1-Dimensional Case

Task: Design a data structure for the 1-dimensional case!

Solution:
- use balanced binary search trees
- augment each node with the number of nodes in its subtree

The 1-Dimensional Case

Task: Design a data structure for the 1-dimensional case!

Solution: • use balanced binary search trees
• augment each node with the number of nodes in its subtree

[see Cormen et al., Introduction to Algorithms, MIT press, 3rd ed., 2009]
The 1-Dimensional Case

Task: Design a data structure for the 1-dimensional case!

Solution: • use balanced binary search trees
• augment each node with the number of nodes in its subtree [see Cormen et al., Introduction to Algorithms, MIT press, 3rd ed., 2009]
The 1-Dimensional Case

Task: Design a data structure for the 1-dimensional case!

Solution:
- use balanced binary search trees
- augment each node with the number of nodes in its subtree
 [see Cormen et al., Introduction to Algorithms, MIT press, 3rd ed., 2009]
The 1-Dimensional Case

Task: Design a data structure for the 1-dimensional case!

Solution: • use balanced binary search trees
• augment each node with the number of nodes in its subtree

[see Cormen et al., Introduction to Algorithms, MIT press, 3rd ed., 2009]
The 1-Dimensional Case

Task: Design a data structure for the 1-dimensional case!

Solution: • use balanced binary search trees
• augment each node with the number of nodes in its subtree

Lesson: On each level, visit \(\leq 1 \) subtree recursively!

The 1-Dimensional Case

Task: Design a data structure for the 1-dimensional case!

Solution:
- use balanced binary search trees
- augment each node with the number of nodes in its subtree [see Cormen et al., *Introduction to Algorithms*, MIT press, 3rd ed., 2009]

Lesson: On each level, visit ≤ 1 subtree recursively!
Generalizing to 2 Dimensions

Any ideas?
Generalizing to 2 Dimensions

Any ideas?
Generalizing to 2 Dimensions

Partition the input!
Generalizing to 2 Dimensions

Partition the input! Query...
Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree
Generalizing to 2 Dimensions

Partition the input! Query... in a *partition tree*
Generalizing to 2 Dimensions

Partition the input! Query... in a *partition tree*
Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree... recursively!
Generalizing to 2 Dimensions

Partition the input! Query... in a *partition tree*... recursively!
Generalizing to 2 Dimensions

Partition the input! Query... in a *partition tree* ... recursively!

Definition: \(\Psi(S) = \{(S_1, t_1), (S_2, t_2), \ldots, (S_r, t_r)\} \) is a simplicial partition (of size \(r \)) for \(S \) if
Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree... recursively!

Definition: \(\psi(S) = \{(S_1, t_1), (S_2, t_2), \ldots, (S_r, t_r)\} \) is a simplicial partition (of size \(r \)) for \(S \) if
- \(S \) is partitioned by \(S_1, \ldots, S_r \) and
- for \(1 \leq i \leq r \), \(t_i \) is a triangle and \(S_i \subset t_i \).
Generalizing to 2 Dimensions

Partition the input! Query... in a *partition tree*... recursively!

Definition: \(\psi(S) = \{(S_1, t_1), (S_2, t_2), \ldots, (S_r, t_r)\} \) is a *simplicial partition* (of size \(r \)) for \(S \) if
- \(S \) is partitioned by \(S_1, \ldots, S_r \) and
- for \(1 \leq i \leq r \), \(t_i \) is a triangle and \(S_i \subset t_i \).
Generalizing to 2 Dimensions

Partition the input! Query... in a *partition tree* ... recursively!

Definition: $\psi(S) = \{(S_1, t_1), (S_2, t_2), \ldots, (S_r, t_r)\}$ is a *simplicial partition* (of size r) for S if
- S is partitioned by S_1, \ldots, S_r and
- for $1 \leq i \leq r$, t_i is a triangle and $S_i \subset t_i$.

$\psi(S)$ is *fine* if $|S_i| \leq 2\frac{|S|}{r}$ for every $1 \leq i \leq r$.
Generalizing to 2 Dimensions

Partition the input! Query... in a *partition tree*... recursively!

Definition: The *crossing number* of ℓ (w.r.t. $\Psi(S)$) is the number of triangles t_1, \ldots, t_r crossed by ℓ.
Generalizing to 2 Dimensions

Partition the input! Query... in a *partition tree*... recursively!

Definition: The *crossing number* of \(\ell \) (w.r.t. \(\Psi(S) \)) is the number of triangles \(t_1, \ldots, t_r \) crossed by \(\ell \).

The *crossing number* of \(\Psi(S) \) is the maximum crossing number over all possible lines.
Generalizing to 2 Dimensions

Partition the input! Query... in a *partition tree*... recursively!

Theorem. For any set S of n pts and any $1 \leq r \leq n$, a fine simplicial partition of size r and crossing number $O(\sqrt{r})$ exists.
Generalizing to 2 Dimensions

Partition the input! Query... in a *partition tree* ... recursively!

Theorem. For any set S of n pts and any $1 \leq r \leq n$, a fine simplicial partition of size r and crossing number $O(\sqrt{r})$ exists.
Generalizing to 2 Dimensions

Partition the input! Query... in a *partition tree* ... recursively!

Theorem. For any set S of n pts and any $1 \leq r \leq n$, a fine simplicial partition of size r and crossing number $O(\sqrt{r})$ exists.

For any $\varepsilon > 0$, such a partition can be built in $O(n^{1+\varepsilon})$ time.
Generalizing to 2 Dimensions

Partition the input! Query... in a *partition tree* ... recursively!

Theorem. For any set S of n pts and any $1 \leq r \leq n$, a fine simplicial partition of size r and crossing number $O(\sqrt{r})$ exists.

For any $\varepsilon > 0$, such a partition can be built in $O(n^{1+\varepsilon})$ time.
Generalizing to 2 Dimensions

Partition the input! Query... in a *partition tree*... recursively!

Theorem. For any set S of n pts and any $1 \leq r \leq n$, a fine simplicial partition of size r and crossing number $O(\sqrt{r})$ exists.

For any $\varepsilon > 0$, such a partition can be built in $O(n^{1+\varepsilon})$ time.
Generalizing to 2 Dimensions

Partition the input! Query... in a *partition tree* ... recursively!

Theorem. For any set S of n pts and any $1 \leq r \leq n$, a fine simplicial partition of size r and crossing number $O(\sqrt{r})$ exists.

For any $\varepsilon > 0$, such a partition can be built in $O(n^{1+\varepsilon})$ time.
Generalizing to 2 Dimensions

Partition the input! Query... in a *partition tree*... recursively!

Theorem. For any set S of n pts and any $1 \leq r \leq n$, a fine simplicial partition of size r and crossing number $O(\sqrt{r})$ exists.

For any $\varepsilon > 0$, such a partition can be built in $O(n^{1+\varepsilon})$ time.
Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree... recursively!

Theorem. For any set S of n pts and any $1 \leq r \leq n$, a fine simplicial partition of size r and crossing number $O(\sqrt{r})$ exists.

For any $\varepsilon > 0$, such a partition can be built in $O(n^{1+\varepsilon})$ time.
Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree... recursively!

Theorem. For any set S of n pts and any $1 \leq r \leq n$, a fine simplicial partition of size r and crossing number $O(\sqrt{r})$ exists.

For any $\varepsilon > 0$, such a partition can be built in $O(n^{1+\varepsilon})$ time.
Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree... recursively!

Theorem. For any set S of n pts and any $1 \leq r \leq n$, a fine simplicial partition of size r and crossing number $O(\sqrt{r})$ exists.

For any $\varepsilon > 0$, such a partition can be built in $O(n^{1+\varepsilon})$ time.
Generalizing to 2 Dimensions

Partition the input! Query... in a partition tree... recursively!

Theorem. For any set S of n pts and any $1 \leq r \leq n$, a fine simplicial partition of size r and crossing number $O(\sqrt{r})$ exists.

For any $\varepsilon > 0$, such a partition can be built in $O(n^{1+\varepsilon})$ time.
Example for a Query

point set S
Example for a Query

point set S

partition by triangles
Example for a Query

point set S

$h \ldots$ query range

partition by triangles
Example for a Query

point set S

$h \ldots$ query range

partition tree for S

partition by triangles
Example for a Query

point set S

$h \ldots$ query range

partition by triangles

partition tree for S

- v_1
- v_2
- v_3
- v_4
- v_5
- v_6
- v_7

- selected node
- visited node
Example for a Query

point set S

$h\ldots$ query range

partition by triangles

partition tree for S

bullet = selected node

gray = visited node
Example for a Query

point set S

h... query range

partition tree for S

partition by triangles

V_1, V_2, V_3, V_4, V_5, V_6, V_7

recursively visited subtrees

\bullet = selected node
\circ = visited node
Query Algorithm

$\textbf{SelectInHalfplane}(\text{half-plane } h, \text{ partit. tree } \mathcal{T} \text{ for pt set } S)$

$N \leftarrow \emptyset \quad \{ \text{set of selected nodes} \}$
Query Algorithm

SelectInHalfplane (half-plane h, partit. tree T for pt set S)

\[
N \leftarrow \emptyset \quad \{ \text{set of selected nodes} \}
\]

if \(T = \{ \mu \} \) then

else

return \(N \) \quad \{ \text{with } S \cap h = \bigcup_{\nu \in N} S(\nu) \}
Query Algorithm

SelectInHalfplane (half-plane h, partit. tree \mathcal{T} for pt set S)

$N \leftarrow \emptyset$ \hspace{1cm} \{ set of selected nodes \}

\begin{align*}
\text{if } \mathcal{T} = \{\mu\} \text{ then} & \quad \text{if point stored at } \mu \text{ lies in } h \text{ then} \\
& \quad \quad \quad \quad N \leftarrow \{\mu\} \\
\text{else} & \quad \text{return } N \quad \{ \text{with } S \cap h = \bigcup_{\nu \in N} S(\nu) \}
\end{align*}
Query Algorithm

\[\text{SELECTINHALFPLANE}(\text{half-plane } h, \text{ partit. tree } T \text{ for pt set } S)\]

\[N \leftarrow \emptyset \quad \{ \text{set of selected nodes} \} \]

\[
\begin{align*}
&\text{if } T = \{\mu\} \text{ then} \\
&\quad \text{if point stored at } \mu \text{ lies in } h \text{ then} \\
&\qquad N \leftarrow \{\mu\}
\end{align*}
\]

\[
\begin{align*}
&\text{else} \\
&\quad \text{foreach child } \nu \text{ of the root of } T \text{ do}
\end{align*}
\]

\[
\begin{align*}
&\quad \text{if } t(\nu) \subset h \text{ then} \\
&\qquad N \leftarrow N \cup \{\nu\}
\end{align*}
\]

\[
\begin{align*}
&\quad \text{else} \\
&\qquad \text{if } t(\nu) \cap h \neq \emptyset \text{ then} \\
&\qquad \quad N \leftarrow N \cup \text{SELECTINHALFPLANE}(h, T_\nu)
\end{align*}
\]

\[
\begin{align*}
&\text{return } N \quad \{ \text{with } S \cap h = \bigcup_{\nu \in N} S(\nu) \}
\end{align*}
\]
Query Algorithm

\[\text{SelectInHalfplane}(\text{half-plane } h, \text{ partit. tree } T \text{ for pt set } S) \]

\[N \leftarrow \emptyset \quad \{ \text{set of selected nodes} \} \]

\[\text{if } T = \{ \mu \} \text{ then} \]

\[\quad \text{if point stored at } \mu \text{ lies in } h \text{ then} \]

\[\quad \quad N \leftarrow \{ \mu \} \]

\[\text{else} \]

\[\quad \text{foreach child } \nu \text{ of the root of } T \text{ do} \]

\[\quad \quad \text{if } t(\nu) \subset h \text{ then} \]

\[\quad \quad \quad \text{else} \]

\[\text{return } N \quad \{ \text{with } S \cap h = \bigcup_{\nu \in N} S(\nu) \} \]
Query Algorithm

\[\text{SELECTINHALFPLANE}(\text{half-plane } h, \text{ partit. tree } T \text{ for pt set } S) \]

\[N \leftarrow \emptyset \quad \{ \text{set of selected nodes} \} \]

\[\text{if } T = \{ \mu \} \text{ then} \]
\[\quad \text{if point stored at } \mu \text{ lies in } h \text{ then} \]
\[\quad \quad N \leftarrow \{ \mu \} \]

else

\[\quad \text{foreach child } \nu \text{ of the root of } T \text{ do} \]
\[\quad \quad \text{if } t(\nu) \subseteq h \text{ then} \]
\[\quad \quad \quad N \leftarrow N \cup \{ \nu \} \]
\[\quad \quad \text{else} \]
\[\quad \quad \quad \text{else} \]

return \[N \quad \{ \text{with } S \cap h = \bigcup_{\nu \in N} S(\nu) \} \]
Query Algorithm

\texttt{SELECTINHALFPLANE}(\text{half-plane } h, \text{ partit. tree } \mathcal{T} \text{ for pt set } S)
\begin{align*}
N & \leftarrow \emptyset \quad \{ \text{ set of selected nodes } \} \\
\text{if } \mathcal{T} = \{ \mu \} \text{ then} & \\
& \quad \begin{aligned}
& \text{if point stored at } \mu \text{ lies in } h \text{ then} \\
& \quad \quad N \leftarrow \{ \mu \}
\end{aligned} \\
\text{else} & \\
& \quad \begin{aligned}
& \text{foreach child } \nu \text{ of the root of } \mathcal{T} \text{ do} \\
& \quad \quad \begin{aligned}
& \text{if } t(\nu) \subset h \text{ then} \\
& \quad \quad \quad N \leftarrow N \cup \{ \nu \}
\end{aligned} \\
& \text{else} \\
& \quad \quad \quad \begin{aligned}
& \text{if } t(\nu) \cap h \neq \emptyset \text{ then}
\end{aligned}
\end{aligned}
\end{aligned}
\text{return } N \quad \{ \text{ with } S \cap h = \bigcup_{\nu \in N} S(\nu) \}
Query Algorithm

\textbf{SELECTINHALFPLANE}(half-plane \(h\), partit. tree \(T\) for pt set \(S\))

\(N \leftarrow \emptyset\) \{ set of selected nodes \}

\begin{align*}
\text{if } T = \{\mu\} \text{ then} & \\
& \text{if point stored at } \mu \text{ lies in } h \text{ then} \\
& \quad N \leftarrow \{\mu\} \\
\text{else} & \\
& \quad \text{foreach child } \nu \text{ of the root of } T \text{ do} \\
& \quad \quad \text{if } t(\nu) \subset h \text{ then} \\
& \quad \quad \quad N \leftarrow N \cup \{\nu\} \\
& \quad \quad \text{else} \\
& \quad \quad \quad \text{if } t(\nu) \cap h \neq \emptyset \text{ then} \\
& \quad \quad \quad \quad N \leftarrow N \cup \text{SELECTINHALFPLANE}(h, T_\nu) \\
\end{align*}

return \(N\) \{ with \(S \cap h = \bigcup_{\nu \in N} S(\nu)\) \}
Query Algorithm

\begin{align*}
\text{\textbf{SelectInHalfplane}}(\text{half-plane } h, \text{ partit. tree } \mathcal{T} \text{ for pt set } S) \\
N &\leftarrow \emptyset \quad \{ \text{set of selected nodes} \} \\
\text{if } \mathcal{T} = \{\mu\} \text{ then} \\
&\quad \text{if point stored at } \mu \text{ lies in } h \text{ then} \\
&\quad \quad N \leftarrow \{\mu\} \\
\text{else} \\
&\quad \text{foreach child } \nu \text{ of the root of } \mathcal{T} \text{ do} \\
&\quad \quad \text{if } t(\nu) \subset h \text{ then} \\
&\quad \quad \quad N \leftarrow N \cup \{\nu\} \\
&\quad \quad \text{else} \\
&\quad \quad \quad \text{if } t(\nu) \cap h \neq \emptyset \text{ then} \\
&\quad \quad \quad \quad N \leftarrow N \cup \text{SelectInHalfplane}(h, \mathcal{T}_\nu) \\
\text{return } N \quad \{ \text{with } S \cap h = \bigcup_{\nu \in N} S(\nu) \}\end{align*}

Task:
Turn this into a range counting query algorithm!
Analysis of the Partition Tree

Let S be a set of n points in the plane. \textit{Recall:}

\textbf{Theorem.} For any r with $1 \leq r \leq n$, S has a fine simplicial partition of size r and crossing number $O(\sqrt{r})$. For any $\varepsilon > 0$, such a partition can be computed in $O(n^{1+\varepsilon})$ time.
Analysis of the Partition Tree

Let S be a set of n points in the plane.

Theorem. For any r with $1 \leq r \leq n$, S has a fine simplicial partition of size r and crossing number $O(\sqrt{r})$. For any $\varepsilon > 0$, such a partition can be computed in $O(n^{1+\varepsilon})$ time.

Lemma. A partition tree for S can be constructed in $O(n^{1+\varepsilon})$ time. The tree uses $O(n)$ storage.
Analysis of the Partition Tree

Let S be a set of n points in the plane.

Theorem. For any r with $1 \leq r \leq n$, S has a fine simplicial partition of size r and crossing number $O(\sqrt{r})$. For any $\varepsilon > 0$, such a partition can be computed in $O(n^{1+\varepsilon})$ time.

Lemma. A partition tree for S can be constructed in $O(n^{1+\varepsilon})$ time. The tree uses $O(n)$ storage.

Lemma. For any $\varepsilon > 0$, there is a partition tree T for S s.t.:
Analysis of the Partition Tree

Let S be a set of n points in the plane. \(\text{Recall:} \)

Theorem. For any r with $1 \leq r \leq n$, S has a fine simplicial partition of size r and crossing number $O(\sqrt{r})$. For any $\varepsilon > 0$, such a partition can be computed in $O(n^{1+\varepsilon})$ time.

Lemma. A partition tree for S can be constructed in $O(n^{1+\varepsilon})$ time. The tree uses $O(n)$ storage.

Lemma. For any $\varepsilon > 0$, there is a partition tree \mathcal{T} for S s.t.:

- for a query half-plane h, SelectInHalfplane selects in $O(n^{1/2+\varepsilon})$ time
- a set N of $O(n^{1/2+\varepsilon})$ nodes of \mathcal{T}
Analysis of the Partition Tree

Let S be a set of n points in the plane.

Theorem. For any r with $1 \leq r \leq n$, S has a fine simplicial partition of size r and crossing number $O(\sqrt{r})$. For any $\varepsilon > 0$, such a partition can be computed in $O(n^{1+\varepsilon})$ time.

Lemma. A partition tree for S can be constructed in $O(n^{1+\varepsilon})$ time. The tree uses $O(n)$ storage.

Lemma. For any $\varepsilon > 0$, there is a partition tree \mathcal{T} for S s.t.:

- for a query half-plane h,
- SelectInHalfplane selects in $O(n^{1/2+\varepsilon})$ time
- a set N of $O(n^{1/2+\varepsilon})$ nodes of \mathcal{T}
- with the property that $h \cap S = \bigcup_{\nu \in N} S(\nu)$.

Recall:
Analysis of the Partition Tree

Let S be a set of n points in the plane.

Recall:

Theorem. For any r with $1 \leq r \leq n$, S has a fine simplicial partition of size r and crossing number $O(\sqrt{r})$. For any $\varepsilon > 0$, such a partition can be computed in $O(n^{1+\varepsilon})$ time.

Lemma. A partition tree for S can be constructed in $O(n^{1+\varepsilon})$ time. The tree uses $O(n)$ storage.

Lemma. For any $\varepsilon > 0$, there is a partition tree T for S s.t.:

- for a query half-plane h, SelectInHalfplane selects in $O(n^{1/2+\varepsilon})$ time
- a set N of $O(n^{1/2+\varepsilon})$ nodes of T
- with the property that $h \cap S = \bigcup_{\nu \in N} S(\nu)$.

Corollary. Half-plane range counting queries can be answered in $O(n^{1/2+\varepsilon})$ time using $O(n)$ space & $O(n^{1+\varepsilon})$ prep.
Back to *Triangular* Range Queries

Any ideas?
Back to *Triangular* Range Queries

Any ideas? Just use `SELECTINHALFPLANE`!
Back to *Triangular Range Queries*

Any ideas? Just use `SELECTINHALFPLANE`!

Theorem: Given a set S of n pts in the plane, for any $\varepsilon > 0$, a triangular range-counting query can be answered in $O(n^{1/2+\varepsilon})$ time using a partition tree.
Back to *Triangular Range Queries*

Any ideas? Just use `SELECT_IN_HALFPLANE`!

Theorem: Given a set \(S \) of \(n \) pts in the plane, for any \(\varepsilon > 0 \), a triangular range-counting query can be answered in \(O(n^{1/2+\varepsilon}) \) time using a partition tree. The tree can be built in \(O(n^{1+\varepsilon}) \) time and uses \(O(n) \) space.
Back to *Triangular* Range Queries

Any ideas? Just use `SELECTINHALFPLANE`!

Theorem: Given a set S of n pts in the plane, for any $\varepsilon > 0$, a triangular range-counting query can be answered in $O(n^{1/2+\varepsilon})$ time using a partition tree.

The tree can be built in $O(n^{1+\varepsilon})$ time and uses $O(n)$ space.

The points inside the query range can be reported in $O(k)$ additional time, where k is the number of reported pts.
Back to *Triangular Range Queries*

Any ideas? Just use `SELECTINHALFPLANE`!

Theorem: Given a set S of n pts in the plane, for any $\varepsilon > 0$, a triangular range-counting query can be answered in $O(n^{1/2+\varepsilon})$ time using a partition tree.

The tree can be built in $O(n^{1+\varepsilon})$ time and uses $O(n)$ space.

The points inside the query range can be reported in $O(k)$ additional time, where k is the number of reported pts.

Can we do better?
Back to *Triangular Range Queries*

Any ideas? Just use `SelectInHalfplane`!

Theorem: Given a set S of n pts in the plane, for any $\varepsilon > 0$, a triangular range-counting query can be answered in $O(n^{1/2+\varepsilon})$ time using a partition tree. The tree can be built in $O(n^{1+\varepsilon})$ time and uses $O(n)$ space.

The points inside the query range can be reported in $O(k)$ additional time, where k is the number of reported pts.

Can we do better?

Use cutting trees! (Chapter 16.3)
Any ideas? Just use \texttt{SELECTINHALFPLANE}!

Theorem:Given a set \(S \) of \(n \) pts in the plane, for any \(\varepsilon > 0 \), a triangular range-counting query can be answered in \(O(n^{1/2+\varepsilon}) \) time using a partition tree. The tree can be built in \(O(n^{1+\varepsilon}) \) time and uses \(O(n) \) space. The points inside the query range can be reported in \(O(k) \) additional time, where \(k \) is the number of reported pts.

Can we do better? Use cutting trees! (Chapter 16.3) Query time \(O(\log^3 n) \), prep. & storage \(O(n^{2+\varepsilon}) \).
Multi-Level Partition Trees

Idea: Store with each internal node not just a number,
Multi-Level Partition Trees

Idea: Store with each internal node not just a number, $|S(v)|$.
Multi-Level Partition Trees

Idea: Store with each internal node not just a number, but another data structure!
Multi-Level Partition Trees

Idea: Store with each internal node not just a number, but another data structure!

Task: Design a fast data structure for line segments that counts all segments intersecting a query line ℓ.
Multi-Level Partition Trees

Idea: Store with each internal node not just a number, but another data structure!

Task: Design a fast data structure for line segments that counts all segments intersecting a query line ℓ.

\[|S(v)| \]
Multi-Level Partition Trees

Idea: Store with each internal node not just a number, but another data structure!

Task: Design a fast data structure for line segments that counts all segments intersecting a query line ℓ.

Hint:
Multi-Level Partition Trees

Idea: Store with each internal node not just a number, but another data structure!

Task: Design a fast data structure for line segments that counts all segments intersecting a query line ℓ.

Hint:
Multi-Level Partition Trees

Idea: Store with each internal node not just a number, but another data structure!

Task: Design a fast data structure for line segments that counts all segments intersecting a query line ℓ.

Hint:

$$p_{\text{left}}(s)$$

$$s$$

$$p_{\text{right}}(s)$$
Multi-Level Partition Trees

Idea: Store with each internal node not just a number, but another data structure!

Task: Design a fast data structure for line segments that counts all segments intersecting a query line ℓ.

Hint:

\[\text{left}(s) \]

\[\text{right}(s) \]
Multi-Level Partition Trees

Idea: Store with each internal node not just a number, but another data structure!

Task: Design a fast data structure for line segments that counts all segments intersecting a query line ℓ.

Hint:
Multi-Level Partition Trees

Idea: Store with each internal node not just a number, but another data structure!

Task: Design a fast data structure for line segments that counts all segments intersecting a query line ℓ.

Hint:
Multi-Level Partition Trees

Idea: Store with each internal node not just a number, but another data structure!

Task: Design a fast data structure for line segments that counts all segments intersecting a query line ℓ.

Hint:

$\left| S(v) \right|$
Multi-Level Partition Trees

Idea: Store with each internal node not just a number, but another data structure!

Task: Design a fast data structure for line segments that counts all segments intersecting a query line ℓ.

$s'(p_{left}(s'))$

$p_{right}(s')$

$S(v)$
Multi-Level Partition Trees

Idea: Store with each internal node not just a number, but another data structure!

Task: Design a fast data structure for line segments that counts all segments intersecting a query line ℓ.

$p_{\text{left}}(s')$ $p_{\text{right}}(s')$
Multi-Level Partition Trees

Idea: Store with each internal node not just a number, but another data structure!

Task: Design a fast data structure for line segments that counts all segments intersecting a query line ℓ.

![Diagram showing line segments and partitioning lines $p_{left}(s')$ and $p_{right}(s')$.]
Multi-Level Partition Trees

Idea: Store with each internal node not just a number, but another data structure!

Task: Design a fast data structure for line segments that counts all segments intersecting a query line ℓ.
Multi-Level Partition Trees

Idea: Store with each internal node not just a number, but another data structure!

Task: Design a fast data structure for line segments that counts all segments intersecting a query line \(\ell \).
Multi-Level Partition Trees

Idea: Store with each internal node not just a number, but another data structure!

Task: Design a fast data structure for line segments that counts all segments intersecting a query line ℓ.

\[p_{\text{left}}(s') \]

\[p_{\text{right}}(s') \]
Multi-Level Partition Trees

Idea: Store with each internal node not just a number, but another data structure!

Task: Design a fast data structure for line segments that counts all segments intersecting a query line ℓ.

\[|S(v)| \]
Multi-Level Partition Trees

Idea: Store with each internal node not just a number, but another data structure!

Task: Design a fast data structure for line segments that counts all segments intersecting a query line ℓ.

$|S(v)|$
Query Algorithm

SelectIntSegments(line \(\ell \), two-level partition tree \(\mathcal{T} \) for \(S \))

\[
N \leftarrow \emptyset \\
\text{if } \mathcal{T} = \{\mu\} \text{ then} \\
\quad \text{if segment stored in } \mu \text{ intersects } \ell \text{ then } N \leftarrow \{\mu\} \\
\text{else} \\
\quad \text{foreach child } \nu \text{ of } \mathcal{T}'s \text{ root do} \\
\quad \quad \text{if } t(\nu) \subset \ell^+ \text{ then} \\
\quad \quad \quad N \leftarrow N \cup \text{SelectInHalfplane}(\ell^-, \mathcal{T}_{\nu}^{\text{assoc}}) \\
\quad \quad \text{else} \\
\quad \quad \quad \text{if } t(\nu) \cap \ell \neq \emptyset \text{ then} \\
\quad \quad \quad \quad N \leftarrow N \cup \text{SelectIntSegments}(\ell, \mathcal{T}_{\nu}) \\
\text{return } N
\]

- first-level tree stores \(P_{\text{right}}(S) \)
- second-level trees store subsets of \(P_{\text{left}}(S) \)
Query Algorithm

SelectIntSegments(line ℓ, two-level partition tree T for S)

N ← ∅
if T = {µ} then
 if segment stored in µ intersects ℓ then
 N ← {µ}
else
 foreach child ν of T’s root do
 if t(ν) ⊂ ℓ⁺ then
 N ← N ∪ SelectInHalfplane(ℓ⁻, T_assoc
 else
 if t(ν) ∩ ℓ ̸= ∅ then
 N ← N ∪ SelectIntSegments(ℓ, T_ν)

return N

For S' ⊆ S, let
\[P_{\text{right}}(S') = \{ p_{\text{right}}(s) \mid s \in S' \} \]
left
\[P_{\text{left}}(S) = \{ p_{\text{left}}(s) \mid s \in S \} \]

stores \(P_{\text{left}}(S_{\text{seg}}(ν)) \), where
\[S_{\text{seg}}(ν) = \{ s \mid p_{\text{right}}(s) \in S(ν) \} \]

For \(S' \subseteq S \), let
\[P_{\text{right}}(S') = \{ p_{\text{right}}(s) \mid s \in S' \} \]
left
\[P_{\text{left}}(S) = \{ p_{\text{left}}(s) \mid s \in S \} \]

stores \(P_{\text{left}}(S_{\text{seg}}(ν)) \), where
\[S_{\text{seg}}(ν) = \{ s \mid p_{\text{right}}(s) \in S(ν) \} \]
Query Algorithm

SelectIntSegments(line ℓ, two-level partition tree T for S)

$$N \leftarrow \emptyset$$

if $T = \{\mu\}$ then
 if segment stored in μ intersects ℓ then
 $N \leftarrow \{\mu\}$
 else
 foreach child ν of T’s root do
 if $t(\nu) \subset \ell^+$ then
 $N \leftarrow N \cup \text{SelectInHalfplane}(\ell^-, T^{\text{assoc}}_\nu)$
 else
 if $t(\nu) \cap \ell \neq \emptyset$ then
 $N \leftarrow N \cup \text{SelectIntSegments}(\ell, T_\nu)$

return N

For $S' \subseteq S$, let $P_{\leftarrow}(S') = \{p_{\leftarrow}(s) \mid s \in S'\}$

stores $P_{\leftarrow}(S_{\text{seg}}(\nu))$, where $S_{\text{seg}}(\nu) = \{s \mid p_{\right}(s) \in S(\nu)\}$
Query Algorithm

SelectIntSegments(line ℓ, two-level partition tree \mathcal{T} for S)

$$N \leftarrow \emptyset$$

if $\mathcal{T} = \{ \mu \}$ then

if segment stored in μ intersects ℓ then

$N \leftarrow \{ \mu \}$

else

foreach child ν of \mathcal{T}'s root do

if $t(\nu) \subset \ell^+$ then

$N \leftarrow N \cup \text{SelectInHalfplane}(\ell^-, \mathcal{T}\nu^{\text{assoc}})$

else

if $t(\nu) \cap \ell \neq \emptyset$ then

$N \leftarrow N \cup \text{SelectIntSegments}(\ell, \mathcal{T}\nu)$

return N

For $S' \subseteq S$, let

$P_{\text{right}}(S') = \{ p_{\text{right}}(s) \mid s \in S' \}$

P_{left} stores $P_{\text{right}}(S)$

P_{left} stores subsets of $P_{\text{left}}(S)$

stores $P_{\text{left}}(S_{\text{seg}}(\nu))$, where

$S_{\text{seg}}(\nu) = \{ s \mid p_{\text{right}}(s) \in S(\nu) \}$

$\bigcup_{\nu \in N} S(\nu) = \{ s \in S \mid p_{\text{right}}(s) \text{ above } \ell \text{ and } p_{\text{left}}(s) \text{ below } \ell \}$.
Query Algorithm

SelectIntSegments(line ℓ, two-level partition tree T for S)

$N \leftarrow \emptyset$

if $T = \{\mu\}$ then

if segment stored in μ intersects ℓ then $N \leftarrow \{\mu\}$

else

foreach child ν of T's root do

if $t(\nu) \subset \ell^+$ then

$N \leftarrow N \cup \text{SelectInHalfplane}(\ell^-, T\nu\text{assoc})$

else

if $t(\nu) \cap \ell \neq \emptyset$ then

$N \leftarrow N \cup \text{SelectIntSegments}(\ell, T\nu)$

return N

\[\bigcup_{\nu \in N} S(\nu) = \{s \in S \mid p_{\text{right}}(s) \text{ above } \ell \text{ and } p_{\text{left}}(s) \text{ below } \ell\}. \]
Query Algorithm

SelectIntSegments(line ℓ, two-level partition tree T for S)

\[N \leftarrow \emptyset \]

if $T = \{ \mu \}$ then

\[\text{if segment stored in } \mu \text{ intersects } \ell \text{ then } N \leftarrow \{ \mu \} \]

else

\[
\text{foreach child } \nu \text{ of } T \text{'s root do}
\]

\[\text{if } t(\nu) \subset \ell^+ \text{ then} \]

\[N \leftarrow N \cup \text{SelectInHalfplane}(\ell^-, T_{\nu}^{\text{assoc}}) \]

else

\[\text{if } t(\nu) \cap \ell \neq \emptyset \text{ then} \]

\[N \leftarrow N \cup \text{SelectIntSegments}(\ell, T_{\nu}) \]

return N

\[\text{For } S' \subseteq S, \text{ let} \]
\[P_{\text{right}}(S') = \{ p_{\text{right}}(s) \mid s \in S' \}\]
\[P_{\text{left}}(S') = \{ p_{\text{left}}(s) \mid s \in S' \} \]

stores $P_{\text{left}}(S_{\text{seg}}(\nu))$, where
\[S_{\text{seg}}(\nu) = \{ s \mid p_{\text{right}}(s) \in S(\nu) \} \]

stores $P_{\text{right}}(S_{\text{seg}}(\nu))$, where
\[S_{\text{seg}}(\nu) = \{ s \mid p_{\text{right}}(s) \in S(\nu) \} \]

\[\bigcup_{\nu \in N} S(\nu) = \{ s \in S \mid p_{\text{right}}(s) \text{ above } \ell \text{ and } p_{\text{left}}(s) \text{ below } \ell \} \]
Query Algorithm

SelectIntSegments(line \(\ell \), two-level partition tree \(\mathcal{T} \) for \(S \))

\[
N \leftarrow \emptyset \\
\text{if } \mathcal{T} = \{ \mu \} \text{ then} \\
\quad \text{if segment stored in } \mu \text{ intersects } \ell \text{ then } N \leftarrow \{ \mu \} \\
\text{else} \\
\quad \text{foreach child } \nu \text{ of } \mathcal{T}'s \text{ root do} \\
\quad \quad \text{if } t(\nu) \subset \ell^+ \text{ then} \\
\quad \quad \quad \ N \leftarrow N \cup \text{SelectInHalfplane}(\ell^-, \mathcal{T}_\nu^{\text{assoc}}) \\
\quad \quad \text{else} \\
\quad \quad \quad \text{if } t(\nu) \cap \ell \neq \emptyset \text{ then} \\
\quad \quad \quad \quad \ N \leftarrow N \cup \text{SelectIntSegments}(\ell, \mathcal{T}_\nu) \\
\text{return } N
\]

\[
\bigcup_{\nu \in N} S(\nu) = \{ s \in S \mid p_{\text{right}}(s) \text{ above } \ell \text{ and } p_{\text{left}}(s) \text{ below } \ell \}\]
Results

Lemma: A 2-level partition tree for line-intersection queries among a set of n segments uses $O(n \log n)$ storage.
Results

Lemma: A 2-level partition tree for line-intersection queries among a set of n segments uses $O(n \log n)$ storage.

Lemma: Let S be a set of n segments in the plane. For any $\varepsilon > 0$, there is a 2-level partition tree T for S s.t.
Results

Lemma: A 2-level partition tree for line-intersection queries among a set of \(n \) segments uses \(O(n \log n) \) storage.

Lemma: Let \(S \) be a set of \(n \) segments in the plane. For any \(\varepsilon > 0 \), there is a 2-level partition tree \(T \) for \(S \) s.t.

- given a query line \(\ell \), we can select \(O(n^{1/2+\varepsilon}) \)
 nodes from \(T \) whose canonical subsets represent the segments intersected by \(\ell \).
Results

Lemma: A 2-level partition tree for line-intersection queries among a set of \(n \) segments uses \(O(n \log n) \) storage.

Lemma: Let \(S \) be a set of \(n \) segments in the plane. For any \(\varepsilon > 0 \), there is a 2-level partition tree \(T \) for \(S \) s.t.

\[O(n^{1/2+\varepsilon}) \]

– given a query line \(\ell \), we can select \(O(n^{1/2+\varepsilon}) \) nodes from \(T \) whose canonical subsets represent the segments intersected by \(\ell \).

– The selection takes \(O(n^{1/2+\varepsilon}) \) time.
Results

Lemma: A 2-level partition tree for line-intersection queries among a set of \(n \) segments uses \(O(n \log n) \) storage.

Lemma: Let \(S \) be a set of \(n \) segments in the plane. For any \(\varepsilon > 0 \), there is a 2-level partition tree \(T \) for \(S \) s.t.

- given a query line \(\ell \), we can select \(O(n^{1/2+\varepsilon}) \) nodes from \(T \) whose canonical subsets represent the segments intersected by \(\ell \).
- The selection takes \(O(n^{1/2+\varepsilon}) \) time.

Corollary: Let \(S \) be a set of \(n \) segments in the plane. After \(O(...) \)-time preprocessing, we can count the number of segments in \(S \) intersected by a query line in \(O(n^{1/2+\varepsilon}) \) time.