Algorithms for Graph Visualization

Summer Semester 2017
Lecture #4

Upward Planar Drawings

(based on slides from Martin Nöllenburg and Robert Görke, KIT)
The Problem

Definition.

A directed Graph $D = (V, A)$ is *upward planar*, when it has a drawing such that:

- all edges are upward y-monotone curves, and
- no two edges cross.
The Problem

Definition.

A directed Graph $D = (V, A)$ is *upward planar*, when it has a drawing such that:

- all edges are upward y-monotone curves, and
- no two edges cross.

Obvious requirements?
The Problem

Definition.

A directed Graph $D = (V, A)$ is upward planar, when it has a drawing such that:

- all edges are upward y-monotone curves, and
- no two edges cross.

Obvious requirements?

- Planar & acyclic.
The Problem

Definition.

A directed Graph $D = (V, A)$ is *upward planar*, when it has a drawing such that:

- all edges are upward y-monotone curves, and
- no two edges cross.

Obvious requirements?

- Planar & acyclic.
The Problem

Definition.

A directed Graph \(D = (V, A) \) is upward planar, when it has a drawing such that:

- all edges are upward y-monotone curves, and
- no two edges cross.

Obvious requirements?

- Planar & acyclic.

not sufficient!
Upward Planarity

Problem: Upward Planarity Testing

Given a directed acyclic graph $D = (V, A)$. Determine if D is upward planar. If so, construct a corresponding drawing.
Problem: Upward Planarity Testing

Given a directed acyclic graph $D = (V, A)$. Determine if D is upward planar. If so, construct a corresponding drawing.

Problem’: Embedded Upward Planarity Testing

Given an acyclic graph $D = (V, A)$ with an embedding F, f_0. Determine if D is upward planar with respect to F, f_0. If so, construct a corresponding drawing.
Upward Planarity

Problem: Upward Planarity Testing

Given a directed acyclic graph $D = (V, A)$. Determine if D is upward planar. If so, construct a corresponding drawing.

NP-hard! [Garg & Tamassia ’95]

Problem’: Embedded Upward Planarity Testing

Given an acyclic graph $D = (V, A)$ with an embedding F, f_0. Determine if D is upward planar with respect to F, f_0. If so, construct a corresponding drawing.
Upward Planarity

Problem: Upward Planarity Testing

Given a directed acyclic graph $D = (V, A)$.
Determine if D is upward planar.
If so, construct a corresponding drawing.

⇒ NP-hard! [Garg & Tamassia ’95]

Problem’: Embedded Upward Planarity Testing

Given an acyclic graph $D = (V, A)$ with an embedding \mathcal{F}, f_0.
Determine if D is upward planar with respect to \mathcal{F}, f_0.
If so, construct a corresponding drawing.

⇒ Can be tested efficiently! [this lecture]
Theorem \cite{Kelly '87, Di Battista & Tamassia '88}

For a directed graph $D = (V, A)$, the following are equivalent.

1. D is upward planar.
2. D has a \textit{straight-line} upward planar drawing.
3. D is a spanning subgraph of a planar st-graph.
Theorem [Kelly ’87, Di Battista & Tamassia ’88]

For a directed graph $D = (V, A)$, the following are equivalent.

1. D is upward planar.
2. D has a *straight-line* upward planar drawing.
3. D is a spanning subgraph of a planar st-graph.
The Big Picture: a characterization

Theorem [Kelly ’87, Di Battista & Tamassia ’88]

For a directed graph $D = (V, A)$, the following are equivalent.

1. D is upward planar.
2. D has a *straight-line* upward planar drawing.
3. D is a spanning subgraph of a **planar** st-graph.

Without crossings
The Big Picture: a characterization

Theorem [Kelly ’87, Di Battista & Tamassia ’88]

For a directed graph $D = (V, A)$, the following are equivalent.

1. D is upward planar.
2. D has a *straight-line* upward planar drawing.
3. D is a spanning subgraph of a **planar** st-graph.

without crossings
The Big Picture: a characterization

Theorem [Kelly ’87, Di Battista & Tamassia ’88]

For a directed graph $D = (V, A)$, the following are equivalent.

1. D is upward planar.
2. D has a *straight-line* upward planar drawing.
3. D is a spanning subgraph of a planar *st-graph*.

without crossings

acyclic directed graph with a single source s and single sink t.
The Big Picture: a characterization

Theorem [Kelly ’87, Di Battista & Tamassia ’88]

For a directed graph $D = (V, A)$, the following are equivalent.

1. D is upward planar.
2. D has a *straight-line* upward planar drawing.
3. D is a spanning subgraph of a planar st-graph.

Additionally:
- without crossings
- acyclic directed graph with a single source s and single sink t.

embedded so that s and t are on the outer-face f_0.

Steven Chaplick · Lehrstuhl für Informatik I · Universität Würzburg
The Big Picture: a characterization

Theorem [Kelly ’87, Di Battista & Tamassia ’88]

For a directed graph $D = (V, A)$, the following are equivalent.

1. D is upward planar.
2. D has a *straight-line* upward planar drawing.
3. D is a spanning subgraph of a planar st-graph.
The Big Picture: a characterization

Theorem [Kelly ’87, Di Battista & Tamassia ’88]

For a directed graph $D = (V, A)$, the following are equivalent.

1. D is upward planar.
2. D has a *straight-line* upward planar drawing.
3. D is a spanning subgraph of a planar st-graph.
The Big Picture: a characterization

Theorem [Kelly ’87, Di Battista & Tamassia ’88]

For a directed graph $D = (V, A)$, the following are equivalent.

1. D is upward planar.
2. D has a *straight-line* upward planar drawing.
3. D is a spanning subgraph of a planar st-graph.

Proof in textbook [DETT, Sec. 6.1]
Theorem \cite{Kelly87,DiBattistaTamassia88}

For a directed graph $D = (V, A)$, the following are equivalent.

1. D is upward planar.
2. D has a \textit{straight-line} upward planar drawing.
3. D is a spanning subgraph of a planar st-graph.

\textit{Proof in textbook} \cite{DETT,Sec.6.1}

\textit{can be drawn upward planar, see textbook} \cite{DETT,Sec.6.1}
Bimodality

bimodal vertex

![Diagram of a bimodal vertex](image-url)
Bimodality

bimodal vertex

not bimodal
Bimodality

bimodal vertex

not bimodal

Definition

An embedded directed graph is *bimodal* if and only if all vertices are bimodal.

all vertices are bimodal.
Bimodality

bimodal vertex **not bimodal**

Definition
An embedded directed graph is *bimodal* if all vertices are bimodal.

Lemma
An embedded directed graph is upward planar only if it is bimodal.
Angle Sizes of Sources and Sinks

For a face f of a straight-line drawing, consider angles of
– local sinks (vertices with 2 incoming edges on ∂f)
– local sources (vertices with 2 outgoing edges on ∂f)
Angle Sizes of Sources and Sinks

For a face f of a straight-line drawing, consider angles of
– local sinks (vertices with 2 incoming edges on ∂f)
– local sources (vertices with 2 outgoing edges on ∂f)
Angle Sizes of Sources and Sinks

For a face f of a straight-line drawing, consider angles of
– **local sinks** (vertices with 2 incoming edges on ∂f)
– **local sources** (vertices with 2 outgoing edges on ∂f)

$\gg L(f) := \text{number of large angles} \quad (\text{Intuition: in drawing } > \pi)$
$\gg S(f) := \text{number of small angles}$
$\gg A(f) := \text{number of local sources} \ (= \text{number of local sinks})$
Angle Sizes of Sources and Sinks

For a face f of a straight-line drawing, consider angles of
– local sinks (vertices with 2 incoming edges on ∂f)
– local sources (vertices with 2 outgoing edges on ∂f)

$\Rightarrow L(f) := \text{number of large angles} \quad (\text{Intuition: in drawing } > \pi)$
$\Rightarrow S(f) := \text{number of small angles}$
$\Rightarrow A(f) := \text{number of local sources} \quad (= \text{number of local sinks})$

Thus:
$L(f) + S(f) =$
Angle Sizes of Sources and Sinks

For a face f of a straight-line drawing, consider angles of
– local sinks (vertices with 2 incoming edges on ∂f)
– local sources (vertices with 2 outgoing edges on ∂f)

$\Rightarrow L(f) := $ number of large angles (Intuition: in drawing $> \pi$)
$\Rightarrow S(f) := $ number of small angles
$\Rightarrow A(f) := $ number of local sources ($=$ number of local sinks)

Thus:
$L(f) + S(f) = 2A(f)$
Angle Sizes of Sources and Sinks

For a face f of a straight-line drawing, consider angles of
– **local sinks** (vertices with 2 incoming edges on ∂f)
– **local sources** (vertices with 2 outgoing edges on ∂f)

$$L(f) := \text{number of large angles} \quad (\text{Intuition: in drawing } > \pi)$$
$$S(f) := \text{number of small angles}$$
$$A(f) := \text{number of local sources} \quad (= \text{number of local sinks})$$

Thus:

$$L(f) + S(f) = 2A(f)$$

By induction:

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$
Angle Sizes of Sources and Sinks

For a face f of a straight-line drawing, consider angles of
– local sinks (vertices with 2 incoming edges on ∂f)
– local sources (vertices with 2 outgoing edges on ∂f)

$\gg L(f) := \text{number of large angles}$ (Intuition: in drawing $> \pi$)
$\gg S(f) := \text{number of small angles}$
$\gg A(f) := \text{number of local sources} (= \text{number of local sinks})$

Thus:
$L(f) + S(f) = 2A(f)$

By induction:
$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$
Angle Sizes of Sources and Sinks

For a face f of a straight-line drawing, consider angles of
– local sinks (vertices with 2 incoming edges on ∂f)
– local sources (vertices with 2 outgoing edges on ∂f)

$\gg L(f) := $ number of large angles (Intuition: in drawing $> \pi$)
$\gg S(f) := $ number of small angles
$\gg A(f) := $ number of local sources (= number of local sinks)

Thus:
$L(f) + S(f) = 2A(f)$

By induction:
$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases} \Rightarrow L(f) = \begin{cases} A(f) - 1, & f \neq f_0 \\ A(f) + 1, & f = f_0 \end{cases}$
Proof: $L(f) - S(f) = -2$ for $f \neq f_0$

$\Rightarrow L(f) = 0$
Proof: $L(f) - S(f) = -2$ for $f \neq f_0$

$\Rightarrow L(f) = 0 \quad \Rightarrow S(f) = 2$
Proof: $L(f) - S(f) = -2$ for $f \neq f_0$

$\implies L(f) = 0 \quad \implies S(f) = 2$

$\implies L(f) \geq 1$
Proof: $L(f) - S(f) = -2$ for $f \neq f_0$

$\Rightarrow L(f) = 0 \quad \Rightarrow S(f) = 2$

$\Rightarrow L(f) \geq 1$

Separate f by.
Proof: \(L(f) - S(f) = -2 \) for \(f \neq f_0 \)

\[\Rightarrow L(f) = 0 \quad \Rightarrow S(f) = 2 \]

\[\Rightarrow L(f) \geq 1 \]

Separate \(f \) by.

1. \(v \) sink with a small angle:
Proof: $L(f) - S(f) = -2$ for $f \neq f_0$

\[L(f) = 0 \quad \Rightarrow \quad S(f) = 2 \]

\[L(f) \geq 1 \]

Separate f by.

1. v sink with a small angle:

\[
L(f) - S(f) = L(f_1) + L(f_2) + 1 - (S(f_1) + S(f_2) - 1) = -2
\]
Proof: $L(f) - S(f) = -2$ for $f \neq f_0$

\[\Rightarrow L(f) = 0 \quad \Rightarrow S(f) = 2\]

\[\Rightarrow L(f) \geq 1\]

Separate f by.

1. v sink with a small angle:

\[L(f) - S(f) = L(f_1) + L(f_2) + 1 - (S(f_1) + S(f_2) - 1) = -2\]
Proof: \(L(f) - S(f) = -2 \) for \(f \neq f_0 \)

\[
L(f) = 0 \quad \Rightarrow \quad S(f) = 2
\]

\[
L(f) \geq 1
\]

Separate \(f \) by.

1. \(v \) sink with a small angle:

\[
L(f) - S(f) = L(f_1) + L(f_2) + 1 - (S(f_1) + S(f_2) - 1) = -2
\]

induction hypothesis
Proof: \(L(f) - S(f) = -2 \) for \(f \neq f_0 \)

\[L(f) = 0 \quad \Rightarrow \quad S(f) = 2 \]

\[L(f) \geq 1 \]

Separate \(f \) by.

2. \(v \) sink with a big angle:

\[
L(f) - S(f) = L(f_1) + L(f_2) + 1 - (S(f_1) + S(f_2) - 1) = -2
\]

induction hypothesis
Proof: \(L(f) - S(f) = -2 \) for \(f \neq f_0 \)

\[L(f) = 0 \quad \Rightarrow \quad S(f) = 2 \]

\[L(f) \geq 1 \]

Separate \(f \) by.

3. \(v \) source with big angle:

\[L(f) - S(f) = L(f_1) + L(f_2) + 2 - (S(f_1) + S(f_2)) = -2 \]

induction hypothesis
Proof: $L(f) - S(f) = -2$ for $f \neq f_0$

$\Rightarrow L(f) = 0 \quad \Rightarrow S(f) = 2$

$\Rightarrow L(f) \geq 1$

Separate f by.

4. v source with small angle:
Proof: $L(f) - S(f) = -2$ for $f \neq f_0$

\[L(f) = 0 \quad \Rightarrow \quad S(f) = 2 \]

\[L(f) \geq 1 \]

Separate f by.

5. v neither source nor sink:

\[
L(f) - S(f) = L(f_1) + L(f_2) + 1 - (S(f_1) + S(f_2) - 1)
\]
\[= -2 \]

induction hypothesis
Observations

Consider the angle between two incoming/outgoing edges.
Observations

Consider the angle between two incoming/outgoing edges.

Lemma

Let D be a directed graph. In every upward planar drawing of D:

(1) for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & v \text{ source/sink.} \end{cases}$

(2) for each face $f \in F$: $L(f) = \begin{cases} A(f) - 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases}$
Observations

Consider the angle between two incoming/outgoing edges.

Lemma

Let D be a directed graph. In every upward planar drawing of D:

1. for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex}, \\ 1 & v \text{ source/sink}. \end{cases}$

2. for each face $f \in \mathcal{F}$: $L(f) = \begin{cases} A(f) - 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases}$

$\Phi: S \cup T \rightarrow \mathcal{F}$

$v \mapsto$ incid. face

$|\Phi^{-1}(f)| = \text{global sources and sinks}$
Observations

Consider the angle between two incoming/outgoing edges.

Lemma

Let D be a directed graph. In every upward planar drawing of D:

1. for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & v \text{ source/sink.} \end{cases}$

2. for each face $f \in F$: $L(f) = \begin{cases} A(f) - 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases}$

$\Phi : S \cup T \rightarrow F$

$v \mapsto \text{incid. face}$ called *consistent* global sources and sinks

$|\Phi^{-1}(f)| = L(f)$
Observations

Consider the angle between two incoming/outgoing edges.

Lemma

Let \(D \) be a directed graph.
In every upward planar drawing of \(D \):

1. for each vertex \(v \in V \): \(L(v) = \begin{cases} 0 & \text{v inner vertex,} \\ 1 & \text{v source/sink.} \end{cases} \)

2. for each face \(f \in F \): \(L(f) = \begin{cases} A(f) - 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases} \)

\(\Phi : S \cup T \rightarrow F \) called \textit{consistent} global sources and sinks

\(\Phi^{-1}(f) = \begin{cases} A(f) - 1 & f \neq f_0 \\ A(f) + 1 & f = f_0 \end{cases} \)
Example: Face Assignment
Example: Face Assignment

- Global sources and sinks
Example: Face Assignment

A(f_0) = 3
A(f_1) = 3
A(f_2) = 1
A(f_3) = 1
A(f_4) = 2
A(f_5) = 2
A(f_6) = 1
A(f_7) = 2
A(f_8) = 1
A(f_9) = 1
Example: Face Assignment

- \(A(f_1) = 3 \)
 \(L(f_1) = 2 \)

- \(A(f_2) = 1 \)
 \(L(f_2) = 0 \)

- \(A(f_3) = 1 \)
 \(L(f_3) = 0 \)

- \(A(f_4) = 2 \)
 \(L(f_4) = 1 \)

- \(A(f_5) = 2 \)
 \(L(f_5) = 1 \)

- \(A(f_6) = 1 \)
 \(L(f_6) = 0 \)

- \(A(f_7) = 2 \)
 \(L(f_7) = 1 \)

- \(A(f_8) = 1 \)
 \(L(f_8) = 0 \)

- \(A(f_9) = 1 \)
 \(L(f_9) = 0 \)

Global sources and sinks
Example: Face Assignment

Assignment $\phi : S \cup T \to \mathcal{F}$

- $A(f_1) = 3$
- $L(f_1) = 2$
- $A(f_2) = 1$
- $L(f_2) = 0$
- $A(f_3) = 1$
- $L(f_3) = 0$
- $A(f_4) = 2$
- $L(f_4) = 1$
- $A(f_5) = 2$
- $L(f_5) = 1$
- $A(f_6) = 1$
- $L(f_6) = 0$
- $A(f_7) = 2$
- $L(f_7) = 1$
- $A(f_8) = 1$
- $L(f_8) = 0$
- $A(f_9) = 1$
- $L(f_9) = 0$
Main Result

Theorem

If $D = (V, A)$ is a dir. acyclic graph with embedding \mathcal{F}, f_0. Then:
D upward planar (resp. \mathcal{F}, f_0) \iff bimodal and \exists consistent Φ.
Main Result

Theorem

If $D = (V, A)$ is a dir. acyclic graph with embedding \mathcal{F}, f_0. Then:

D upward planar (resp. \mathcal{F}, f_0) \iff bimodal and \exists consistent Φ.

\Rightarrow: as constructed before
Main Result

Theorem

If $D = (V, A)$ is a dir. acyclic graph with embedding \mathcal{F}, f_0. Then:

\[D \text{ upward planar (resp. } \mathcal{F}, f_0) \iff \text{bimodal and } \exists \text{ consistent } \Phi. \]

\Rightarrow: as constructed before

\Leftarrow: ideas
Main Result

Theorem

If $D = (V, A)$ is a dir. acyclic graph with embedding \mathcal{F}, f_0. Then:

D upward planar (resp. \mathcal{F}, f_0) \iff bimodal and \exists consistent Φ.

\Rightarrow: as constructed before

\Leftarrow: ideas
 - construct st-Graph $\supseteq D$
Main Result

Theorem

If $D = (V, A)$ is a dir. acyclic graph with embedding F, f_0. Then:

D upward planar (resp. F, f_0) ⇔ bimodal and \exists consistent Φ.

\Rightarrow: as constructed before

\Leftarrow: ideas

– construct st-Graph $\supseteq D$

– apply equivalence from the beginning of the lecture
Main Result

Theorem

If $D = (V, A)$ is a dir. acyclic graph with embedding F, f_0. Then:

D upward planar (resp. F, f_0) \iff bimodal and \exists consistent Φ.

\Rightarrow: as constructed before

\Leftarrow: ideas

- construct st-Graph $\supseteq D$

- apply equivalence from the beginning of the lecture

First: $D, F, f_0 \rightarrow \Phi$ consistent assignment
Flow Network to Construct Φ

Definition Flow Network

$N_{\mathcal{F}, f_0}(D) = ((W, A_N); l; u; d)$

- $W = \{v \in V \mid v \text{ is source or sink}\} \cup \mathcal{F}$
- $A_N = \{(v, f) \mid v \text{ incident to } f\}$
- $l(a) = 0 \quad \forall a \in A_N$
- $u(a) = 1 \quad \forall a \in A_N$
- $d(q) =
 \begin{cases}
 1 & \forall q \in W \cap V \\
 -(A(q) - 1) & \forall q \in \mathcal{F} \setminus \{f_0\} \\
 -(A(q) + 1) & q = f_0
 \end{cases}$

Idea: flow $(v, f) = 1$ iff v is a global source/sink whose large angle is assigned to f
Example Network

- normal vertex
- source / sink
Example Network

- normal vertex
- source / sink
- face vertex
Example Network

- normal vertex
- source / sink
- face vertex
Example Network

- normal vertex
- source / sink
- face vertex
Example Network

- normal vertex
- source / sink
- face vertex
Algorithm: \(\Phi, \mathcal{F}, f_0 \rightarrow \text{st-Graph} \supseteq D \)
Algorithm: $\Phi, \mathcal{F}, f_0 \rightarrow \text{st-Graph} \supseteq D$

Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f.
Algorithm: $\Phi, \mathcal{F}, f_0 \rightarrow \text{st-Graph} \subseteq D$

Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f

Goal: Add edges to break large angles (sources and sinks).
Algorithm: $\Phi, \mathcal{F}, f_0 \rightarrow \text{st-Graph} \subseteq D$

Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f.

Goal: Add edges to break large angles (sources and sinks).

$f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z.

![Graph diagram with labels L and S at vertices, showing angles σ.](attachment:grafik.png)
Algorithm: $\Phi, \mathcal{F}, f_0 \rightarrow \text{st-Graph} \subseteq \mathcal{D}$

Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f.

Goal: Add edges to break large angles (sources and sinks).

$f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z.
Algorithm: $\Phi, \mathcal{F}, f_0 \rightarrow \text{st-Graph} \supseteq D$

Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f.

Goal: Add edges to break large angles (sources and sinks).

$f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle \text{L, S, S} \rangle$ at vertices x, y, z.
Algorithm: $\Phi, \mathcal{F}, f_0 \rightarrow \text{st-Graph} \subseteq D$

Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f

Goal: Add edges to break large angles (sources and sinks).

$f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z

x source \Rightarrow insert edge (z, x)
Algorithm: $\Phi, \mathcal{F}, f_0 \rightarrow \text{st-Graph} \supseteq D$

Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f

\Rightarrow Goal: Add edges to break large angles (sources and sinks).

\Rightarrow $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z

\Rightarrow x source \Rightarrow insert edge (z, x)
Algorithm: $\Phi, \mathcal{F}, f_0 \rightarrow \text{st-Graph} \supseteq D$

Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f

$\triangleright \triangleright$ Goal: Add edges to break large angles (sources and sinks).

$\triangleright \triangleright f \neq f_0 \text{ with } |\sigma_f| \geq 2 \text{ containing } \langle L, S, S \rangle \text{ at vertices } x, y, z$

$\triangleright \triangleright x \text{ source } \Rightarrow \text{ insert edge } (z, x)$
Algorithm: \(\Phi, \mathcal{F}, f_0 \rightarrow \text{st-Graph} \subseteq D \)

Let \(f \) be a face. Consider the clockwise angle sequence \(\sigma_f \) of \(L/S \) on local sources and sinks of \(f \).

\[\Rightarrow \] **Goal:** Add edges to break large angles (sources and sinks).

\[\Rightarrow \] \(f \neq f_0 \) with \(|\sigma_f| \geq 2 \) containing \(\langle L, S, S \rangle \) at vertices \(x, y, z \)

\[\Rightarrow \] \(x \) source \(\Rightarrow \) insert edge \((z, x) \)
Algorithm: $\Phi, \mathcal{F}, f_0 \rightarrow \text{st-Graph} \supseteq D$

Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f.

Goal: Add edges to break large angles (sources and sinks).

$f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z.

x source \Rightarrow insert edge (z, x).
Algorithm: $\Phi, \mathcal{F}, f_0 \rightarrow \text{st-Graph} \supseteq D$

Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f

Goal: Add edges to break large angles (sources and sinks).

$f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z

x source \Rightarrow insert edge (z, x)
Algorithm: $\Phi, \mathcal{F}, f_0 \rightarrow \text{st-Graph} \supseteq D$

Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f.

Goal: Add edges to break large angles (sources and sinks).

- $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z
- x source \Rightarrow insert edge (z, x)
- x sink \Rightarrow insert edge (x, z)
Algorithm: $\Phi, \mathcal{F}, f_0 \rightarrow \text{st-Graph } \supseteq D$

Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f

Goal: Add edges to break large angles (sources and sinks).

$f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z

x source \Rightarrow insert edge (z, x)

x sink \Rightarrow insert edge (x, z)
Algorithm: $\Phi, \mathcal{F}, f_0 \rightarrow \text{st-Graph} \supseteq D$

Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f

\Rightarrow Goal: Add edges to break large angles (sources and sinks).

\Rightarrow $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z

\Rightarrow x source \Rightarrow insert edge (z, x)

\Rightarrow x sink \Rightarrow insert edge (x, z)
Algorithm: $\Phi, \mathcal{F}, f_0 \rightarrow \text{st-Graph} \supseteq D$

Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f.

\begin{itemize}
 \item Goal: Add edges to break large angles (sources and sinks).
 \item $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z
 \item x source \Rightarrow insert edge (z, x)
 \item x sink \Rightarrow insert edge (x, z)
\end{itemize}
Algorithm: $\Phi, \mathcal{F}, f_0 \rightarrow \text{st-Graph} \supseteq D$

Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f

\implies Goal: Add edges to break large angles (sources and sinks).

\implies $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z

\implies x source \Rightarrow insert edge (z, x)

\implies x sink \Rightarrow insert edge (x, z)

\implies Refine the outerface f_0
Algorithm: $\Phi, \mathcal{F}, f_0 \rightarrow \text{st-Graph} \supseteq D$

Let f be a face. Consider the clockwise angle sequence σ_f of
L/S on local sources and sinks of f

\Rightarrow Goal: Add edges to break large angles (sources and sinks).

$\Rightarrow f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z

$\Rightarrow x$ source \Rightarrow insert edge (z, x)

$\Rightarrow x$ sink \Rightarrow insert edge (x, z)

\Rightarrow Refine the outerface f_0

Refine all $f \in \mathcal{F} \Rightarrow D$ is contained in a planar st-Graph
Example Refinement
Summary

Given: embedded, directed, acyclic graph $G = (V, E)$.
Summary

Given: embedded, directed, acyclic graph \(G = (V, E) \).

\(\Rightarrow \) Test for bimodality

\(\Rightarrow \) Test for a consistent assignment \(\Phi \) (via flow network).

\(\Rightarrow \) If both bimodal and \(\Phi \) exists, draw \(G \) as upward planar.
Summary

Given: embedded, directed, acyclic graph \(G = (V, E) \).

- Test for bimodality

- Test for a consistent assignment \(\Phi \) (via flow network).

- If both bimodal and \(\Phi \) exists, draw \(G \) as upward planar.
 - refine \(G \) to planar \(st \)-graph \(G' \)
 - Draw \(G' \) via \(st \)-graph methods
 - Delete the edges added by refinement.
Summary

Given: embedded, directed, acyclic graph $G = (V, E)$.

- Test for bimodality
- Test for a consistent assignment Φ (via flow network).
- If both bimodal and Φ exists, draw G as upward planar.
 - Refine G to planar st-graph G'
 - Draw G' via st-graph methods
 - Delete the edges added by refinement.

See textbook [DETT, Sec. 6.1] for planar drawing.
Summary

Given: embedded, directed, acyclic graph $G = (V, E)$.

Test for bimodality

Test for a consistent assignment Φ (via flow network).

If both bimodal and Φ exists, draw G as upward planar.

- refine G to planar st-graph G'
- Draw G' via st-graph methods
- Delete the edges added by refinement.

See textbook [DETT, Sec. 6.1] — but the area usage can be exponential!
Finding the angles via the flow network

\[W := V \cup \mathcal{F} \]
Finding the angles via the flow network

\[W := V \cup F \]
\[A := \{(v, f) \in V \times F : v \text{ incident } (\sim) \text{ to } f\} \]
Finding the angles via the flow network

\[W := V \cup \mathcal{F} \]
\[A := \{(v, f) \in V \times \mathcal{F} : v \text{ incident (}\sim\text{) to } f\} \]
\[\ell(a) = 0 \quad \forall a \in A \]
Finding the angles via the flow network

\[W := V \cup \mathcal{F} \]
\[A := \{ (v, f) \in V \times \mathcal{F} : v \text{ incident (\sim) to } f \} \]
\[\ell(a) = 0 \quad \forall a \in A \]
\[u(a) = 2\pi \quad \forall a \in A \]
Finding the angles via the flow network

\[W := V \cup \mathcal{F} \]
\[A := \{(v, f) \in V \times \mathcal{F} : v \text{ incident (\(\sim\)) to } f\} \]
\[\ell(a) = 0 \quad \forall a \in A \]
\[u(a) = 2\pi \quad \forall a \in A \]
\[d(v) = 2\pi \quad \forall v \in V \]
Finding the angles via the flow network

\[W := V \cup \mathcal{F} \]
\[A := \{(v, f) \in V \times \mathcal{F} : v \text{ incident (\(\sim\)) to } f\} \]
\[\ell(a) = 0 \quad \forall a \in A \]
\[u(a) = 2\pi \quad \forall a \in A \]
\[d(v) = 2\pi \quad \forall v \in V \]
\[d(f) = \begin{cases} -(\deg(f) - 2)\pi & \text{if } f \neq f_0, \\ -(\deg(f) + 2)\pi & \text{otherwise} \end{cases} \]
Finding the angles via the flow network

\[W := V \cup \mathcal{F} \]
\[A := \{(v, f) \in V \times \mathcal{F} : v \text{ incident (\(\sim\)) to } f\} \]
\[\ell(a) = 0 \quad \forall a \in A \]
\[u(a) = 2\pi \quad \forall a \in A \]
\[d(v) = 2\pi \quad \forall v \in V \]
\[d(f) = \begin{cases}
-(\deg(f) - 2)\pi & \text{if } f \neq f_0, \\
-(\deg(f) + 2)\pi & \text{otherwise}
\end{cases} \]

Flow provides an assignment \(x(\cdot, \cdot)\) of angles where:

1. vertices : \(\forall v \in V:\)

2. faces : \(\forall f \in \mathcal{F}:\)
Finding the angles via the flow network

\[W := V \cup \mathcal{F} \]
\[A := \{(v, f) \in V \times \mathcal{F} : v \text{ incident (\sim) to } f\} \]
\[\ell(a) = 0 \quad \forall a \in A \]
\[u(a) = 2\pi \quad \forall a \in A \]
\[d(v) = 2\pi \quad \forall v \in V \]
\[d(f) = \begin{cases}
-(\deg(f) - 2)\pi & \text{if } f \neq f_0, \\
-(\deg(f) + 2)\pi & \text{otherwise}
\end{cases} \]

Flow provides an assignment \(x(\cdot, \cdot) \) of angles where:

1. vertices : \(\forall v \in V : \sum_{f \sim v} x(v, f) = 2\pi \)
2. faces : \(\forall f \in \mathcal{F} : \sum_{v \sim f} x(v, f) = (\deg(f) \pm 2)\pi \)
Finding the angles via the flow network

\[W := V \cup \mathcal{F} \]
\[A := \{(v, f) \in V \times \mathcal{F} : v \text{ incident } (\sim) \text{ to } f\} \]
\[\ell(a) = 0 \quad \forall a \in A \]
\[u(a) = 2\pi \quad \forall a \in A \]
\[d(v) = 2\pi \quad \forall v \in V \]
\[d(f) = \begin{cases}
-(\deg(f) - 2)\pi & \text{if } f \neq f_0, \\
-(\deg(f) + 2)\pi & \text{otherwise} \end{cases} \]

Flow provides an assignment \(x(\cdot, \cdot) \) of angles where:

1. vertices : \(\forall v \in V : \sum_{f \sim v} x(v, f) = 2\pi \)
2. faces : \(\forall f \in \mathcal{F} : \sum_{v \sim f} x(v, f) = (\deg(f) \pm 2)\pi \)

1. and 2. mean: assignment \emph{locally consistent}.
Finding the angles via the flow network

\[W := V \cup F \]
\[A := \{(v, f) \in V \times F : v \text{ incident (\textasciitilde) to } f\} \]
\[\ell(a) = 0 \quad \forall a \in A \]
\[u(a) = 2\pi \quad \forall a \in A \]
\[d(v) = 2\pi \quad \forall v \in V \]
\[d(f) = \begin{cases}
-(\deg(f) - 2)\pi & \text{if } f \neq f_0, \\
-(\deg(f) + 2)\pi & \text{otherwise}
\end{cases} \]

Flow provides an assignment \(x(\cdot, \cdot) \) of angles where:

1. vertices : \(\forall v \in V : \sum_{f \sim v} x(v, f) = 2\pi \)
2. faces : \(\forall f \in F : \sum_{v \sim f} x(v, f) = (\deg(f) \pm 2)\pi \)

1. and 2. mean: assignment \textit{locally consistent}.

\textbf{Obs.} using edge costs we can maximize \textit{angular resolution}.
Locally Consistent $\not\Rightarrow$ Globally Consistent
Locally Consistent $\not\Rightarrow$ Globally Consistent
Locally Consistent \n\n\[\n\text{Globally Consistent} \n\]
Characterizing Inner Triangulations

Theorem [Di Battista & Vismara '93]

Given planar inner triangulation* with embedding \mathcal{F}, f_0 and angle assignment x, then:

1. \sum vertex angles $= 2\pi$
2. \sum face angles $= \pi$
3. for every $v \simneq f_0$, via radius R_v: $\prod \deg v_i \sin \alpha_i \sin \beta_i = 1$
4. for every $v \sim f_0$, $\sum_{v \sim \neq f_0} x(v,f) \leq \pi$

*) Every face $f \neq f_0$ is a triangle (C_3).
Characterizing Inner Triangulations

Theorem [Di Battista & Vismara ’93]

Given planar inner triangulation* with embedding \mathcal{F}, f_0 and angle assignment x, then:

There is a straight-line drawing with $\mathbb{R}^2 \setminus f_0$ convex

\[
\begin{cases}
1. \sum \text{ vertex angles} = 2\pi \\
2. \sum \text{ face angles} = \pi \\
\end{cases}
\]

\Leftrightarrow

*) Every face $f \neq f_0$ is a triangle (C_3).
Characterizing Inner Triangulations

Theorem [Di Battista & Vismara ’93]

Given planar inner triangulation* with embedding \mathcal{F}, f_0 and angle assignment x, then:

There is a straight-line drawing with $\mathbb{R}^2 \setminus f_0$ convex if and only if:

\[
\begin{align*}
\sum & \text{ vertex angles } = 2\pi \\
\sum & \text{ face angles } = \pi
\end{align*}
\]

*) Every face $f \neq f_0$ is a triangle (C_3).
Characterizing Inner Triangulations

Theorem [Di Battista & Vismara '93]

Given planar inner triangulation* with embedding \mathcal{F}, f_0 and angle assignment x, then:

There is a straight-line drawing with $\mathbb{R}^2 \setminus f_0$ convex

$$\iff \begin{cases}
 1. \quad \sum \text{vertex angles} = 2\pi \\
 2. \quad \sum \text{face angles} = \pi \\
 3. \quad \text{for every } v \sim f_0, \text{ via radius } R_v: \prod_{i=1}^{\deg v} \frac{\sin \alpha_i}{\sin \beta_i} = 1 \\
 4. \quad \text{for every } v \sim f_0, \sum_{v \sim f \neq f_0} x(v, f) \leq \pi
\end{cases}$$

*) Every face $f \neq f_0$ is a triangle (C_3).
Characterizing Inner Triangulations

Theorem

[Di Battista & Vismara ’93]

Given planar inner triangulation* with embedding \(\mathcal{F}, f_0 \)
and angle assignment \(x \), then:

There is a straight-line drawing with \(\mathbb{R}^2 \setminus f_0 \) convex

\[
\iff \begin{cases}
1. \sum \text{ vertex angles} = 2\pi \\
2. \sum \text{ face angles} = \pi \\
3. \text{ for every } v \sim f_0, \text{ via radius } R_v: \prod_{i=1}^{\deg v} \frac{\sin \alpha_i}{\sin \beta_i} = 1 \\
4. \text{ for every } v \sim f_0, \sum_{v \sim f \neq f_0} x(v, f) \leq \pi
\end{cases}
\]

*Problem: it’s not a linear condition :-(

*) Every face \(f \neq f_0 \) is a triangle \((C_3) \).