Computational Geometry

Height Interpolation
Lecture #8

[Comp. Geom A&A : Chapter 9]
Height Interpolation
Height Interpolation

\[p = (x_p, y_p, z_p) \]
Height Interpolation

\[p = (x_p, y_p, z_p) \]

\[\pi(p) = (x_p, y_p, 0) \]
Height Interpolation

\[p = (x_p, y_p, z_p) \]

\[\pi(p) = (x_p, y_p, 0) \]
Height Interpolation

\[p = (x_p, y_p, z_p) \]

\[\pi(p) = (x_p, y_p, 0) \]
Triangulation of Planar Point Sets

Definition: Given $P \subseteq \mathbb{R}^2$, a *triangulation* of P is a maximal planar subdivision with vtx set P, that is, no edge can be added without crossing.
Triangulation of Planar Point Sets

Definition: Given $P \subset \mathbb{R}^2$, a *triangulation* of P is a maximal planar subdivision with vtx set P, that is, no edge can be added without crossing.

Observe:
Triangulation of Planar Point Sets

Definition: Given \(P \subseteq \mathbb{R}^2 \), a *triangulation* of \(P \) is a maximal planar subdivision with vtx set \(P \), that is, no edge can be added without crossing.

Observe: • all inner faces are triangles
Triangulation of Planar Point Sets

Definition: Given $P \subset \mathbb{R}^2$, a *triangulation of P* is a maximal planar subdivision with vtx set P, that is, no edge can be added without crossing.

Observe: • all inner faces are triangles
Definition: Given $P \subset \mathbb{R}^2$, a *triangulation* of P is a maximal planar subdivision with vtx set P, that is, no edge can be added without crossing.

Observe:
- all inner faces are triangles
- outer face is complement of a convex polygon
Triangulation of Planar Point Sets

Definition: Given $P \subset \mathbb{R}^2$, a *triangulation* of P is a maximal planar subdivision with vtx set P, that is, no edge can be added without crossing.

Observe:
- all inner faces are triangles
- outer face is complement of a convex polygon
Triangulation of Planar Point Sets

Definition: Given $P \subset \mathbb{R}^2$, a *triangulation* of P is a maximal planar subdivision with vtx set P, that is, no edge can be added without crossing.

Observe:
- all inner faces are triangles
- outer face is complement of a convex polygon

Theorem: Let $P \subset \mathbb{R}^2$ be a set of n sites, not all collinear, and let h be the number of sites on $\partial \text{CH}(P)$.
Triangulation of Planar Point Sets

Definition: Given $P \subset \mathbb{R}^2$, a *triangulation* of P is a maximal planar subdivision with vtx set P, that is, no edge can be added without crossing.

Observe:
- all inner faces are triangles
- outer face is complement of a convex polygon

Theorem: Let $P \subset \mathbb{R}^2$ be a set of n sites, not all collinear, and let h be the number of sites on $\partial \text{CH}(P)$. Then any triangulation of P has $t(n, h)$ triangles and $e(n, h)$ edges.
Triangulation of Planar Point Sets

Definition: Given $P \subset \mathbb{R}^2$, a *triangulation* of P is a maximal planar subdivision with vtx set P, that is, no edge can be added without crossing.

Observe:
- all inner faces are triangles
- outer face is complement of a convex polygon

Theorem: Let $P \subset \mathbb{R}^2$ be a set of n sites, not all collinear, and let h be the number of sites on $\partial \text{CH}(P)$. Then any triangulation of P has $t(n, h)$ triangles and $e(n, h)$ edges. **Task:** Compute t and e!
Back to Height Interpolation

height = 985

height = 23
Back to Height Interpolation

Intuition: Avoid “skinny” triangles!
Back to Height Interpolation

Intuition: Avoid “skinny” triangles!
In other words: avoid small angles!
Angle-Optimal Triangulations

Definition: Given a set $P \subset \mathbb{R}^2$
Angle-Optimal Triangulations

Definition: Given a set \(P \subset \mathbb{R}^2 \) and a triangulation \(\mathcal{T} \) of \(P \),
Angle-Optimal Triangulations

Definition: Given a set $P \subseteq \mathbb{R}^2$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T}.
Definition: Given a set $P \subseteq \mathbb{R}^2$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m})$ be the angle vector of \mathcal{T}.
Angle-Optimal Triangulations

Definition: Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m})$ be the *angle vector* of \mathcal{T}, where $\alpha_1 \leq \cdots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T}.

![Triangulation Diagram]
Angle-Optimal Triangulations

Definition: Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m})$ be the *angle vector* of \mathcal{T}, where $\alpha_1 \leq \cdots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T}.

\[\mathcal{T} \quad A(\mathcal{T}) = (60^\circ, 60^\circ, 60^\circ, 60^\circ, 60^\circ, 60^\circ) \]
Angle-Optimal Triangulations

Definition: Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m})$ be the angle vector of \mathcal{T}, where $\alpha_1 \leq \cdots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T}.

We say $A(\mathcal{T}) > A(\mathcal{T}')$.

![Diagram](image-url)
Angle-Optimal Triangulations

Definition: Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m})$ be the *angle vector* of \mathcal{T}, where $\alpha_1 \leq \cdots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T}.

We say $A(\mathcal{T}) > A(\mathcal{T}')$.
Angle-Optimal Triangulations

Definition: Given a set \(P \subseteq \mathbb{R}^2 \) and a triangulation \(\mathcal{T} \) of \(P \), let \(m \) be the number of triangles in \(\mathcal{T} \) and let \(A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m}) \) be the angle vector of \(\mathcal{T} \), where \(\alpha_1 \leq \cdots \leq \alpha_{3m} \) are the angles in the triangles of \(\mathcal{T} \).

We say \(A(\mathcal{T}) > A(\mathcal{T}') \)

\[A(\mathcal{T}) = (60^\circ, 60^\circ, 60^\circ, 60^\circ, 60^\circ, 60^\circ) \]

\[A(\mathcal{T}') = (30^\circ, 30^\circ, 30^\circ, 30^\circ, 120^\circ, 120^\circ) \]
Angle-Optimal Triangulations

Definition: Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m})$ be the angle vector of \mathcal{T}, where $\alpha_1 \leq \cdots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T}.

We say $A(\mathcal{T}) > A(\mathcal{T}')$ if $\exists i \in \{1, \ldots, 3m\}$:

$A(\mathcal{T}) = (60^\circ, 60^\circ, 60^\circ, 60^\circ, 60^\circ, 60^\circ)$

$A(\mathcal{T}') = (30^\circ, 30^\circ, 30^\circ, 30^\circ, 120^\circ, 120^\circ)$
Angle-Optimal Triangulations

Definition: Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m})$ be the *angle vector* of \mathcal{T}, where $\alpha_1 \leq \cdots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T}.

We say $A(\mathcal{T}) > A(\mathcal{T}')$ if $\exists i \in \{1, \ldots, 3m\}$: $\alpha_i > \alpha'_i$.

![Diagram](image.png)

$A(\mathcal{T}) = (60^\circ, 60^\circ, 60^\circ, 60^\circ, 60^\circ, 60^\circ)$

$A(\mathcal{T}') = (30^\circ, 30^\circ, 30^\circ, 30^\circ, 120^\circ, 120^\circ)$
Angle-Optimal Triangulations

Definition: Given a set \(P \subset \mathbb{R}^2 \) and a triangulation \(\mathcal{T} \) of \(P \), let \(m \) be the number of triangles in \(\mathcal{T} \) and let \(A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m}) \) be the angle vector of \(\mathcal{T} \), where \(\alpha_1 \leq \cdots \leq \alpha_{3m} \) are the angles in the triangles of \(\mathcal{T} \).

We say \(A(\mathcal{T}) > A(\mathcal{T}') \) if \(\exists i \in \{1, \ldots, 3m\} : \alpha_i > \alpha_i' \) and

\[A(\mathcal{T}) = (60^\circ, 60^\circ, 60^\circ, 60^\circ, 60^\circ, 60^\circ) \]

\[A(\mathcal{T}') = (30^\circ, 30^\circ, 30^\circ, 30^\circ, 120^\circ, 120^\circ) \]
Angle-Optimal Triangulations

Definition: Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m})$ be the angle vector of \mathcal{T}, where $\alpha_1 \leq \cdots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T}.

We say $A(\mathcal{T}) > A(\mathcal{T}')$ if $\exists i \in \{1, \ldots, 3m\}$: $\alpha_i > \alpha'_i$ and $\forall j < i : \alpha_j = \alpha'_j$.

\[
A(\mathcal{T}) = (60^\circ, 60^\circ, 60^\circ, 60^\circ, 60^\circ, 60^\circ) \\
A(\mathcal{T}') = (30^\circ, 30^\circ, 30^\circ, 30^\circ, 120^\circ, 120^\circ)
\]
Angle-Optimal Triangulations

Definition: Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m})$ be the **angle vector** of \mathcal{T}, where $\alpha_1 \leq \cdots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T}.

We say $A(\mathcal{T}) > A(\mathcal{T}')$ if $\exists i \in \{1, \ldots, 3m\}: \alpha_i > \alpha'_i$ and $\forall j < i : \alpha_j = \alpha'_j$.

\mathcal{T} is **angle-optimal** if $A(\mathcal{T}) = (60^\circ, 60^\circ, 60^\circ, 60^\circ, 60^\circ, 60^\circ)$, whereas $A(\mathcal{T}') = (30^\circ, 30^\circ, 30^\circ, 30^\circ, 120^\circ, 120^\circ)$.
Angle-Optimal Triangulations

Definition: Given a set $P \subset \mathbb{R}^2$ and a triangulation \mathcal{T} of P, let m be the number of triangles in \mathcal{T} and let $A(\mathcal{T}) = (\alpha_1, \ldots, \alpha_{3m})$ be the *angle vector* of \mathcal{T}, where $\alpha_1 \leq \cdots \leq \alpha_{3m}$ are the angles in the triangles of \mathcal{T}.

We say $A(\mathcal{T}) > A(\mathcal{T}')$ if $\exists i \in \{1, \ldots, 3m\}$: $\alpha_i > \alpha_i'$ and $\forall j < i$: $\alpha_j = \alpha_j'$.

\mathcal{T} is *angle-optimal* if $A(\mathcal{T}) \geq A(\mathcal{T}')$ for all triangulations \mathcal{T}' of P.

$A(\mathcal{T}) = (60^\circ, 60^\circ, 60^\circ, 60^\circ, 60^\circ, 60^\circ)$

$A(\mathcal{T}') = (30^\circ, 30^\circ, 30^\circ, 30^\circ, 120^\circ, 120^\circ)$
Edge Flips

Definition: A triangulation \mathcal{T} a triangulation. An edge e of \mathcal{T} is **illegal** if the minimum angle in the two triangles adjacent to e increases when flipping.
Edge Flips

Definition: \(\mathcal{T} \) a triangulation. An edge \(e \) of \(\mathcal{T} \) is *illegal* if the minimum angle in the two triangles adjacent to \(e \) increases when flipping.

\[\min_i \alpha_i = 30^\circ \]
Edge Flips

Definition: A triangulation \mathcal{T} is a triangulation. An edge e of \mathcal{T} is illegal if the minimum angle in the two triangles adjacent to e increases when flipping.

$\min_i \alpha_i = 30^\circ$

[Diagram showing a flip in a triangulation with $\min_i \alpha_i = 30^\circ$]
Edge Flips

Definition: \(\mathcal{T} \) a triangulation. An edge \(e \) of \(\mathcal{T} \) is *illegal* if the minimum angle in the two triangles adjacent to \(e \) increases when flipping.

\[
\min_i \alpha_i = 30^\circ
\]
Edge Flips

Definition: \(\mathcal{T} \) a triangulation. An edge \(e \) of \(\mathcal{T} \) is **illegal** if the minimum angle in the two triangles adjacent to \(e \) increases when flipping.

\[
\min_i \alpha_i = 60^\circ
\]

\[
\min_i \alpha_i = 30^\circ
\]
Edge Flips

Definition: A triangulation \mathcal{T} is a triangulation. An edge e of \mathcal{T} is illegal if the minimum angle in the two triangles adjacent to e increases when flipping.

Observe: Let e be an illegal edge of \mathcal{T}, and $\mathcal{T}' = \text{flip}(\mathcal{T}, e)$.

\[
\min_i \alpha_i = 60^\circ \quad \text{and} \quad \min_i \alpha_i = 30^\circ
\]
Edge Flips

Definition: \(\mathcal{T} \) a triangulation. An edge \(e \) of \(\mathcal{T} \) is **illegal** if the minimum angle in the two triangles adjacent to \(e \) increases when flipping.

Observe: Let \(e \) be an illegal edge of \(\mathcal{T} \), and \(\mathcal{T}' = \text{flip}(\mathcal{T}, e) \).

\[
\min_i \alpha_i = 60^\circ \quad \text{and} \quad \min_i \alpha_i = 30^\circ
\]
Edge Flips

Definition: A triangulation \mathcal{T} a triangulation. An edge e of \mathcal{T} is **illegal** if the minimum angle in the two triangles adjacent to e increases when flipping.

Observe: Let e be an illegal edge of \mathcal{T}, and $\mathcal{T}' = \text{flip}(\mathcal{T}, e)$. Then $A(\mathcal{T}') > A(\mathcal{T})$.

$$\min_i \alpha_i = \alpha_i = 60^\circ$$

\mathcal{T}'

flip

\mathcal{T}

$$\min_i \alpha_i = \alpha_i = 30^\circ$$
This is all Greek to me...

Theorem:
This is all Greek to me...

Theorem: (Thales)
The diameter of a circle always subtends a right angle to any point on the circle.
This is all Greek to me...

Theorem: (Thales)
The diameter of a circle always subtends a right angle to any point on the circle.
This is all Greek to me...

Theorem: (Thales)
The diameter of a circle always subtends a right angle to any point on the circle.
This is all Greek to me...

Theorem: (Thales)
The diameter of a circle always subtends a right angle to any point on the circle.
This is all Greek to me...

Theorem: (Thales)

The diameter of a circle always subtends a right angle to any point on the circle.
This is all Greek to me...

Theorem: (Thales)

The diameter of a circle always subtends a right angle to any point on the circle.
This is all Greek to me...

Theorem: (Thales)

The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales++)
This is all Greek to me...

Theorem: (Thales)
The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales++)

\[D\]
This is all Greek to me...

Theorem: (Thales)
The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales++)
This is all Greek to me...

Theorem: (Thales)
The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales++)

\[\{a, b\} := \ell \cap \partial D \ (a \neq b) \]
This is all Greek to me...

Theorem: (Thales)

The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales++)

\[\{a, b\} := \ell \cap \partial D \ (a \neq b) \]
This is all Greek to me...

Theorem: (Thales)
The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales++)

\[
\{a, b\} := \ell \cap \partial D \quad (a \neq b)
\]

\[p, q \in \partial D\]
This is all Greek to me...

Theorem: (Thales)
The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales++)

\[
\{a, b\} := \ell \cap \partial D \quad (a \neq b)
\]

\[
p, q \in \partial D
\]
This is all Greek to me...

Theorem: (Thales)
The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales++)
\[\{a, b\} := \ell \cap \partial D \quad (a \neq b) \]
\[p, q \in \partial D \]
\[\angle apb = \angle aqb \]
This is all Greek to me...

Theorem: (Thales)
The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales++)

$\{a, b\} := \ell \cap \partial D \ (a \neq b)$

$p, q \in \partial D$

$r \in \text{int}(D)$

$\angle apb = \angle aqb$
This is all Greek to me...

Theorem: (Thales)
The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales++)

\[\{a, b\} := \ell \cap \partial D \ (a \neq b) \]

\[p, q \in \partial D \]

\[r \in \text{int}(D) \]

\[\angle apb = \angle aqb < \angle arb \]
This is all Greek to me...

Theorem: (Thales)
The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales++)

\[
\{a, b\} := \ell \cap \partial D \ (a \neq b)
\]
\[
p, q \in \partial D
\]
\[
r \in \text{int}(D)
\]
\[
s \notin D
\]

\[\angle apb = \angle aqb < \angle arb\]
This is all Greek to me...

Theorem: (Thales)

The diameter of a circle always subtends a right angle to any point on the circle.

Theorem: (Thales++)

\[\{a, b\} := \ell \cap \partial D \quad (a \neq b) \]

\[p, q \in \partial D \]

\[r \in \text{int}(D) \]

\[s \notin D \]

\[\angle asb < \angle apb = \angle aqb < \angle arb \]
Legal Triangulations

Lemma: Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

![Diagram showing a triangle Δprq and a point s inside the triangle, with p, q, and r on the boundary ∂D.]
Lemma: Let $\Delta prq, \Delta pqs \in T$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$, then either pq or rs is illegal.
Legal Triangulations

Lemma: Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$, then either pq or rs is illegal.

Proof:
Legal Triangulations

Lemma: Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$, then either pq or rs is illegal.

Proof: Show: \(\forall \alpha' \in \mathcal{T}' \ \exists \alpha \in \mathcal{T} \text{ s.t. } \alpha < \alpha' \).
Legal Triangulations

Lemma: Let $\Delta prq, \Delta pqrs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \not\in \partial D$, then either pq or rs is illegal.

Proof: Show: $\forall \alpha' \in \mathcal{T}' \exists \alpha \in \mathcal{T}$ s.t. $\alpha < \alpha'$. ("\(\Rightarrow\)"")
Legal Triangulations

Lemma: Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$, then either pq or rs is illegal.

Proof: Show: $\forall \alpha' \in \mathcal{T}' \exists \alpha \in \mathcal{T}$ s.t. $\alpha < \alpha'$.

("\Rightarrow")
Legal Triangulations

Lemma: Let $\Delta prq, \Delta pqs \in T$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$, then either pq or rs is illegal.

Proof: Show: $\forall \alpha' \in T' \exists \alpha \in T$ s.t. $\alpha < \alpha'$.

(“\Rightarrow”)
Legal Triangulations

Lemma: Let $\triangle prq, \triangle pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$, then either pq or rs is illegal.

Proof: Show: $\forall \alpha' \in \mathcal{T}' \exists \alpha \in \mathcal{T}$ s.t. $\alpha < \alpha'$.
Legal Triangulations

Lemma: Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \not\in \partial D$, then either pq or rs is illegal.

Proof: Show: $\forall \alpha' \in \mathcal{T}' \exists \alpha \in \mathcal{T}$ s.t. $\alpha < \alpha'$.

(“⇒”)
Legal Triangulations

Lemma: Let $\triangle prq, \triangle pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \not\in \partial D$, then either pq or rs is illegal.

Proof: Show: $\forall \alpha' \in \mathcal{T}' \exists \alpha \in \mathcal{T}$ s.t. $\alpha < \alpha'$. ("\Rightarrow"")

Use Thales++ w.r.t. qs'.
Legal Triangulations

Lemma: Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$, then either pq or rs is illegal.

Proof: Show: $\forall \alpha' \in \mathcal{T}' \exists \alpha \in \mathcal{T}$ s.t. $\alpha < \alpha'$.

("⇒") Use Thales++ w.r.t. qs'.
Legal Triangulations

Lemma: Let $\triangle prq, \triangle pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \not\in \partial D$, then either pq or rs is illegal.

Proof:

Show: $\forall \alpha' \in \mathcal{T}' \exists \alpha \in \mathcal{T}$ s.t. $\alpha < \alpha'$.

Use Thales++ w.r.t. qs'.
Legal Triangulations

Lemma: Let $\triangle prq, \triangle pq{s} \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$, then either pq or rs is illegal.

Proof:

Show: $\forall \alpha' \in \mathcal{T}' \exists \alpha \in \mathcal{T}$ s.t. $\alpha < \alpha'$.

\(\Rightarrow\) Use Thales++ w.r.t. qs'.

\(\square\)
Legal Triangulations

Lemma: Let \(\Delta prq, \Delta pq s \in \mathcal{T} \) and \(p, q, r \in \partial D \). Then edge \(pq \) is illegal iff \(s \in \text{int}(D) \).

If \(p, q, r, s \) in convex position and \(s \notin \partial D \), then either \(pq \) or \(rs \) is illegal.

Proof:

Show: \(\forall \alpha' \in \mathcal{T}' \exists \alpha \in \mathcal{T} \) s.t. \(\alpha < \alpha'\). ("\(\Rightarrow \" ")

Use Thales++ w.r.t. \(qs' \). □

Note: Criterion symmetric in \(r \) and \(s \)
Legal Triangulations

Lemma: Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \not\in \partial D$, then either pq or rs is illegal.

Proof: Show: $\forall \alpha' \in \mathcal{T}' \exists \alpha \in \mathcal{T}$ s.t. $\alpha < \alpha'$.

Use Thales++ w.r.t. qs'.

Note: Criterion symmetric in r and s.

\Rightarrow if $s \in \partial D$, both pq and rs legal.
Legal Triangulations

Lemma: Let \(\Delta prq, \Delta pqs \in \mathcal{T} \) and \(p, q, r \in \partial D \). Then edge \(pq \) is illegal iff \(s \in \text{int}(D) \).

If \(p, q, r, s \) in convex position and \(s \notin \partial D \), then either \(pq \) or \(rs \) is illegal.

Proof: Show: \(\forall \alpha' \in \mathcal{T}' \exists \alpha \in \mathcal{T} \text{ s.t. } \alpha < \alpha' \). (\(\Rightarrow \)) Use Thales++ w.r.t. \(qs' \).

Note: Criterion symmetric in \(r \) and \(s \)
\(\Rightarrow \) if \(s \in \partial D \), both \(pq \) and \(rs \) legal.

Definition: A triangulation is legal if it has no illegal edge.
Legal Triangulations

Lemma: Let $\Delta prq, \Delta pqs \in T$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$, then either pq or rs is illegal.

Proof: Show: $\forall \alpha' \in T' \exists \alpha \in T$ s.t. $\alpha < \alpha'$.
("⇒") Use Thales++ w.r.t. qs'.

Note: Criterion symmetric in r and s.

⇒ if $s \in \partial D$, both pq and rs legal.

Definition: A triangulation is *legal* if it has no illegal edge.

Existence?
Legal Triangulations

Lemma: Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$, then either pq or rs is illegal.

Proof: Show: $\forall \alpha' \in \mathcal{T}' \exists \alpha \in \mathcal{T} \text{ s.t. } \alpha < \alpha'$. ("⇒") Use Thales++ w.r.t. qs'.

Note: Criterion symmetric in r and s if $s \in \partial D$, both pq and rs legal.

Definition: A triangulation is *legal* if it has no illegal edge.

Existence? Algorithm: Let \mathcal{T} be any triangulation of P. While \mathcal{T} has an illegal edge e, flip e. Return \mathcal{T}.
Legal Triangulations

Lemma: Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \not\in \partial D$, then either pq or rs is illegal.

Proof: Show: $\forall \alpha' \in T' \exists \alpha \in T$ s.t. $\alpha < \alpha'$.

("\Rightarrow"") Use Thales++ w.r.t. qs'. \(\square\)

Note: Criterion symmetric in r and s.

\Rightarrow if $s \in \partial D$, both pq and rs legal.

Definition: A triangulation is *legal* if it has no illegal edge.

Existence? Algorithm: Let \mathcal{T} be any triangulation of P. While \mathcal{T} has an illegal edge e, flip e. Return \mathcal{T}.
Legal Triangulations

Lemma: Let $\triangle prq, \triangle pqrs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \not\in \partial D$, then either pq or rs is illegal.

Proof: Show: $\forall \alpha' \in \mathcal{T'} \exists \alpha \in \mathcal{T}$ s.t. $\alpha < \alpha'$. ("\Rightarrow") Use Thales++ w.r.t. qs'.

Note: Criterion symmetric in r and s.

\Rightarrow if $s \in \partial D$, both pq and rs legal.

Definition: A triangulation is *legal* if it has no illegal edge.

Existence? Algorithm: Let \mathcal{T} be any triangulation of P. While \mathcal{T} has an illegal edge e, flip e. Return \mathcal{T}.

$A(\mathcal{T})$ goes up!
Legal Triangulations

Lemma: Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$, then either pq or rs is illegal.

Proof: Show: $\forall \alpha' \in \mathcal{T}' \exists \alpha \in \mathcal{T}$ s.t. $\alpha < \alpha'$.

("\Rightarrow") Use Thales++ w.r.t. qs'.

Note: Criterion symmetric in r and s

\Rightarrow if $s \in \partial D$, both pq and rs legal.

Definition: A triangulation is *legal* if it has no illegal edge.

Existence? Algorithm: Let \mathcal{T} be any triangulation of P. While \mathcal{T} has an illegal edge e, flip e. Return \mathcal{T}.

$A(\mathcal{T})$ goes up!
Legal Triangulations

Lemma: Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$, then either pq or rs is illegal.

Proof: Show: $\forall \alpha' \text{ in } \mathcal{T}' \exists \alpha \text{ in } \mathcal{T}$ s.t. $\alpha < \alpha'$.

("\Rightarrow"") Use Thales++ w.r.t. qs'.

Note: Criterion symmetric in r and s

\Rightarrow if $s \in \partial D$, both pq and rs legal.

Definition: A triangulation is legal if it has no illegal edge.

Existence? Algorithm: Let \mathcal{T} be any triangulation of P. While \mathcal{T} has an illegal edge e, flip e. Return \mathcal{T}.

$A(\mathcal{T})$ goes up! $\&$ $(\text{triangulations of } P) < \infty$
Legal Triangulations

Lemma: Let $\Delta prq, \Delta pqs \in \mathcal{T}$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \notin \partial D$, then either pq or rs is illegal.

Proof: Show: $\forall \alpha' \in \mathcal{T}' \exists \alpha \in \mathcal{T}$ s.t. $\alpha < \alpha'$.

("⇒") Use Thales++ w.r.t. qs'.

Note: Criterion symmetric in r and s.

\Rightarrow if $s \in \partial D$, both pq and rs legal.

Definition: A triangulation is legal if it has no illegal edge.

Existence? Algorithm: Let \mathcal{T} be any triangulation of P.

While \mathcal{T} has an illegal edge e, flip e. Return \mathcal{T}.

$\uparrow A(\mathcal{T})$ goes up! & $\#$(triangulations of P) $< \infty$
Legal Triangulations

Lemma: Let \(\Delta prq, \Delta pqs \in \mathcal{T} \) and \(p, q, r \in \partial D \). Then edge \(pq \) is illegal iff \(s \in \text{int}(D) \).

If \(p, q, r, s \) in convex position and \(s \notin \partial D \), then either \(pq \) or \(rs \) is illegal.

Proof: Show: \(\forall \alpha' \in \mathcal{T}' \exists \alpha \in \mathcal{T} \) s.t. \(\alpha < \alpha' \). ("\(\Rightarrow \)"") Use Thales++ w.r.t. \(qs' \).

Note: Criterion symmetric in \(r \) and \(s \)
\(\Rightarrow \) if \(s \in \partial D \), both \(pq \) and \(rs \) legal.

Definition: A triangulation is **legal** if it has no illegal edge.

Existence? Algorithm: Let \(\mathcal{T} \) be any triangulation of \(P \).
While \(\mathcal{T} \) has an illegal edge \(e \), flip \(e \). Return \(\mathcal{T} \).

\[A(\mathcal{T}) \text{ goes up!} \quad \& \quad \#(\text{triangulations of } P) < \infty \]
Legal Triangulations

Lemma: Let $\Delta prq, \Delta pqs \in T$ and $p, q, r \in \partial D$. Then edge pq is illegal iff $s \in \text{int}(D)$.

If p, q, r, s in convex position and $s \not\in \partial D$, then either pq or rs is illegal.

Proof: Show: $\forall \alpha' \in T' \exists \alpha \in T$ s.t. $\alpha < \alpha'$. ("\Rightarrow") Use Thales++ w.r.t. qs'.

Note: Criterion symmetric in r and s \[\Rightarrow \] if $s \in \partial D$, both pq and rs legal.

Definition: A triangulation is **legal** if it has no illegal edge.

Existence? Algorithm: Let T be any triangulation of P. While T has an illegal edge e, flip e. Return T.

$A(T)$ goes up! $\&$ $\#$(triangulations of $P) < \infty$
Legal vs. Angle-Optimal

Clearly... Every angle-optimal triangulation is legal.
Legal vs. Angle-Optimal

Clearly... Every angle-optimal triangulation is legal.

But is every legal triangulation angle-optimal??
Legal vs. Angle-Optimal

Clearly... Every angle-optimal triangulation is legal.

But is every legal triangulation angle-optimal??

Let’s see.
Legal vs. Angle-Optimal

Clearly... Every angle-optimal triangulation is legal.

But is every legal triangulation angle-optimal??

Let’s see.

To clarify things, we’ll introduce yet another type of triangulation...
Voronoi & Delaunay

Recall:

Given a set P of n points in the plane...

$\text{Vor}(P) = \text{subdivision of the plane into Voronoi cells, edges, and vertices}$

$\mathcal{V}(p) = \{x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\}\}$

Voronoi cell of $p \in P$
Voronoi & Delaunay

Recall: Given a set P of n points in the plane... $\text{Vor}(P) =$ subdivision of the plane into Voronoi cells, edges, and vertices

$\mathcal{V}(p) = \{ x \in \mathbb{R}^2 : \|xp\| < \|xq\| \text{ for all } q \in P \setminus \{p\} \}$

Voronoi cell of $p \in P$

Definition: The graph $G = (P, E)$ with

$\{p, q\} \in E \iff \mathcal{V}(p)$ and $\mathcal{V}(q)$ share an edge

is the *dual graph* of $\text{Vor}(P)$
Recall: Given a set \(P \) of \(n \) points in the plane...
\[\text{Vor}(P) = \text{subdivision of the plane into Voronoi cells, edges, and vertices} \]
\[\mathcal{V}(p) = \{ x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\} \} \]
Voronoi cell of \(p \in P \)

Definition: The graph \(\mathcal{G} = (P, E) \) with
\[\{p, q\} \in E \iff \mathcal{V}(p) \text{ and } \mathcal{V}(q) \text{ share an edge} \]
is the dual graph of \(\text{Vor}(P) \)

Definition: The Delaunay graph \(\mathcal{DG}(P) \) is the straight-line drawing of \(\mathcal{G} \).
From Voronoi to Delaunay

\[P \subset \mathbb{R}^2 \]
From Voronoi to Delaunay

\[P \subset \mathbb{R}^2 \]
From Voronoi to Delaunay

\[P \subset \mathbb{R}^2 \]
From Voronoi to Delaunay

\[P \subset \mathbb{R}^2 \]
From Voronoi to Delaunay

\[P \subseteq \mathbb{R}^2 \]

Georgy Feodosevich Voronoy
(1868–1908 Zhuravki, now Ukraine)
From Voronoi to Delaunay

Georgy Feodosevich Voronoy
(1868–1908 Zhuravki, now Ukraine)

\[P \subset \mathbb{R}^2 \]

\[\text{Vor}(P) \]

\[\mathcal{D}G(P) \]
From Voronoi to Delaunay

\[P \subset \mathbb{R}^2 \]

Georgy Feodosevich Voronoy (1868–1908 Zhuravki, now Ukraine)

Boris Nikolaevich Delone (St. Petersburg 1890–1980 Moscow)

DG(P)

Vor(P)
Planarity

Theorem. \(P \subset \mathbb{R}^2 \) finite \(\Rightarrow \) \(\mathcal{DG}(P) \) plane.
Planarity

Theorem. $P \subset \mathbb{R}^2$ finite $\Rightarrow DG(P)$ plane.

Proof. Recall property of Voronoi edges:
Planarity

Theorem. \(P \subset \mathbb{R}^2 \) finite \(\Rightarrow \) \(\mathcal{DG}(P) \) plane.

Proof. Recall property of Voronoi edges:
Edge \(pq \) is in \(\mathcal{DG}(P) \) \(\iff \)
Planarity

Theorem. \(P \subset \mathbb{R}^2 \) finite \(\Rightarrow \) \(\mathcal{DG}(P) \) plane.

Proof. Recall property of Voronoi edges:

Edge \(pq \) is in \(\mathcal{DG}(P) \) \(\Leftrightarrow \) \(\exists D_{pq} \) closed disk s.t.
Planarity

Theorem. \(P \subset \mathbb{R}^2 \) finite \(\Rightarrow \) \(DG(P) \) plane.

Proof. Recall property of Voronoi edges:

Edge \(pq \) is in \(DG(P) \) \(\iff \exists D_{pq} \) closed disk s.t.
Planarity

Theorem. \(P \subset \mathbb{R}^2 \) finite \(\Rightarrow \) \(DG(P) \) plane.

Proof. Recall property of Voronoi edges:
Edge \(pq \) is in \(DG(P) \) \(\iff \) \(\exists D_{pq} \) closed disk s.t.
- \(p, q \in \partial D_{pq} \) and
Planarity

Theorem. \(P \subset \mathbb{R}^2 \text{ finite } \Rightarrow \mathcal{DG}(P) \text{ plane.} \)

Proof.
Recall property of Voronoi edges:
Edge \(pq \) is in \(\mathcal{DG}(P) \) \(\iff \exists D_{pq} \text{ closed disk s.t.} \)
- \(p, q \in \partial D_{pq} \) and
- \(\{p, q\} = D_{pq} \cap P. \)
Planarity

Theorem. \(P \subset \mathbb{R}^2 \) finite \(\Rightarrow \) \(\mathcal{DG}(P) \) plane.

Proof. Recall property of Voronoi edges:

Edge \(pq \) is in \(\mathcal{DG}(P) \) \(\iff \exists D_{pq} \) closed disk s.t.

- \(p, q \in \partial D_{pq} \) and
- \(\{p, q\} = D_{pq} \cap P. \)

\(c = \text{center}(D_{pq}) \) lies on edge betw. \(V(p) \) & \(V(q) \).
Planarity

Theorem. \(P \subset \mathbb{R}^2 \) finite \(\Rightarrow \) \(\mathcal{DG}(P) \) plane.

Proof.
Recall property of Voronoi edges:

Edge \(pq \) is in \(\mathcal{DG}(P) \) \(\iff \) \(\exists D_{pq} \) closed disk s.t.

- \(p, q \in \partial D_{pq} \) and
- \(\{p, q\} = D_{pq} \cap P. \)

\(c = \text{center}(D_{pq}) \) lies on edge betw. \(V(p) \) & \(V(q) \).

Suppose \(\exists \) edge \(uv \neq pq \) in \(\mathcal{DG}(P) \) that crosses \(pq \).
Planarity

Theorem. \(P \subset \mathbb{R}^2 \) finite \(\Rightarrow \) \(DG(P) \) plane.

Proof.
Recall property of Voronoi edges:
Edge \(pq \) is in \(DG(P) \) \(\iff \exists \) \(D_{pq} \) closed disk s.t.
- \(p, q \in \partial D_{pq} \) and
- \(\{p, q\} = D_{pq} \cap P. \)

\(c = \text{center}(D_{pq}) \) lies on edge betw. \(\mathcal{V}(p) \) & \(\mathcal{V}(q). \)

Suppose \(\exists \) edge \(uv \neq pq \) in \(DG(P) \) that crosses \(pq. \)

\(u, v \not\in D_{pq} \Rightarrow \)
Planarity

Theorem. \(P \subset \mathbb{R}^2 \) finite \(\Rightarrow \) \(\mathcal{DG}(P) \) plane.

Proof. Recall property of Voronoi edges:

- Edge \(pq \) is in \(\mathcal{DG}(P) \) \(\iff \) \(\exists D_{pq} \) closed disk s.t.
 - \(p, q \in \partial D_{pq} \) and
 - \(\{p, q\} = D_{pq} \cap P \).

- \(c = \text{center}(D_{pq}) \) lies on edge betw. \(V(p) \) & \(V(q) \).

Suppose \(\exists \) edge \(uv \neq pq \) in \(\mathcal{DG}(P) \) that crosses \(pq \).

- \(u, v \notin D_{pq} \Rightarrow u, v \notin t_{pq} \Rightarrow \)
Planarity

Theorem. \(P \subset \mathbb{R}^2 \) finite \(\Rightarrow \mathcal{DG}(P) \) plane.

Proof.

Recall property of Voronoi edges:

Edge \(pq \) is in \(\mathcal{DG}(P) \) \(\iff \exists D_{pq} \) closed disk s.t.

- \(p, q \in \partial D_{pq} \) and
- \(\{p, q\} = D_{pq} \cap P \).

\(c = \text{center}(D_{pq}) \) lies on edge betw. \(\mathcal{V}(p) \) & \(\mathcal{V}(q) \).

Suppose \(\exists \) edge \(uv \neq pq \) in \(\mathcal{DG}(P) \) that crosses \(pq \).

\(u, v \notin D_{pq} \Rightarrow u, v \notin t_{pq} \Rightarrow \)

\(uv \) crosses another edge of \(t_{pq} \)
Planarity

Theorem. \(P \subset \mathbb{R}^2 \) finite \(\Rightarrow \mathcal{DG}(P) \) plane.

Proof.

Recall property of Voronoi edges:

Edge \(pq \) is in \(\mathcal{DG}(P) \) if and only if there exists a closed disk \(D_{pq} \) such that:

- \(p, q \in \partial D_{pq} \)
- \(\{p, q\} = D_{pq} \cap P \)
- \(c = \text{center}(D_{pq}) \) lies on the edge between \(\mathcal{V}(p) \) and \(\mathcal{V}(q) \).

Suppose there exists an edge \(uv \neq pq \) in \(\mathcal{DG}(P) \) that crosses \(pq \).

\(u, v \not\in D_{pq} \Rightarrow u, v \not\in t_{pq} \Rightarrow uv \) crosses another edge of \(t_{pq} \)

\(p, q \not\in D_{uv} \Rightarrow \)
Planarity

Theorem. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.

Recall property of Voronoi edges:

Edge pq is in $\mathcal{DG}(P) \iff \exists D_{pq}$ closed disk s.t.

- $p, q \in \partial D_{pq}$ and
- $\{p, q\} = D_{pq} \cap P$.

$c = \text{center}(D_{pq})$ lies on edge betw. $\mathcal{V}(p)$ & $\mathcal{V}(q)$.

Suppose \exists edge $uv \neq pq$ in $\mathcal{DG}(P)$ that crosses pq.

$u, v \notin D_{pq} \Rightarrow u, v \notin t_{pq} \Rightarrow$

uv crosses another edge of t_{pq}

$p, q \notin D_{uv} \Rightarrow p, q \notin t_{uv} \Rightarrow$
Planarity

Theorem. $P \subset \mathbb{R}^2$ finite \Rightarrow $\mathcal{DG}(P)$ plane.

Proof. Recall property of Voronoi edges:

Edge pq is in $\mathcal{DG}(P) \iff \exists D_{pq}$ closed disk s.t.

- $p, q \in \partial D_{pq}$ and
- $\{p, q\} = D_{pq} \cap P$.

$c = \text{center}(D_{pq})$ lies on edge betw. $\mathcal{V}(p)$ & $\mathcal{V}(q)$.

Suppose \exists edge $uv \neq pq$ in $\mathcal{DG}(P)$ that crosses pq.

$u, v \notin D_{pq} \Rightarrow u, v \notin t_{pq} \Rightarrow$

uv crosses another edge of t_{pq}

$p, q \notin D_{uv} \Rightarrow p, q \notin t_{uv} \Rightarrow$

pq crosses another edge of t_{uv}
Planarity

Theorem.
\(P \subset \mathbb{R}^2 \) finite \(\Rightarrow \) \(D\mathcal{G}(P) \) plane.

Proof.
Recall property of Voronoi edges:
Edge \(pq \) is in \(D\mathcal{G}(P) \) \(\iff \exists D_{pq} \) closed disk s.t.
- \(p, q \in \partial D_{pq} \) and
- \(\{p, q\} = D_{pq} \cap P. \)

\(c = \text{center}(D_{pq}) \) lies on edge betw. \(V(p) \) \& \(V(q) \).

Suppose \(\exists \) edge \(uv \neq pq \) in \(D\mathcal{G}(P) \) that crosses \(pq \).

\(u, v \notin D_{pq} \Rightarrow u, v \notin t_{pq} \Rightarrow \)
\(uv \) crosses another edge of \(t_{pq} \)
\(p, q \notin D_{uv} \Rightarrow p, q \notin t_{uv} \Rightarrow \)
\(pq \) crosses another edge of \(t_{uv} \)
\(\Rightarrow \) one of \(s_{pq} \) or \(s_{qp} \) crosses one of \(s_{uv} \) or \(s_{vu} \)
Planarity

Theorem. \(P \subset \mathbb{R}^2 \) finite \(\Rightarrow \mathcal{D} \mathcal{G}(P) \) plane.

Proof.

Recall property of Voronoi edges:

Edge \(pq \) is in \(\mathcal{D} \mathcal{G}(P) \) \(\iff \exists \mathcal{D}_{pq} \) closed disk s.t.

- \(p, q \in \partial \mathcal{D}_{pq} \) and
- \(\{p, q\} = \mathcal{D}_{pq} \cap P \).

\(c = \text{center}(\mathcal{D}_{pq}) \) lies on edge betw. \(\mathcal{V}(p) \) & \(\mathcal{V}(q) \).

Suppose \(\exists \) edge \(uv \neq pq \) in \(\mathcal{D} \mathcal{G}(P) \) that crosses \(pq \).

\[u, v \not\in \mathcal{D}_{pq} \Rightarrow u, v \not\in t_{pq} \Rightarrow \]

\(uv \) crosses another edge of \(t_{pq} \)

\[p, q \not\in \mathcal{D}_{uv} \Rightarrow p, q \not\in t_{uv} \Rightarrow \]

\(pq \) crosses another edge of \(t_{uv} \)

\(\Rightarrow \) one of \(s_{pq} \) or \(s_{qp} \) crosses one of \(s_{uv} \) or \(s_{vu} \).
Planarity

Theorem. \(P \subset \mathbb{R}^2 \) finite \(\Rightarrow \mathcal{DG}(P) \) plane.

Proof.

Recall property of Voronoi edges:

Edge \(pq \) is in \(\mathcal{DG}(P) \) \(\iff \exists D_{pq} \) closed disk s.t.

- \(p, q \in \partial D_{pq} \) and
- \(\{p, q\} = D_{pq} \cap P. \)

\(c = \text{center}(D_{pq}) \) lies on edge betw. \(\mathcal{V}(p) \) & \(\mathcal{V}(q). \)

Suppose \(\exists \) edge \(uv \neq pq \) in \(\mathcal{DG}(P) \) that crosses \(pq. \)

\(u, v \notin D_{pq} \Rightarrow u, v \notin t_{pq} \Rightarrow \)

\(uv \) crosses another edge of \(t_{pq} \)

\(p, q \notin D_{uv} \Rightarrow p, q \notin t_{uv} \Rightarrow \)

\(pq \) crosses another edge of \(t_{uv} \)

\(\Rightarrow \) one of \(s_{pq} \) or \(s_{qp} \) crosses one of \(s_{uv} \) or \(s_{vu}. \)

\(s_{pq} \subset \mathcal{V}(p), s_{qp} \subset \mathcal{V}(q), s_{uv} \subset \mathcal{V}(u), s_{vu} \subset \mathcal{V}(v). \)
Planarity

Theorem. $P \subset \mathbb{R}^2$ finite $\Rightarrow \mathcal{DG}(P)$ plane.

Proof.

Recall property of Voronoi edges:

Edge pq is in $\mathcal{DG}(P)$ \iff $\exists D_{pq}$ closed disk s.t.

- $p, q \in \partial D_{pq}$ and
- $\{p, q\} = D_{pq} \cap P$.

$c = \text{center}(D_{pq})$ lies on edge betw. $\mathcal{V}(p) \& \mathcal{V}(q)$.

Suppose \exists edge $uv \neq pq$ in $\mathcal{DG}(P)$ that crosses pq.

\[u, v \not\in D_{pq} \Rightarrow u, v \not\in t_{pq} \Rightarrow \]

uv crosses another edge of t_{pq}

\[p, q \not\in D_{uv} \Rightarrow p, q \not\in t_{uv} \Rightarrow \]

pq crosses another edge of t_{uv}

\Rightarrow one of s_{pq} or s_{qp} crosses one of s_{uv} or s_{vu}

$s_{pq} \subset \mathcal{V}(p)$, $s_{qp} \subset \mathcal{V}(q)$, $s_{uv} \subset \mathcal{V}(u)$, $s_{vu} \subset \mathcal{V}(v)$.
Characterization

Characterization of Voronoi vertices and Voronoi edges ⇒

Theorem. \(P \subset \mathbb{R}^2 \) finite. Then

(i) Three pts \(p, q, r \in P \) are vertices of the same face of \(DG(P) \) \(\iff \) \(\text{int}(C(p, q, r)) \cap P = \emptyset \)
Characterization

Characterization of Voronoi vertices and Voronoi edges ⇒

Theorem. \(P \subset \mathbb{R}^2 \) finite. Then

(i) Three pts \(p, q, r \in P \) are vertices of the same face of \(\mathcal{DG}(P) \) ⇔ \(\text{int}(C(p, q, r)) \cap P = \emptyset \)

(ii) Two pts \(p, q \in P \) form an edge of \(\mathcal{DG}(P) \) ⇔ there is a disk \(D \) with

• \(\partial D \cap P = \{p, q\} \) and

• \(\text{int}(D) \cap P = \emptyset \).
Characterization

Characterization of Voronoi vertices and Voronoi edges \(\Rightarrow \)

Theorem. \(P \subset \mathbb{R}^2 \) finite. Then

(i) Three pts \(p, q, r \in P \) are vertices of the same face of \(\mathcal{DG}(P) \) \(\iff \) \(\text{int}(C(p, q, r)) \cap P = \emptyset \)

(ii) Two pts \(p, q \in P \) form an edge of \(\mathcal{DG}(P) \) \(\iff \)

\[
\text{there is a disk } D \text{ with } \begin{align*}
\bullet \ & \partial D \cap P = \{p, q\} \text{ and} \\
\bullet \ & \text{int}(D) \cap P = \emptyset.
\end{align*}
\]

Theorem. \(P \subset \mathbb{R}^2 \) finite, \(\mathcal{T} \) triangulation of \(P \). Then

\(\mathcal{T} \) Delaunay \(\iff \) for each triangle \(\Delta \) of \(\mathcal{T} \):

\[
\text{int}(C(\Delta)) \cap P = \emptyset.
\]
Characterization

Characterization of Voronoi vertices and Voronoi edges ⇒

Theorem. \(P \subset \mathbb{R}^2 \) finite. Then

(i) Three pts \(p, q, r \in P \) are vertices of the same face of \(DG(P) \) ⇔ \(\text{int}(C(p, q, r)) \cap P = \emptyset \)

(ii) Two pts \(p, q \in P \) form an edge of \(DG(P) \) ⇔ there is a disk \(D \) with

\[\bullet \ \partial D \cap P = \{ p, q \} \text{ and} \]
\[\bullet \ \text{int}(D) \cap P = \emptyset. \]

Theorem. \(P \subset \mathbb{R}^2 \) finite, \(\mathcal{T} \) triangulation of \(P \). Then

\(\mathcal{T} \) Delaunay ⇔ for each triangle \(\Delta \) of \(\mathcal{T} \):

\[\text{int}(C(\Delta)) \cap P = \emptyset. \]

(“empty-circumcircle property”)
Main Result

Theorem. \(P \subset \mathbb{R}^2 \) finite, \(\mathcal{T} \) triangulation of \(P \).

Then \(\mathcal{T} \) legal \(\iff \mathcal{T} \) Delaunay.
Main Result

Theorem. \(P \subset \mathbb{R}^2 \) finite, \(\mathcal{T} \) triangulation of \(P \). Then \(\mathcal{T} \) legal \(\iff \) \(\mathcal{T} \) Delaunay.
Main Result

Theorem. \(P \subset \mathbb{R}^2 \) finite, \(T \) triangulation of \(P \).
Then \(T \) legal \(\iff \) \(T \) Delaunay.

Proof. “\(\Leftarrow \)"
Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\iff \mathcal{T}$ Delaunay.

Proof. “\Leftarrow” implied by empty-circumcircle property & Thales++
Main Result

Theorem. \(P \subset \mathbb{R}^2 \) finite, \(\mathcal{T} \) triangulation of \(P \).
Then \(\mathcal{T} \) legal \(\iff \) \(\mathcal{T} \) Delaunay.

Proof. “\(\Leftarrow \)” implied by empty-circumcircle property & Thales++

“\(\Rightarrow \)”
Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\iff \mathcal{T}$ Delaunay.

Proof. “\Leftarrow” implied by empty-circumcircle property & Thales++

“\Rightarrow” by contradiction:
Main Result

Theorem. \(P \subset \mathbb{R}^2 \) finite, \(\mathcal{T} \) triangulation of \(P \).
Then \(\mathcal{T} \) legal \(\iff \) \(\mathcal{T} \) Delaunay.

Proof. “\(\iff \)” implied by empty-circumcircle property & Thales++
“\(\Rightarrow \)” by contradiction:
Assume \(\mathcal{T} \) is legal triang. of \(P \), but not Delaunay.
Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\iff \mathcal{T}$ Delaunay.

Proof. “\Leftarrow” implied by empty-circumcircle property & Thales++

“\Rightarrow” by contradiction:

Assume \mathcal{T} is legal triang. of P, but not Delaunay.

$\Rightarrow \exists \Delta pqr$ such that $\text{int}(C(\Delta pqr))$ contains $s \in P.$
Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P.

Then \mathcal{T} legal $\iff \mathcal{T}$ Delaunay.

Proof. “\Leftarrow” implied by empty-circumcircle property & Thales++

“\Rightarrow” by contradiction:

Assume \mathcal{T} is legal triang. of P, but not Delaunay.

$\Rightarrow \exists \Delta pqr$ such that int($C(\Delta pqr)$) contains $s \in P$.

Wlog. let $e = pq$ be the edge of Δpqr such that s “sees” pq before the other edges of Δpqr.

![Diagram showing a triangle with labeled points and the circumcircle](attachment:diagram.png)
Main Result

Theorem. \(P \subset \mathbb{R}^2 \) finite, \(\mathcal{T} \) triangulation of \(P \).
Then \(\mathcal{T} \) legal \(\iff \mathcal{T} \) Delaunay.

Proof. \(\iff \) implied by empty-circumcircle property \& Thales++

\(\implies \) by contradiction:
Assume \(\mathcal{T} \) is legal triang. of \(P \), but not Delaunay.
\(\implies \exists \Delta pqr \) such that \(\text{int}(C(\Delta pqr)) \) contains \(s \in P \).

Wlog. let \(e = pq \) be the edge of \(\Delta pqr \)
such that \(s \) “sees” \(pq \) before the other edges of \(\Delta pqr \).

Among all such pairs \((\Delta pqr, s)\) in \(\mathcal{T} \)
choose one that maximizes \(\alpha = \angle psq \).
Proof of Main Result (cont’d)

Consider the triangle $\triangle pqt$ adjacent to e in \mathcal{T}.
Proof of Main Result (cont’d)

Consider the triangle Δpqt adjacent to e in \mathcal{T}. \mathcal{T} legal \Rightarrow
Consider the triangle Δpqt adjacent to e in \mathcal{T}.

\mathcal{T} legal \Rightarrow e legal \Rightarrow
Proof of Main Result (cont’d)

Consider the triangle \(\Delta pqt \) adjacent to \(e \) in \(\mathcal{T} \).
\(\mathcal{T} \) legal \(\Rightarrow \) e legal \(\Rightarrow \) \(t \notin \text{int}(C(\Delta pqr)) \)
Proof of Main Result (cont’d)

Consider the triangle Δpqt adjacent to e in \mathcal{T}. \mathcal{T} legal \Rightarrow e legal \Rightarrow $t \not\in \text{int}(C(\Delta pqr))$ \Rightarrow $C(\Delta pqt)$ contains $C(\Delta pqr) \cap e^+$.
Proof of Main Result (cont’d)

Consider the triangle Δpqt adjacent to e in \mathcal{T}.
\mathcal{T} legal \Rightarrow e legal \Rightarrow $t \notin \text{int}(C(\Delta pqr))$
$\Rightarrow C(\Delta pqt)$ contains $C(\Delta pqr) \cap e^+$.

\begin{align*}
\text{halfplane} & \quad \text{supported by } e \\
\text{that contains } s
\end{align*}
Proof of Main Result (cont’d)

Consider the triangle \(\Delta pqt \) adjacent to \(e \) in \(\mathcal{T} \).

\(\mathcal{T} \) legal \(\Rightarrow \) e legal \(\Rightarrow \) \(t \notin \text{int}(C(\Delta pqr)) \)

\(\Rightarrow \) \(C(\Delta pqt) \) contains \(C(\Delta pqr) \cap e^+ \).

\(\Rightarrow \) \(s \in C(\Delta pqt) \)

\(\Rightarrow \) s ∈ \(C(\Delta pqt) \)

The halfplane supported by e that contains s
Proof of Main Result (cont’d)

Consider the triangle Δpqt adjacent to e in \mathcal{T}.

\mathcal{T} legal \Rightarrow e legal \Rightarrow $t \notin \text{int}(C(\Delta pqr))$

$\Rightarrow C(\Delta pqt)$ contains $C(\Delta pqr) \cap e^+$.

$\Rightarrow s \in C(\Delta pqt)$

Wlog. let $e' = qt$ be the edge of Δpqt that s sees.
Proof of Main Result (cont’d)

Consider the triangle Δpqt adjacent to e in \mathcal{T}.

\mathcal{T} legal \Rightarrow e legal \Rightarrow $t \notin \text{int}(C(\Delta pqr))$

$\Rightarrow C(\Delta pqt)$ contains $C(\Delta pqr) \cap e^\perp$.

$\Rightarrow s \in C(\Delta pqt)$

Wlog. let $e' = qt$ be the edge of Δpqt that s sees.

$\Rightarrow \beta = \angle tsq > \alpha = \angle psq$
Proof of Main Result (cont’d)

Consider the triangle \(\triangle pqt \) adjacent to \(e \) in \(\mathcal{T} \).

\(\mathcal{T} \) legal \(\Rightarrow \) \(e \) legal \(\Rightarrow \) \(t \not\in \text{int}(C(\Delta pqr)) \)

\(\Rightarrow \) \(C(\Delta pqt) \) contains \(C(\Delta pqr) \cap e^+ \).

\(\Rightarrow s \in C(\Delta pqt) \)

Wlog. let \(e' = qt \) be the edge of \(\Delta pqt \) that \(s \) sees.

\(\Rightarrow \beta = \angle tsq > \alpha = \angle psq \)
Proof of Main Result (cont’d)

Consider the triangle Δpqt adjacent to e in \mathcal{T}. \mathcal{T} legal \Rightarrow e legal \Rightarrow $t \notin \text{int}(C(\Delta pqr))$ \Rightarrow $C(\Delta pqt)$ contains $C(\Delta pqr) \cap e^+$. \Rightarrow $s \in C(\Delta pqt)$

Wlog. let $e' = qt$ be the edge of Δpqt that s sees. $\Rightarrow \beta = \angle tsq > \alpha = \angle psq$

Contradiction to choice of the pair $\langle \Delta pqr, s \rangle$. □
Main Result

Theorem. \(P \subset \mathbb{R}^2 \) finite, \(\mathcal{T} \) triangulation of \(P \).
Then \(\mathcal{T} \) legal \(\iff \mathcal{T} \) Delaunay.
Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\iff \mathcal{T}$ Delaunay.

Observation. Suppose P is in general position...
Main Result

Theorem. \(P \subset \mathbb{R}^2 \) finite, \(\mathcal{T} \) triangulation of \(P \). Then \(\mathcal{T} \) legal \(\iff \mathcal{T} \) Delaunay.

Observation. Suppose \(P \) is in general position. . . no 4 pts on an empty circle!
Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal \iff \mathcal{T} Delaunay.

Observation. Suppose P is in general position. ...
\Rightarrow Delaunay triangulation unique
Main Result

Theorem. \(P \subset \mathbb{R}^2 \) finite, \(\mathcal{T} \) triangulation of \(P \). Then \(\mathcal{T} \) legal \(\iff \mathcal{T} \) Delaunay.

Observation. Suppose \(P \) is in general position. . .

\[\Rightarrow \text{Delaunay triangulation unique } \left[\mathcal{DG}(P)! \right] \]
Main Result

Theorem. \(P \subset \mathbb{R}^2 \) finite, \(\mathcal{T} \) triangulation of \(P \). Then \(\mathcal{T} \) legal \(\iff \mathcal{T} \) Delaunay.

Observation. Suppose \(P \) is in general position. . .
\[\Rightarrow\] Delaunay triangulation unique \[DG(P)\] no 4 pts on an empty circle!
Main Result

Theorem. \(P \subset \mathbb{R}^2 \) finite, \(\mathcal{T} \) triangulation of \(P \).
Then \(\mathcal{T} \) legal \(\iff \mathcal{T} \) Delaunay.

Observation. Suppose \(P \) is in general position... ⇒ Delaunay triangulation unique
⇒ legal triangulation unique
\[\Downarrow \]
\noindent \textcolor{yellow}{\textbf{no 4 pts on an empty circle!}}
Main Result

Theorem. \(P \subset \mathbb{R}^2 \) finite, \(\mathcal{T} \) triangulation of \(P \). Then \(\mathcal{T} \) legal \(\iff \mathcal{T} \) Delaunay.

Observation. Suppose \(P \) is in general position . . .

\[\Rightarrow \text{Delaunay triangulation unique} \quad [\mathcal{D}(P)!] \]

\[\Rightarrow \text{legal triangulation unique} \]

\[\Downarrow \quad \text{angle-optimal} \Rightarrow \text{legal} \]
Main Result

Theorem. \(P \subset \mathbb{R}^2 \) finite, \(\mathcal{T} \) triangulation of \(P \).
Then \(\mathcal{T} \) legal \(\iff \mathcal{T} \) Delaunay.

Observation. Suppose \(P \) is in general position.
\(\Rightarrow \) Delaunay triangulation unique
\(\Rightarrow \) legal triangulation unique
\(\Downarrow \) angle-optimal \(\Rightarrow \) legal
[by def.]

no 4 pts on an empty circle!

\(\mathcal{DG}(P)! \)
Main Result

Theorem. \(P \subset \mathbb{R}^2 \) finite, \(\mathcal{T} \) triangulation of \(P \). Then \(\mathcal{T} \) legal \(\iff \mathcal{T} \) Delaunay.

Observation. Suppose \(P \) is in general position.

\[\Rightarrow \] Delaunay triangulation unique \[[\mathcal{DG}(P)!] \]

\[\Rightarrow \] legal triangulation unique

\[\Downarrow \] angle-optimal \(\Rightarrow \) legal \[[\text{by def.}] \]

Delaunay triangulation is angle-optimal!
Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal $\iff \mathcal{T}$ Delaunay.

Observation. Suppose P is in general position. . .

⇒ Delaunay triangulation unique $[\mathcal{DG}(P)!]$
⇒ legal triangulation unique

\Downarrow angle-optimal \Rightarrow legal $[\text{by def.}]$

Delaunay triangulation is angle-optimal!

Suppose P is not in general position. . .

no 4 pts on an empty circle!
Main Result

Theorem. $P \subset \mathbb{R}^2$ finite, \mathcal{T} triangulation of P. Then \mathcal{T} legal \iff \mathcal{T} Delaunay.

Observation. Suppose P is in general position. . .

\Rightarrow Delaunay triangulation unique $[\mathcal{DG}(P)!]$

\Rightarrow legal triangulation unique

\Downarrow angle-optimal \Rightarrow legal [by def.]

Delaunay triangulation is angle-optimal!

Suppose P is not in general position. . .

\Rightarrow Delaunay graph has convex “holes” bounded by co-circular pts

no 4 pts on an empty circle!
Main Result

Theorem. \(P \subset \mathbb{R}^2 \) finite, \(\mathcal{T} \) triangulation of \(P \).
Then \(\mathcal{T} \) legal \(\iff \mathcal{T} \) Delaunay.

Observation. Suppose \(P \) is in general position.
\[\Rightarrow \text{Delaunay triangulation unique} \quad [\mathcal{DG}(P)!] \]
\[\Rightarrow \text{legal triangulation unique} \]
\[\Downarrow \text{angle-optimal} \Rightarrow \text{legal} \quad [\text{by def.}] \]
Delaunay triangulation is angle-optimal!

Suppose \(P \) is not in general position.
\[\Rightarrow \text{Delaunay graph has convex “holes”} \]
bounded by co-circular pts
\[\Downarrow \text{Thales++} \quad \text{homework exercise!} \]
Main Result

Theorem. \(P \subset \mathbb{R}^2 \) finite, \(\mathcal{T} \) triangulation of \(P \).
Then \(\mathcal{T} \) legal \(\iff \mathcal{T} \) Delaunay.

Observation. Suppose \(P \) is in general position.
\(\Rightarrow \) Delaunay triangulation unique [\(\mathcal{DG}(P)! \)]
\(\Rightarrow \) legal triangulation unique
\(\Downarrow \) angle-optimal \(\Rightarrow \) legal [by def.]
Delaunay triangulation is angle-optimal!

Suppose \(P \) is not in general position.
\(\Rightarrow \) Delaunay graph has convex “holes” bounded by co-circular pts
\(\Downarrow \) Thales++
All Delaunay triang. have same min. angle.
Computation

Fact. A Delaunay triangulation of an arbitrary set of n pts in the plane can be computed in $O(n \log n)$ time.
Computation

Fact. A Delaunay triangulation of an arbitrary set of n pts in the plane can be computed in $O(n \log n)$ time. [Compute dual of Vor(P), fill holes.]
Computation

Fact. A Delaunay triangulation of an arbitrary set of n pts in the plane can be computed in $O(n \log n)$ time.

[Compute dual of Vor(P), fill holes.]

Corollary. An angle-optimal triangulation of a set of n pts in general position can be computed in $O(n \log n)$ time.
Computation

Fact. A Delaunay triangulation of an arbitrary set of n pts in the plane can be computed in $O(n \log n)$ time. [Compute dual of Vor(P), fill holes.]

Corollary. An angle-optimal triangulation of a set of n pts in general position can be computed in $O(n \log n)$ time. [DG!]
Computation

Fact. A Delaunay triangulation of an arbitrary set of \(n \) pts in the plane can be computed in \(O(n \log n) \) time.
[Compute dual of Vor(\(P \)), fill holes.]

Corollary. An angle-optimal triangulation of a set of \(n \) pts in general position can be computed in \(O(n \log n) \) time.

Given an arbitrary set of \(n \) pts, a triangulation maximizing the minimum angle can be computed in \(O(n \log n) \) time.
Computation

Fact. A Delaunay triangulation of an arbitrary set of n pts in the plane can be computed in $O(n \log n)$ time. \[\text{[Compute dual of Vor}(P)\text{, fill holes.]} \]

Corollary. An angle-optimal triangulation of a set of n pts in general position can be computed in $O(n \log n)$ time.

Given an arbitrary set of n pts, a triangulation maximizing the minimum angle can be computed in $O(n \log n)$ time. \[\text{[DG!]} \]

[Use fact.]
Computation

Fact. A Delaunay triangulation of an arbitrary set of \(n \) pts in the plane can be computed in \(O(n \log n) \) time. [Compute dual of \(\text{Vor}(P) \), fill holes.]

Corollary. An angle-optimal triangulation of a set of \(n \) pts in general position can be computed in \(O(n \log n) \) time.

Given an arbitrary set of \(n \) pts, a triangulation maximizing the minimum angle can be computed in \(O(n \log n) \) time. [Use fact.]

An angle-optimal triangulation of an arbitrary set of \(n \) pts can be computed in \(O(n^2) \) time.
Computation

Fact. A Delaunay triangulation of an arbitrary set of n pts in the plane can be computed in $O(n \log n)$ time. [Compute dual of Vor(P), fill holes.]

Corollary. An angle-optimal triangulation of a set of n pts in general position can be computed in $O(n \log n)$ time.

Given an arbitrary set of n pts, a triangulation maximizing the minimum angle can be computed in $O(n \log n)$ time. [Use fact.]

An angle-optimal triangulation of an arbitrary set of n pts can be computed in $O(n^2)$ time. [How?]