Computational Geometry

The Post-Office Problem

Lecture #7

[Comp. Geom A&A : Chapter 7]
The Post-Office Problem

Tasks:
1) Define Voronoi cells, edges and vertices!
2) Are Voronoi cells convex?
The Voronoi diagram

Let \(P \) be a set of points in the plane and let \(p, p', p'' \in P \).

[Voronoi diagram] \[
\text{V}(\{p\}) = \bigcap_{q \neq p} h(p, q)
\]

[Voronoi cell] \[
\text{V}(\{p\}) = \left\{ x \in \mathbb{R}^2 : |xp| < |xq| \text{ for all } q \in P \setminus \{p\} \right\} \\
= \bigcap_{q \neq p} h(p, q)
\]

[Voronoi edge] \[
\text{V}(\{p, p'\}) = \left\{ x : |xp| = |xp'| \text{ and } |xp| < |xq| \text{ for all } q \neq p, p' \right\} \\
= \text{rel-int} \left(\partial \text{V}(p) \cap \partial \text{V}(p') \right), \text{ i.e., w/o the endpts}
\]

[Voronoi vertex] \[
\text{V}(\{p, p', p''\}) = \partial \text{V}(p) \cap \partial \text{V}(p') \cap \partial \text{V}(p'')
\]
Overall Shape of Vor(P)

Theorem. Let \(P \subset \mathbb{R}^2 \) be a set of \(n \) pts (called sites). If all sites are collinear, \(\text{Vor}(P) \) consists of \(n - 1 \) parallel lines. Otherwise, \(\text{Vor}(P) \) is connected and its edges are line segments or half-lines.

Proof. Assume that \(P \) is not collinear.
- Assume that \(\text{Vor}(P) \) contains an edge \(e \) that is a full line, say, \(e = b(p, q) \).

Let \(r \in P \) be not collinear with \(p \) and \(q \). Then \(b(q, r) \) is not parallel to \(e \).
\[\Rightarrow e \cap h(r, q) \text{ is closer to } r \text{ than to } p \text{ or } q. \]
\[\Rightarrow e \text{ is bounded on at least one side.} \]
Complexity

Task: Construct a set P of point sites such that $\text{Vor}(P)$ has a cell of linear complexity!

Theorem. Given a set $P \subset \mathbb{R}^2$ of n sites, $\text{Vor}(P)$ consists of at most $2n - 5$ vertices and $3n - 6$ edges.

Proof. Problem: unbounded edges!

\Rightarrow can’t apply Euler directly, but...
Characterization of Voronoi vtc and edges

\[C_P(x) := \text{largest circle centered at } x \text{ w/o sites in its interior} \]

Theorem:

(i) \(x \) Voronoi vtx \(\iff \) \(|C_P(x) \cap P| \geq 3 \)

(ii) \(b(p, p') \) contains a Voronoi edge \(\iff \) \(\exists x \in b(p, p') : C_P(x) \cap P = \{p, p'\} \)
Computation

Brute force: For each \(p \in P \), compute \(V(p) = \bigcap_{p' \neq p} h(p, p') \).

\[V(p) = \bigcap_{p' \neq p} h(p, p') \]

- in total: \(O(n^2 \log n) \) time
- but the complexity of \(\text{Vor}(P) \) is linear!

Sweep?

Problem: We don’t know all defining sites yet :(
Sweep?

Which part of the plane above ℓ is fixed by what we’ve seen?

Solution:

f_p^ℓ is the parabola with focus p and directrix ℓ.

Task:

Compute f_p^ℓ for $p = (0, 1)$ and ℓ: $y = -1$!

Definition.

beachline $\beta \equiv$ lower envelope of $(f_p^\ell)_{p \in P \cap \ell^+}$

Observation.

β is x-monotone.
The beachline β

Question: What does β have to do with $\operatorname{Vor}(P)$?

Answer: “Breakpoints” of β trace out the Voronoi edges!

Lemma. New arcs on β only appear through site events, that is, whenever ℓ hits a new site.

Corollary. β consists of at most $2n - 1$ arcs.

Definition. *Circle event:* ℓ reaches lowest pt of a circle through three sites above ℓ whose arcs are consecutive on β.

Lemma. Arcs disappear from β only at circle events.

Lemma. The Voronoi vtc correspond 1:1 to circle events.
Fortune’s Sweep

VoronoiDiagram\((P \subset \mathbb{R}^2) \)

\[
Q \leftarrow \text{new PriorityQueue}(P) \quad \text{// site events sorted acc. \(y\)-coord.}
\]

\[
T \leftarrow \text{new BalancedBinarySearchTree()} \quad \text{// sweep status (\(\beta\))}
\]

\[
D \leftarrow \text{new DCEL()} \quad \text{// to-be Vor}(P)
\]

while not \(Q\).empty() do

\[
p \leftarrow Q.\text{ExtractMax()}
\]

if \(p\) site event then

\[
\text{HandleSiteEvent}(p)
\]

else

\[
\alpha \leftarrow \text{arc on } \beta \text{ that will disappear}
\]

\[
\text{HandleCircleEvent}(\alpha)
\]

\[
treat \text{ remaining internal nodes of } T \ (\equiv \text{unbnd. edges of Vor}(P))
\]

return \(D\)
Handling Events

HandleSiteEvent(point \(p \))

- Search in \(T \) for the arc \(\alpha \) vertically above \(p \).
 If \(\alpha \) has pointer to circle event in \(Q \), delete this event.

- Split \(\alpha \) into \(\alpha_0 \) and \(\alpha_2 \).
 Let \(\alpha_1 \) be the new arc of \(p \).

- Add Vor-edges \(\langle q, p \rangle \) and \(\langle p, q \rangle \) to DCEL.

- Check \(\langle \cdot, \alpha_0, \alpha_1 \rangle \) and \(\langle \alpha_1, \alpha_2, \cdot \rangle \) for circle events.

HandleCircleEvent(arc \(\alpha \))

- \(T \).delete(\(\alpha \)); update breakpts

- Delete all circle events involving \(\alpha \) from \(Q \).

- Add Vor-vtx \(\alpha_{\text{left}} \cap \alpha_{\text{right}} \) and Vor-edge \(\langle \alpha_{\text{left}}, \alpha_{\text{right}} \rangle \) to DCEL.

- Check \(\langle \cdot, \alpha_{\text{left}}, \alpha_{\text{right}} \rangle \) and \(\langle \alpha_{\text{left}}, \alpha_{\text{right}}, \cdot \rangle \) for circle events.

Running time? \(O(\log n) \) per event...
Running Time?

VoronoiDiagram($P \subset \mathbb{R}^2$)

$Q \leftarrow$ new PriorityQueue(P) // site events sorted acc. y-coord.
$T \leftarrow$ new BalancedBinarySearchTree() // sweep status (β)
$D \leftarrow$ new DCEL() // to-be Vor(P)

while not Q.empty() do
 $p \leftarrow Q$.ExtractMax()

 if p site event then
 HandleSiteEvent(p) // exactly n such events
 else
 $\alpha \leftarrow$ arc on β that will disappear
 HandleCircleEvent(α) // at most $2n - 5$ such events

 treat remaining internal nodes of T (\equiv unbd. edges of Vor(P))

return D
Summary

Theorem. Given a set P of n pts in the plane, Fortune’s sweep computes $\text{Vor}(P)$ in $O(n \log n)$ time and $O(n)$ space.

Steven Fortune
Bell Labs