Algorithms for Graph Visualization

Summer Semester 2017
Lecture #10

The Crossing Lemma and its Applications

(based on the slides of Alexander Wolff and Philipp Kindermann)

DOI 10.1007/978-3-642-00856-6 (pp 256-258, proof of the crossing lemma)
Topological Graphs (figures from *Proofs from THE BOOK*)

Graph with a *topological drawing*, i.e.,
Topological Graphs

Graph with a *topological drawing*, i.e.,

no edge is self-intersecting,
Topological Graphs (figures from *Proofs from THE BOOK*)

Graph with a *topological drawing*, i.e.,

- no edge is self-intersecting,
- Edges with common endpoints do not intersect,
Topological Graphs (figures from Proofs from THE BOOK)

Graph with a *topological drawing*, i.e.,

- no edge is self-intersecting,
- Edges with common endpoints do not intersect,
- two edges intersect at most once.
Topological Graphs (figures from *Proofs from THE BOOK*)

Graph with a *topological drawing*, i.e.,

- no edge is self-intersecting,
- Edges with common endpoints do not intersect,
- two edges intersect at most once.

For a (topolog.) graph G the *crossing number* of G is:

$$cr(G) = \text{minimum number of crossings over all (topological) drawings of } G.$$
Topological Graphs

Graph with a *topological drawing*, i.e.,

- no edge is self-intersecting,
- Edges with common endpoints do not intersect,
- two edges intersect at most once.

For a (topolog.) graph G the *crossing number* of G is:

$$\text{cr}(G) = \text{minimum number of crossings over all (topological) drawings of } G.$$

E.g. $\text{cr}(K_{3,3}) =$?

(figures from *Proofs from THE BOOK*)
Topological Graphs (figures from Proofs from THE BOOK)

Graph with a *topological drawing*, i.e.,

- no edge is self-intersecting,
- Edges with common endpoints do not intersect,
- two edges intersect at most once.

For a (topolog.) graph G the *crossing number* of G is:

$$\text{cr}(G) = \text{minimum number of crossings over all (topological) drawings of } G.$$

E.g. $\text{cr}(K_{3,3}) = 1$
Topological Graphs

Graph with a *topological drawing*, i.e.,

- no edge is self-intersecting,
- Edges with common endpoints do not intersect,
- two edges intersect at most once.

For a (topolog.) graph G the *crossing number* of G is:

$$\text{cr}(G) = \text{minimum number of crossings over all (topological) drawings of } G.$$

E.g. $\text{cr}(K_{3,3}) = 1$

Remark Drawings realizing the crossing number are topological drawings.
Topological Graphs

Graph with a *topological drawing*, i.e.,

- no edge is self-intersecting,
- Edges with common endpoints do not intersect,
- two edges intersect at most once.

For a (topolog.) graph G the *crossing number* of G is:

$$\text{cr}(G) = \text{minimum number of crossings over all (topological) drawings of } G.$$

E.g. $\text{cr}(K_{3,3}) = 1$

Remark Drawings realizing the crossing number are topological drawings.

Remark Wlog, in a topological drawing, at most two edges intersect at the same point.
Crossings

Computing $\text{cr}(G)$ is NP-hard. [Garey, Johnson, 1983]
Crossings

- Computing $cr(G)$ is NP-hard. [Garey, Johnson, 1983]
- In practice force-based methods, multidimensional scaling, and heuristics are used.
Crossings

Computing $cr(G)$ is NP-hard. [Garey, Johnson, 1983]

In practice force-based methods, multidimensional scaling, and heuristics are used.

Planarization: Replace each crossing by a dummy vertex.
Crossings

- Computing $\text{cr}(G)$ is NP-hard. [Garey, Johnson, 1983]
- In practice force-based methods, multidimensional scaling, and heuristics are used.
- Planarization: Replace each crossing by a dummy vertex.
- Other variants are also NP-hard, e.g.:
 - One-sided crossing minimization between two layers
Crossings

- Computing $cr(G)$ is NP-hard. [Garey, Johnson, 1983]
- In practice force-based methods, multidimensional scaling, and heuristics are used.
- Planarization: Replace each crossing by a dummy vertex.
- Other variants are also NP-hard, e.g.:
 - One-sided crossing minimization between two layers
 - Fixed Linear Crossing Number [Masuda et al., 1990]
Crossings

\[\text{Crossings} \]

- Computing \(\text{cr}(G) \) is NP-hard. [Garey, Johnson, 1983]
- In practice force-based methods, multidimensional scaling, and heuristics are used.
- Planarization: Replace each crossing by a dummy vertex.
- Other variants are also NP-hard, e.g.:
 - One-sided crossing minimization between two layers
 - Fixed Linear Crossing Number [Masuda et al., 1990]
Crossings

- Computing $\text{cr}(G)$ is NP-hard. [Garey, Johnson, 1983]
- In practice force-based methods, multidimensional scaling, and heuristics are used.
- Planarization: Replace each crossing by a dummy vertex.
- Other variants are also NP-hard, e.g.:
 - One-sided crossing minimization between two layers
 - Fixed Linear Crossing Number [Masuda et al., 1990]
Crossings

- Computing $cr(G)$ is NP-hard. [Garey, Johnson, 1983]
- In practice force-based methods, multidimensional scaling, and heuristics are used.
- Planarization: Replace each crossing by a dummy vertex.
- Other variants are also NP-hard, e.g.:
 - One-sided crossing minimization between two layers
 - Fixed Linear Crossing Number [Masuda et al., 1990]

Only two options per edge: up/down
Rectilinear (straight-line) Crossing Number

For a graph G the *rectilinear crossing number* of G is:
\[\overline{cr}(G) = \text{the minimum number of crossings in a straight-line drawing of } G. \]
Rectilinear (straight-line) Crossing Number

For a graph G the *rectilinear crossing number* of G is:

$$\text{cr}(G) = \text{the minimum number of crossings in a straight-line drawing of } G.$$

Separation: $\text{cr}(K_8) = 18$
Rectilinear (straight-line) Crossing Number

For a graph G the \textit{rectilinear crossing number} of G is:

$$\overline{cr}(G) = \text{the minimum number of crossings in a straight-line drawing of } G.$$

Separation: $\overline{cr}(K_8) = 18$, but $\overline{cr}(K_8) = 19$.
Rectilinear (straight-line) Crossing Number

For a graph G the *rectilinear crossing number* of G is:

$$\operatorname{cr}(G) = \text{the minimum number of crossings in a straight-line drawing of } G.$$

Separation: $\operatorname{cr}(K_8) = 18$, but $\operatorname{cr}(K_8) = 19$.

Obs. For each $k \geq 4$ there is a graph G_k with $\operatorname{cr}(G_k) = 4$ and $\operatorname{cr}(G_k) \geq k$.
Rectilinear (straight-line) Crossing Number

For a graph G the *rectilinear crossing number* of G is:

$$\overline{cr}(G) = \text{the minimum number of crossings in a straight-line drawing of } G.$$

Separation: $cr(K_8) = 18$, but $\overline{cr}(K_8) = 19$.

Obs. For each $k \geq 4$ there is a graph G_k with $cr(G_k) = 4$ and $\overline{cr}(G_k) \geq k$.

\[G_1 \]
Rectilinear (straight-line) Crossing Number

For a graph G the *rectilinear crossing number* of G is:

$$\text{cr}(G) = \text{the minimum number of crossings in a straight-line drawing of } G.$$

Separation: $\text{cr}(K_8) = 18$, but $\text{cr}(K_8) = 19$.

Obs. For each $k \geq 4$ there is a graph G_k with $\text{cr}(G_k) = 4$ and $\text{cr}(G_k) \geq k$.

Each straight-line drawing of G_1 at least one crossing of the following types:

- [Diagram showing two types of crossings: \cap or \cup.]
Rectilinear (straight-line) Crossing Number

For a graph G the \textit{rectilinear crossing number} of G is:

$$\overline{cr}(G) = \text{the minimum number of crossings in a straight-line drawing of } G.$$

Separation: $cr(K_8) = 18$, but $\overline{cr}(K_8) = 19$.

\textbf{Obs.} For each $k \geq 4$ there is a graph G_k with $cr(G_k) = 4$ and $\overline{cr}(G_k) \geq k$.

Each straight-line drawing of G_1 at least one crossing of the following types: \hspace{1cm} or \hspace{1cm}

$G_1 \rightarrow G_k$:

![Diagram of G_1 and G_k]
Rectilinear (straight-line) Crossing Number

For a graph G the *rectilinear crossing number* of G is:

$$\overline{cr}(G) = \text{the minimum number of crossings in a straight-line drawing of } G.$$

Separation: $\overline{cr}(K_8) = 18$, but $\overline{cr}(K_8) = 19$.

Obs. For each $k \geq 4$ there is a graph G_k with $cr(G_k) = 4$ and $\overline{cr}(G_k) \geq k$.

Each straight-line drawing of G_1 at least one crossing of the following types: $\overline{cr}(K_8) = 19$.
A first lower bound

Obs$_1$ A drawing of a graph G with n vertices and m edges has at least $m - 3n + 6$ crossings.
A first lower bound

\textbf{Obs}\textsubscript{1}
A drawing of a graph G with n vertices and m edges has at least $m - 3n + 6$ crossings.

\textbf{Proof.} (blackboard)
A first lower bound

\textbf{Obs}_1 \quad \text{A drawing of a graph } G \text{ with } n \text{ vertices and } m \text{ edges has at least } m - 3n + 6 \text{ crossings.}

\textbf{Proof.} \quad (\text{blackboard})

\textbf{Obs}_2 \quad \text{Each drawing of } G \text{ has at least } r \cdot \left(\binom{\lfloor m/r \rfloor}{2}\right) \in \Omega(m^2/n) \text{ crossings, where } r \leq 3n - 6 \text{ is the maximum number of edges in a planar subgraph of } G.
A first lower bound

Obs\textsubscript{1} A drawing of a graph G with n vertices and m edges has at least $m - 3n + 6$ crossings.

Proof. (blackboard)

Obs\textsubscript{2} Each drawing of G has at least $r \cdot \left(\frac{\lfloor m/r \rfloor}{2}\right) \in \Omega(m^2/n)$ crossings, where $r \leq 3n - 6$ is the maximum number of edges in a planar subgraph of G.

Proof (blackboard)
Tighter Bounds

Conj. [Erdős & Guy ’73]

\[\text{cr}(G) \in \Omega\left(\frac{m^3}{n^2}\right). \]
Tighter Bounds

Conj. [Erdős & Guy ’73]

\[\text{cr}(G) \in \Omega(m^3/n^2). \]

Thm [Ajtai, Chvátal, Newborn, Szemerédi ’82, Leighton ’84]

\[m \geq 4n \Rightarrow \text{cr}(G) \geq \frac{1}{64} \cdot \frac{m^3}{n^2}. \]

[Chazelle, Sharir, Welzl ...] “BOOK” proof (blackboard)
Tighter Bounds

Conj. [Erdős & Guy ’73]
\[\text{cr}(G) \in \Omega(m^3/n^2). \]

Thm \(_1\) [Ajtai, Chvátal, Newborn, Szemerédi ’82, Leighton ’84]
\[m \geq 4n \Rightarrow \text{cr}(G) \geq \frac{1}{64} \cdot \frac{m^3}{n^2}. \]

Remark Bounds asymptotically sharp!
Tighter Bounds

** Conj.** [Erdős & Guy ’73]
\[cr(G) \in \Omega(m^3/n^2). \]

** Thm1** [Ajtai, Chvátal, Newborn, Szemerédi ’82, Leighton ’84]
\[m \geq 4n \Rightarrow cr(G) \geq \frac{1}{64} \cdot \frac{m^3}{n^2}. \]

** Remark** Bounds asymptotically sharp!

Consider geom. graph with vertices \(v_0, \ldots, v_{n-1} \) in convex position and \(E = \{ v_i v_j \mid i < j \leq i + k \mod n \} \) for \(0 < k < n/2 \). [exercise!]
Tighter Bounds

Conj. [Erdős & Guy ’73]

\[\text{cr}(G) \in \Omega \left(\frac{m^3}{n^2} \right). \]

Thm 1 [Ajtai, Chvátal, Newborn, Szemerédi ’82, Leighton ’84]

\[m \geq 4n \Rightarrow \text{cr}(G) \geq \frac{1}{64} \cdot \frac{m^3}{n^2}. \]

“BOOK” proof (blackboard)

Remark

Bounds asymptotically sharp!

Consider geom. graph with vertices \(v_0, \ldots, v_{n-1} \) in convex position and \(E = \{ v_i v_j \mid i < j \leq i + k \mod n \} \) for \(0 < k < n/2 \).

Thm 2 [Pach & Tóth ’97]

Improving the constants

\[m \geq 6n \Rightarrow \text{cr}(G) \geq \frac{1}{36} \cdot \frac{m^3}{n^2}. \]
Application 1: Point-Line Incidences

For points $P \subset \mathbb{R}^2$ and lines \mathcal{L}

$I(P, \mathcal{L}) =$ number of point-line incidences in (P, \mathcal{L}).
Application 1: Point-Line Incidences

For points $P \subset \mathbb{R}^2$ and lines \mathcal{L}

$I(P, \mathcal{L}) = \text{number of point-line incidences in } (P, \mathcal{L})$.
Application 1: Point-Line Incidences

For points $P \subset \mathbb{R}^2$ and lines \mathcal{L}

$I(P, \mathcal{L}) = \text{number of point-line incidences in } (P, \mathcal{L})$.

![Diagram of point-line incidences]
Application 1: Point-Line Incidences

For points $P \subset \mathbb{R}^2$ and lines \mathcal{L}

$I(P, \mathcal{L}) =$ number of point-line incidences in (P, \mathcal{L}).

$\Rightarrow I(P, \mathcal{L}) =$
Application 1: Point-Line Incidences

For points $P \subset \mathbb{R}^2$ and lines \mathcal{L}

$I(P, \mathcal{L}) =$ number of point-line incidences in (P, \mathcal{L}).

$\Rightarrow I(P, \mathcal{L}) =$
Application 1: Point-Line Incidences

For points $P \subset \mathbb{R}^2$ and lines \mathcal{L}

$I(P, \mathcal{L}) = \text{number of point-line incidences in } (P, \mathcal{L})$.

$\Rightarrow I(P, \mathcal{L}) = 10$
Application 1: Point-Line Incidences

For points $P \subset \mathbb{R}^2$ and lines \mathcal{L}

$I(P, \mathcal{L}) = \text{number of point-line incidences in } (P, \mathcal{L})$.

Def. $I(n, k) = \max_{|P|=n, |\mathcal{L}|=k} I(P, \mathcal{L})$.

\[
\Rightarrow I(P, \mathcal{L}) = 10
\]
Application 1: Point-Line Incidences

For points $P \subseteq \mathbb{R}^2$ and lines \mathcal{L}

$I(P, \mathcal{L}) =$ number of point-line incidences in (P, \mathcal{L}).

$\Rightarrow I(P, \mathcal{L}) = 10$

Def. $I(n, k) = \max_{|P|=n, |\mathcal{L}|=k} I(P, \mathcal{L})$.

For example: $I(4, 4) =$
Application 1: Point-Line Incidences

For points $P \subset \mathbb{R}^2$ and lines \mathcal{L}

$I(P, \mathcal{L}) = \text{number of point-line incidences in } (P, \mathcal{L})$.

For example: $I(4, 4) = 9$

Def. $I(n, k) = \max_{|P|=n, |\mathcal{L}|=k} I(P, \mathcal{L})$.

$\Rightarrow I(P, \mathcal{L}) = 10$
Application 1: Point-Line Incidences

For points $P \subset \mathbb{R}^2$ and lines \mathcal{L}

$I(P, \mathcal{L}) = \text{number of point-line incidences in } (P, \mathcal{L})$.

Thm

$[\text{Szemerédi & Trotter '83, Székely '97}]

I(n, k) \leq 2.7\frac{n^2}{3}k^{2/3} + 6n + 2k.$

Def. $I(n, k) = \max_{|P|=n, |\mathcal{L}|=k} I(P, \mathcal{L})$.

For example: $I(4, 4) = 9$

$\Rightarrow I(P, \mathcal{L}) = 10$
Application 2: Unit Distances

For points $P \subset \mathbb{R}^2$ define
$U(P) =$ number of pairs in P at unit distance
$U(n) = \max_{|P|=n} U(P)$.
Application 2: Unit Distances

For points $P \subset \mathbb{R}^2$ define

$U(P) =$ number of pairs in P at unit distance

$U(n) = \max_{|P|=n} U(P)$.

Thm 4 [Spencer, Szemerédi, Trotter ’84, Székely ’97]

$U(n) < 6.7n^{4/3}$