Algorithms for Graph Visualization

Summer Semester 2017
Lecture #7

Hierarchical Drawings

References:
Drawing Graphs: Methods and Models (Ch. 5)
Graph Drawing: Algorithms for the Visualization of Graphs (Ch. 9)
(based on slides from Marcus Krug, KIT)
Example

E-Mail-Graph between groups in Computer Science, KIT
Hierarchical Drawing

Problem statement:

- Input: directed graph $D = (V, A)$
- Output: Drawing of D which *closely* reproduces the hierarchical properties of D.

Desireable Properties

- vertices occur on (few) horizontal lines
- edges directed upwards
- edge crossings minimized
- edges as vertical, straight, and short as possible
- vertices evenly spaced

Criteria can be contradictory!
Classical Approach

[Sugiyama, Tagawa, Toda ’81]
Step 1: Cycle Breaking

Approach

- Find minimum set A^* of edges which are not upwards.
- Remove A^* and insert reversed edges.

Problem Minimum Feedback Arc Set (FAS):

- Input: directed graph $D = (V, A)$
- Output: min. set $A^* \subseteq A$, so that $D - A^*$ acyclic

... NP-hard :-(
Step 1: Cycle Breaking

Approach

- Find minimum set A^* of edges which are not upwards.
- Remove A^* and insert reversed edges.

Problem Minimum Feedback Arc Set (FAS):

- Input: directed graph $D = (V, A)$
- Output: min. set $A^* \subseteq A$, so that $D - A^* + A_r^*$ acyclic

...NP-hard :-(
Greedy-Heuristic for FAS

GreedyMakeAcyclic(Digraph \(D = (V, A) \))

\[
A' \leftarrow \emptyset \text{ (these will be the edges we keep)}
\]

\[
\text{foreach } v \in V \text{ do}
\]

\[
\text{if } \text{outdeg}(v) > \text{indeg}(v) \text{ then}
\]

\[
A' \leftarrow A' \cup \text{out}(v)
\]

\[
\text{else}
\]

\[
A' \leftarrow A' \cup \text{in}(v)
\]

\[
A \leftarrow A \setminus (\text{out}(v) \cup \text{in}(v))
\]

\[
\text{return } (V, A')
\]

- **Timing:** \(O(V + A) \)

- **Quality guarantee:** \(|A'| \geq |A|/2 \)
Improved Greedy-Heuristic for FAS

- Each iteration of `foreach`, first look for sources and sinks. If there are none, pick v such that $|\text{outdeg}(v) - \text{indeg}(v)|$ is maximized.

- Timing: $O(V + A)$

- Quality guarantee: $|A'| \geq |A|/2 + |V|/6$
Step 2: Leveling

Problem

- **Input:** acyclic, directed graph $D = (V, A)$
- **Output:** Mapping $y : V \rightarrow \{1, \ldots, |V|\}$, so that for every $uv \in A$, $y(u) < y(v)$.

Objective: *minimize* . . .

- **Number of layers**, i.e. $|y(V)|$
- **Length of the longest edge**, i.e. $\max_{uv \in A} y(v) - y(u)$
- **Total edge length**, i.e. number of dummy vertices
Algorithm to Minimize the Number of Layers

- for each source q
 set $y(q) := 1$

- for each non-source v
 set $y(v) := \max \{ y(u) \mid uv \in A \} + 1$

Obs. $y(v)$ is...
Length of the longest path from a source to v plus 1.
...also optimal with respect to the number of layers!

Question: Can we do this in linear time?
Linear time implementation

ComputeLayering(AcyclicDigraph \(D = (V, A) \))

\[
y = \text{new int}[1..|V|] \quad // \text{all } == 0
\]

\[
\text{foreach source } q \in V \text{ do} \\
\quad y(q) \leftarrow 1
\]

\[
\text{foreach non-source } v \in V \text{ do} \\
\quad \text{ComputeYRec}(D, v, y)
\]

\[
\text{return } y
\]

\[
\text{ComputeYRec}(\text{AcyclicDigraph } D = (V, A), \text{Vertex } v, \text{int}[] y)
\]

\[
\text{if } y(v) == 0 \text{ then} \\
\quad y(v) \leftarrow \max \{ \text{ComputeYRec}(D, u, y) | uv \in A \} + 1
\]

\[
\text{return } y(v)
\]

- for each source \(q \)
 set \(y(q) := 1 \)
- for each non-source \(v \)
 set \(y(v) := \max \{ y(u) | uv \in A \} + 1 \)
Our Example

Looks good right?

The drawing can be very wide :-(

Steven Chaplick · Lehrstuhl für Informatik I · Universität Würzburg
Goal: Narrower layer assignment.

Problem: Leveling with a given width.

- **Input:** acyclic, digraph $D = (V, A)$, width $W > 0$
- **Output:** Partition the vertex set into a minimum number of layers such that each layer contains at most W elements.

Problem: Precedence-Constrained Multi-Processor Scheduling

- **Input:** n jobs with unit (1) processing time, W identical machines, and a partial ordering $<$ on the jobs.
- **Output:** Schedule respecting $<$ and having minimum processing time.
- **NP-hard, $(2 - \frac{2}{W})$-Approx., no $(\frac{4}{3} - \varepsilon)$-Approx. ($W \geq 3$).
Approximating PCMPS

Input: Precedence graph (divided into layers of arbitrary width)

```
1 → 2 → 3 → 4 → 5 → 6 → 7 → 8 → 9 → C → D → E → F → G
```

Number of Machines is \(W = 2 \).

Output: Schedule

<table>
<thead>
<tr>
<th>(M_1)</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>(M_2)</td>
<td>−</td>
<td>3</td>
<td>−</td>
<td>−</td>
<td>7</td>
<td>9</td>
<td>B</td>
<td>D</td>
<td>F</td>
<td>−</td>
</tr>
<tr>
<td>(t)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>

Question: Good approximation factor?
Algorithm

- jobs stored in a list \(L \)
 (in any order, e.g., topologically sorted).
- for each time \(t = 1, 2, \ldots \) schedule \(\leq W \) available jobs.
- a job in \(L \) is available when all its predecessors have been scheduled.
- As long as there are free machines and available jobs, take the first available job and assign it to a free machine.
Analysis for $W = 2$

Precedence graph $G_<$

```
1 2 3 4 5 6 7 8 9 A B C D E F G
```

Schedule

```
<table>
<thead>
<tr>
<th>$M_1$</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>8</th>
<th>A</th>
<th>C</th>
<th>E</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M_2$</td>
<td>-</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>7</td>
<td>9</td>
<td>B</td>
<td>D</td>
<td>F</td>
<td>-</td>
</tr>
<tr>
<td>$t$</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
</tr>
</tbody>
</table>
```

"The art of the lower bound"

OPT $\geq \lceil n/2 \rceil$ and OPT $\geq \ell := \text{Number of layers of } G_<$

Goal: measure the quality of our algorithm using the lower bound(s).

Bound $\text{ALG} \leq \left\lfloor \frac{n+\ell}{2} \right\rfloor \approx \left\lfloor n/2 \right\rfloor + \ell/2 \leq 3/2 \cdot \text{OPT}$

insertion of pauses (−) in the schedule (except the last) maps to layers of $G_<$

Gen. $\leq (2 - 1/W) \cdot \text{OPT}$
Step 3: Crossing minimization

Problem:

- **Input:** Graph G, layering $y: V \rightarrow \{1, \ldots, |V|\}$
- **Output:** (Re-)ordering of vertices in each layer so that the number of crossings in minimized.

- NP-hard, even for 2 layers
- hardly any approaches optimize over multiple layers :-(
Iterative crossing reduction – idea

- add dummy-vertices for edges connecting *far* layers.
- consider adjacent layers \((L_1, L_2), (L_2, L_3), \ldots\)
 bottom-to-top.
- minimize crossings by permuting \(L_{i+1}\) while keeping \(L_i\)
 fixed.

Obs. The number of crossings only depends on permutations
of adjacent layers.
Iterative crossing reduction – Algorithm

1. choose a random permutation of L_1.
2. iteratively consider adjacent layers L_i und L_{i+1}.
3. minimize crossings by permuting L_{i+1} and keeping (L_i fixed).

4. repeat steps (2)–(3) in the reverse order (starting from L_h).
5. repeat steps (2)–(4) until no further improvement is achieved.
6. repeat steps (1)–(5) with different starting permutations.

one-sided crossing minimization
One-sided Crossing Minimization

Problem

- Input: bipartite graph $G = (L_1 \cup L_2, E)$, permutation π_1 on L_1
- Output: permutation π_2 von L_2, the number of edge crossings is minimized.

One-sided crossing minimization is NP-hard.

Algorithms

- barycenter heuristic
- median heuristic
- Greedy-Switch
- ILP

[Image: Abb. aus [Kaufmann und Wagner: Drawing Graphs] (c) Springer-Verlag]
Barycentre Heuristic

[Sugiyama et al. ’81]

• Intuition: few intersections occur when vertices are close to their neighbours
• The barycentre of u is the average x-coordinate of the neighbours of u in layer L_1 \[x_1 \equiv \pi_1\]

\[
x_2(u) := \text{bary}(u) := \frac{1}{\deg(u)} \sum_{v \in N(u)} x_1(v)
\]

• vertices with the same barycentre of are offset by a small δ
• linear runtime
• relatively good results
• optimal if no crossings are required \(\rightarrow\) exercise!
• $O(\sqrt{n})$-approximation factor
Median heuristic

- $\{v_1, \ldots, v_k\} := N(u)$ with $\pi_1(v_1) < \pi_1(v_2) < \cdots < \pi_1(v_k)$
- $x_2(u) := \text{med}(u) := \begin{cases} 0 & \text{when } N(u) = \emptyset \\ \pi_1(v_{\lfloor k/2 \rfloor}) & \text{otherwise} \end{cases}$
- move vertices u and v by small δ, when $x_2(u) = x_2(v)$

- linear runtime
- relatively good results
- optimal, if no crossings are required
- 3-Approximation factor

proof in [DETT]
Median heuristic

- \(\{v_1, \ldots, v_k\} := N(u) \) with \(\pi_1(v_1) < \pi_1(v_2) < \cdots < \pi_1(v_k) \)
- \(x_2(u) := \text{med}(u) := \begin{cases} 0 & \text{when } N(u) = \emptyset \\ \pi_1(v_{\lceil k/2 \rceil}) & \text{otherwise} \end{cases} \)
- move vertices \(u \) und \(v \) by small \(\delta \), when \(x_2(u) = x_2(v) \)

- linear runtime
- relatively good results
- optimal, if no crossings are required
- 3-Approximation factor

proof in [DETT]

Worst case?

\[2k(k+1) + k^2 \text{ vs. } (k+1)^2 \neq 0 \]
Greedy-Switch heuristic

- iteratively swap each adjacent node as long as crossings decrease.
- runtime $O(L_2)$ per iteration; at most $|L_2|$ iterations
- suitable as post-processing for other heuristics

Worst case?

$\approx k^2/4 \quad \approx 2k$
Integer Linear Program

- Constant $c_{ij} := \text{num. of crossings between edges incident to } v_i \text{ or } v_j \text{ when } \pi_2(v_i) < \pi_2(v_j)$

- Variable x_{ij} for each $1 \leq i < j \leq n_2 := |L_2|$

\[
x_{ij} = \begin{cases}
1 & \text{when } \pi_2(v_i) < \pi_2(v_j) \\
0 & \text{otherwise}
\end{cases}
\]

- The number of crossings of a permutations π_2

\[
\text{cross}(\pi_2) = \sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} (c_{ij} - c_{ji})x_{ij} + \sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} c_{ji}
\]

\[\text{constant}\]
ILP (cont.)

• Minimize the number of crossings:

\[\text{minimize} \sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} (c_{ij} - c_{ji})x_{ij} \]

• Constraints:

\[0 \leq x_{ij} + x_{jk} - x_{ik} \leq 1 \quad \text{for } 1 \leq i < j < k \leq n_2 \]

i.e., if \(x_{ij} = 1 \) and \(x_{jk} = 1 \), then \(x_{ik} = 1 \)

\[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
\end{array} \]

(Transitivity)

Solution can be found via Branch-and-Bound on small degree graphs relatively quickly
Our Example – iterations
Step 4: Vertex positioning

Goal: paths should be close to straight.

Exact: Quadratic Program (QP)

Heuristic: iterative approach
Quadratic Program

- Consider the path $p_e = (v_1, \ldots, v_k)$ of an edge $e = v_1v_k$ with dummy vertices: v_2, \ldots, v_{k-1}

- x-coordinate of v_i according to the line v_1v_k (with equal spacing):
 $$x(v_i) = x(v_1) + \frac{i-1}{k-1}(x(v_k) - x(v_1))$$

- Define the deviation from the line
 $$\text{dev}(p_e) := \sum_{i=2}^{k-1} \left(x(v_i) - \overline{x(v_i)} \right)^2$$
QP (cont.)

• Objective function:

\[
\min \sum_{e \in E} \text{dev}(p_e)
\]

• Constraints: for all vertices \(v, w\) in the same layer with \(w\) right of \(v\)

\[
x(w) - x(v) \geq \rho(w, v)
\]

• \(\rho(w, v)\) is min. horizontal distance between \(w\) and \(v\)

• Problem: QP and potentially exponential width
Iterative Heuristic

- compute an Initial-Layout
- apply the following steps as long as improvements can be made.
 1. vertex positioning,
 2. edge straightening,
 3. compactifying the layout width.
Our Example
Step 5: drawing the edges
Step 5 – drawing the edges

All figs. from [Kaufmann und Wagner: Drawing Graphs]
Our Example