Computational Geometry
Orthogonal Range Queries
or
Fast Access to Data Bases

Lecture #5

[Comp. Geom A&A : Chapter 5]
Orthogonal Range Queries

Example: Personnel management in a company

Typical queries for data bases!
1d Range Searching

Task: Preprocess a finite set $P \subset \mathbb{R}$ such that for any interval $[x, x']$ the set $P \cap [x, x']$ can be reported quickly.

Solution: balanced binary search trees...

1. Search $x = 6$.
2. Search $x' = 21$.
3. Return all leaves 'inbetween'.

Small changes: – keys only in leaves
– inner nodes store maxima of their left subtrees
1d Range Searching

Observe: The result of a query is the disjoint union of at most \(2h\) canonical subsets, where
- \(h \in O(\log n)\) is the tree height,
- a canonical subset is an interval that contains all points stored in a subtree.

Theorem. A set of \(n\) real numbers can be preprocessed in \(O(n \log n)\) time and \(O(n)\) space such that 1d range queries take \(O(k + \log n)\) time, where \(k = |\text{output}|\).
Extensions to 2d

Think... [3 min]

Task: Preprocess a finite set $P \subset \mathbb{R}^2$ such that for any range query $R = [x, x'] \times [y, y']$ the set $P \cap R$ can be reported quickly.

Solutions:

- one tree; query path alternates between x- and y-coordinate
- first-level tree for x-coordinates; many second-level trees for y-coordinate

Assume: General position!

Here: no two points have the same x- or y-coordinate.
Kd-Trees: Example

- Split any region that contains more than one point.
- Horizontal split lines/segments belong to the region below. Vertical left.
Kd-Trees: Construction

Pseudo-code:

\[
\text{BuildKdTree(points } P, \text{ int } depth) \\
\quad \text{if } |P| = 1 \text{ then} \\
\quad \quad \text{return (leaf storing the pt in } P) \\
\quad \text{else} \\
\quad \quad \text{if } depth \text{ is even then} \\
\quad \quad \quad \text{split } P \text{ with the vertical line } \ell : x = x_{\text{median}}(P) \text{ into} \\
\quad \quad \quad \quad P_1 \text{ (pts left of or on } \ell) \text{ and } P_2 = P \setminus P_1 \\
\quad \quad \text{else} \\
\quad \quad \quad \text{split } P \text{ horizontally...} \\
\quad \quad \quad \nu_{\text{left}} \leftarrow \text{BuildKdTree}(P_1, depth + 1) \\
\quad \quad \quad \nu_{\text{right}} \leftarrow \text{BuildKdTree}(P_2, depth + 1) \\
\quad \quad \quad \text{create a node } \nu \text{ storing } \ell \\
\quad \quad \quad \text{make } \nu_{\text{left}} \text{ and } \nu_{\text{right}} \text{ the children of } \nu \\
\quad \text{return } (\nu) \\
\]
Kd-Trees: Analysis

Construction time?

\[T(n) = \begin{cases}
O(1) & \text{if } n = 1 \\
O(n) + 2T(\lceil n/2 \rceil) & \text{else.}
\end{cases} \]

\[= O(n \log n) \]

Lemma: A kd-tree for a set of \(n \) pts in the plane takes \(O(n \log n) \) time to construct and uses \(O(n) \) storage.
Kd-Trees: Querying

Lemma. Querying a kd-tree for n pts in the plane with an axis-parallel rectangle R takes $O(k + \sqrt{n})$ time, where $k = |\text{output}|$.

idea: $O(\sqrt{n})$ regions of the kd-tree intersect a vertical/horizontal line.
Extensions to 2d

Task: Preprocess a finite set $P \subset \mathbb{R}^2$ such that for any range query $R = [x, x'] \times [y, y']$ the set $P \cap R$ can be reported quickly.

Solutions:

- one tree; query path alternates between x- and y-coordinate
 \(\{\text{kd-tree}\}\)

- first-level tree for x-coordinates; many second-level trees for y-coordinate
 \(\{\text{range tree}\}\)

Assume: *General position!*

Here: no two points have the same x- or y-coordinate.
Range Trees: Query Algorithm

1. Search in main tree for x-coordinate

2. For each node u
on the path from v_{split} to μ:
 For the right child v of u:
 Search in auxiliary tree T_T for points with y-coordinate $\in [y, y']$

3. Symmetrically for the path from v_{split} to μ'.

$P(v) = \text{canonical subset of } T_T$
Range Trees: Construction

Build2DRangeTree(point[] \(P \))

\[
\begin{align*}
\text{construct 2nd-level tree } T_P \text{ on } P \text{ (y-order)} \\
\text{if } P = \{ p \} \text{ then} & \quad \text{create leaf } v : \\
\text{else} & \\
\quad \text{if } P = \{ p \} \text{ then} & \quad \text{create leaf } v : \\
\quad \text{else} & \\
\quad \quad x_{\text{mid}} & = \text{median } x\text{-coordinate of } P \\
\quad \quad P_{\text{left}} & = \text{pts in } P \text{ with } x\text{-coordinate } \leq x_{\text{mid}} \\
\quad \quad P_{\text{right}} & > \\
\quad \quad v_{\text{left}} & = \text{Build2DRangeTree}(P_{\text{left}}) \\
\quad \quad v_{\text{right}} & = \text{Build2DRangeTree}(P_{\text{right}}) \\
\quad \quad \text{create node } v : & \\
\text{return } v
\end{align*}
\]

Running time?

\(O(n \log n) \) :-(

Better:
Pre-sort once, then build tree bottom-up in linear time.

\(\Downarrow \)

Total construction time \(O(n \log n) \)
Range Trees: Space Consumption

Each node v of the 1st-level tree has a pointer to a 2nd-level tree T_v with $|T_v| = \Theta(|P(v)|)$.

Q: What’s the total space consumption of all 2nd-level trees?

What’s your guess:
- $\Theta(n^2)$,
- $\Theta(n \log n)$,
- $\Theta(n \log^2 n)$, or
- $\Theta(n)$?

A: Each $p \in P$ is stored in $h = \Theta(\log n)$ 2nd-level trees.

\Rightarrow $\Theta(n \log n)$ space
Range Trees: Query time

\[T(n, k) = \sum_{u \in \text{paths to } x \text{ and } x'} O(k_u + \log n) \]

\[= O(\sum_u k_u) + O(\sum_u \log n) \]

\[= O(k) + 2h \cdot O(\log n) \]

\[= O(k + \log^2 n) \]

\(\mathbb{R}^d \)?

\(O(n \log^{d-1} n) \) storage and construction time

\(O(k + \log^d n) \) query time

See Chapter 5.4 in the book

Computational Geometry: Algorithms and Applications

Comparison

<table>
<thead>
<tr>
<th></th>
<th>kd-tree</th>
<th>range tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>construction time</td>
<td>$O(n \log n)$</td>
<td>$O(n \log n)$</td>
</tr>
<tr>
<td>storage</td>
<td>$O(n)$</td>
<td>$O(n \log n)$</td>
</tr>
<tr>
<td>query time</td>
<td>$O(k + \sqrt{n})$</td>
<td>$O(k + \log^2 n)$</td>
</tr>
</tbody>
</table>

Note: *trade-off* between space and query time
General Sets of Points

Idea: use composite numbers \((a|b)\) with lex order

\[p = (x, y) \rightarrow \hat{p} = ((x|y), (y|x)) \rightarrow \text{unique coordin.} \]

range \(R = [x, x'] \times [y, y'] \)

\[\hat{R} = [(x| - \infty), (x'| + \infty)] \times [(y| - \infty), (y'| + \infty)] \]

Show: \(p \in R \iff \hat{p} \in \hat{R} \)

This removes our assumption about the input points being in general position.

We can use kd-trees and range trees for any set of points; no matter how many points have the same x- or y-coordinates.
Fractional Cascading

Task 1: Given sets $B \subset A \subset \mathbb{N}$ stored in sorted order in arrays $A[1..n]$ and $B[1..m]$, support 1d range queries in the multiset $A \cup B$ in $k + 1 \cdot \log n$ time!

We allow $n \log m$ bits extra space.

Task 2: Assuming that task 1 can be solved, speed up 2d range queries: $O(k + \log^2 n) \rightarrow O(k + \log n)$ time!

![Diagram of Fractional Cascading](image-url)
Layered Range Trees

Theorem: Let $d \geq 2$ and let P be a set of n pts in \mathbb{R}^d. Given $O(n \log^{d-1} n)$ preprocessing time & storage, d-dim range queries on P can be answered in $O(k + \log^{d-1} n)$ time.