Algorithms for Graph Visualization

Summer Semester 2017
Lecture # 5

Graph Drawing via Canonical Orders

(Partly based on lecture slides by Philipp Kindermann & Alexander Wolff)
Outline

Planar Graphs: Background

The Canonical Order of a Planar Graph

Straight-line Drawing using a Canonical Order

Geometric Representations using Canonical Orders
Planar Graphs: basics

A graph is **planar** when its vertices and edges can be mapped to points and curves in \mathbb{R}^2 such that the curves are non-crossing. A graph is **plane** when it is given with an **embedding** of its vertices and edges in \mathbb{R}^2 which certifies its planarity.

<table>
<thead>
<tr>
<th>Embeddings of K_4</th>
<th>Non-planar graphs K_5 and $K_{3,3}$.</th>
</tr>
</thead>
<tbody>
<tr>
<td> </td>
<td> </td>
</tr>
</tbody>
</table>

- How do we define the **equivalence** of planar embeddings? By the sets of **inner faces** and the **outerface**.
Characterizations, Recognition, and Drawings

1. [Kuratowski 1930: *Sur le problème des courbes gauches en topologie*] A graph is planar iff it contains neither a K_5 nor a $K_{3,3}$ minor.

2. [Hopcroft & Tarjan, J. ACM 1974] For a graph G with n vertices, there is an $O(n)$ time algorithm to test if G is planar.

3. [Wagner 1936, Fáry 1948, Stein 1951] Every planar graph has an embedding where the edges are straight-lines.

4. [Koebe 1936: *Kontaktprobleme der konformen Abbildung*] Every planar graph is a circle contact graph (coin graph). (this implies 3).

![Diagram of a planar graph with coin graph representation]
1. [Tutte 1963: *How to draw a graph*]
 Every 3-connected planar has an embedding with convex polygons as its faces (i.e., implies straight-lines).
 - Idea: place vertices in the barycentre of neighbours.
 - Drawback: requires large grids.

2. [de Fraysseix, Pack, Pollack 1988]
 Every plane triangulation can be drawn with straight-lines such that the vertices reside on a \((2n - 4) \times (n - 2)\) grid.
We focus on triangulations.

- **plane triangulation** is a plane graph where every face is a triangle.
- **plane inner triangulation** is a plane graph where every face except the outer face is a triangle.

... But why??

- Easy to construct from any plane graph. Many ways to triangulate each face:

 ![Triangulation Diagram]

- Triangulations are precisely the maximal planar graphs, i.e., every planar graph is a subgraph of one such graph.
- Can we “nicely” describe all triangulations?
How to construct a plane triangulation?

- Start with a single edge u_1u_2. Let G_2 be this graph.
- Add a new vertex u_{i+1} to G_i so that the neighbours of u_{i+1} are on the outerface of G_i. Let G_{i+1} be this new graph.

1. Is G_i a triangulation?
 - No, the neighbours of u_{i+1} need to be a path.
 - No, u_{i+1} also needs at least two neighbours in G_i.
 - No, the last vertex v_n needs to cover the outerface of G_{n-1}.
 - Yes!

2. Do we get all plane triangulations?
 - Yes! But how can we prove this? (first we formalize the canonical order)
Canonical Order

A **canonical order** is a permutation v_1, \ldots, v_n of the vertex set of a plane graph G such that:

1. v_{i+1} has at least two neighbours in G_i.
2. The neighbours of v_{i+1} are consecutive in:

 $C_i = (v_1 = w_1, w_2, \ldots, w_{k-1}, w_k = v_2)$.

3. The neighbourhood of v_n is C_{n-1}.
Example: How to find a Canonical Order

Idea: Start from the “last” vertex and find a “peeling” order.
Lemma: Every Plane Inner Triangulation Has a Canonical Order (CO)

- For $G = (V, E)$, proceed by induction on $|V|$.
- Base Case: $|V| = 3$ (i.e., G Triangle)
- Inductive Case: $|V| > 3$, assume we have a CO for inner plane triangulations with $|V| - 1$ vertices.
- Def: A chord of G is an edge connecting non-consecutive vertices on G's outerface.
- Claim 1: If G has a vertex v on its outerface which does not belong to a chord, then $G \setminus v$ is an inner plane triangulation.
- Claim 2: G has a vertex on its outerface which does not belong to a chord.
- Proof of Claim 2: The chords are nested, i.e., some chord has no chord “above” it. This “top” chord has a vertex “above” it.
- qed.
Canonical Order: Algorithm

forall the \(v \in V \) do
\[
\text{chords}(v) \leftarrow 0; \text{out}(v) \leftarrow \text{false}; \text{mark}(v) \leftarrow \text{false};
\]
\[
\text{out}(v_1), \text{out}(v_2), \text{out}(v_n) \leftarrow \text{T};
\]
for \(k = n \) to 3 do
\[
\text{pick } v \neq v_1, v_2 \text{ with } \text{mark}(v) = \text{F}, \text{out}(v) = \text{T}, \text{chords}(v) = 0;
\]
\[
v_k \leftarrow v; \text{mark}(v) \leftarrow \text{T};
\]
\[
(w_1 = v_1, w_2, \ldots, w_{t-1}, w_t = v_2) \leftarrow \text{Outerface}(G_{k-1});
\]
\[
(w_p, \ldots, w_q) \leftarrow \text{unmarked neighbours of } v_k;
\]
for \(i = p \) to \(q \) do \(\text{out}(w_i) \leftarrow \text{T}; \)
\[
\text{update chords(·) for } w_p, \ldots, w_q \text{ and their neighbours;}
\]

\begin{itemize}
 \item chords\((v) \) is the number of chords incident to \(v \).
 \item mark\((v) = \text{T} \iff v \) has been picked.
 \item out\((v) = \text{T} \iff v \) is on the outerface of \(G_k \).
\end{itemize}

Time: \(O(n) \)
The main idea:

Invariant: G_{k-1} has been drawn so that:

- v_1 is at $(0, 0)$ and v_2 is at $(2k - 6, 0)$.
- The outerface forms an x-monotone curve with slopes ± 1.
Example Shift Algorithm

\[
(n-2, n-2)
\]

\[
(0, 0), (2n-4, 0)
\]
How do we define the “lower” set $L(v)$?

- Each inner node is covered exactly once.
- In G, this cover relation defines a rooted tree.
- In each G_i ($i \in \{2, \ldots, n - 1\}$), it defines a forest where the outerface contains the “roots”.
- The trees in this forest are the “bags” shown here.

Lemma

Applying the shift algorithm maintains monotone x-coordinates of the outerface.
The Shift Method: de Fraysseix, Pach und Pollack

\(v_1, \ldots, v_n\) : a canonical order of \(G\);

for \(i = 1\) to \(n\) do \(L(v_i) \leftarrow \{v_i\}\);

\(P(v_1) \leftarrow (0, 0)\); \(P(v_2) \leftarrow (2, 0)\); \(P(v_3) \leftarrow (1, 1)\);

for \(k = 4\) to \(n\) do

Let \(w_1 = v_1, w_2, \ldots, w_{t-1}, w_t = v_2\) be the outerface of \(G_{k-1}\);

Let \(w_p, \ldots, w_q\) be the neighbours of \(v_k\);

for \(v \in \bigcup_{j=p+1}^{q-1} L(w_j)\) do

\[x(v) \leftarrow x(v) + 1;\]

for \(v \in \bigcup_{j=q}^{t} L(w_j)\) do

\[x(v) \leftarrow x(v) + 2;\]

\(P(v_i) \leftarrow\) intersection point of the lines with slope \(\pm 1\) from
\(P(w_p)\) and \(P(w_q)\);

\(L(v_i) = \bigcup_{j=p+1}^{q-1} L(w_j) \cup \{v_i\}\);

Timing: \(O(n^2)\). Can we do it faster?
Linear Time Shifting

- Idea 1: To compute $x(v_k), y(v_k)$, we only need: the y-coordinates of w_p and w_q and the difference $x(w_q) - x(w_p)$.

- Idea 2: Instead of storing explicit x-coordinates we store certain x differences.

\[
\begin{align*}
\text{Idea 1:} & \quad x(v_k) = \frac{1}{2}(x(w_q) + x(w_p) + y(w_q) - y(w_p)) \quad (1) \\
\text{Idea 2:} & \quad y(v_k) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) + y(w_p)) \quad (2) \\
& \quad x(v_k) - x(w_p) = \frac{1}{2}(x(w_q) - x(w_p) + y(w_q) - y(w_p)) \quad (3)
\end{align*}
\]
Linear Time Shifting

Idea 2: Instead of storing explicit x-coordinates we store certain x differences. Namely, the edges from this “augmented” version of the cover tree.
Linear Time Shifting

To update the binary tree according to a new vertex \(v_k \)

- In the binary tree, we need the \(y(v_k) \) and the \(x \) differences from \(v_k \) to its covered neighbour \(w_{p+1} \) and to its “end” neighbours \(w_p \) and \(w_q \).
- Compute \(y(v_k) \) with (2), and \(\Delta_x(v_k, w_p) \) with (3).
- \(\Delta_x(v_k, w_q) = \Delta_x(w_p, w_q) - \Delta_x(v_k, w_p) \), and \(\Delta_x(v_k, v_{p+1}) = \Delta_x(w_p, w_{p+1}) - \Delta_x(v_k, w_p) \).
Intersection Representations of Graphs

Definition
For a collection S of sets S_1, \ldots, S_n, the intersection graph $G(S)$ of S has vertex set S and edge set
\[\{S_i S_j : i, j \in \{1, \ldots, n\}, i \neq j, \text{ and } S_i \cap S_j \neq \emptyset\}. \]
We call S an intersection representation of $G(S)$.

Does every graph have an intersection representation?
Contact Representations of Graphs

A collection of interiorly disjoint objects $\mathcal{S} = \{S_1, \ldots, S_n\}$ is called a contact representation of its intersection graph $G(\mathcal{S})$.

- Some object-types: circles, line segments, triangles, rectangles, ...
- What about the domain? 2D, 3D, higher dimension, non-orientable?
- ...

Is the intersection graph of a contact representation always planar? No. Not even for planar object-types!
Which object-types can be used to represent all planar graphs?
Planar Graphs

- Contact Disk [Koebe 1936]
- Contact Triangles and T-shapes [de Fraysseix, Ossona de Mendez, Rosenstiehl 1994]
- Side Contact of 3D Boxes [Thomassen 1986]
- and many more!
Triangulating for representations

Goal: Prove that all planar graphs have a intersection/contact representation by some object-type \mathcal{T}.

▸ If we are given a plane graph, there are many ways to triangulate it – by adding edges or vertices. Recall, our previous triangulation picture:

▸ What is best for our goal? Adding vertices.

Lemma

For any given object-type \mathcal{T}, if every planar triangulation has an intersection representation using \mathcal{T}-type objects, then every planar graph also can be represented using \mathcal{T}-type objects.
Lemma

For any given object-type \mathcal{T}, if every planar triangulation has an intersection representation using \mathcal{T}-type objects, then every planar graph also can be represented using \mathcal{T}-type objects.

Proof

- Start with a planar graph G and triangulate G to get G' by adding one dummy vertex for each face.
- Now, we have a \mathcal{T}-type intersection representation R of G'.
- Remove the objects corresponding to dummy objects from R and now we have R' which represents precisely G.

The more general property we are exploiting is the fact that intersection classes of graphs are **hereditary**, i.e., closed under the taking of induced subgraphs.
T-contact and Triangle-contact Representations

Example Representations:

Idea: Use the canonical order. Notice any interesting invariant about the two representations? Did something change??

Observations:

- The base triangle or T-shape is precisely its position in the canonical order.
- The highest point is precisely the base of its cover neighbour from above.
T-contact and Triangle-contact Systems

Using the canonical order, we can generate a right-triangle contact representation. Note: we also get a T-contact representation.
partition of the internal edges into three spanning trees
every vertex has out-degree exactly one in T_1, T_2 and T_3
vertex rule: order of edges: entering T_1, leaving T_2, entering T_3, leaving T_1, entering T_2, leaving T_3.
Schnyder Realizers Cont.

- 3 edge-disjoint spanning trees T_1, T_2, T_3 cover G.
- T_1, T_2, T_3 rooted at external vertices of G.
Schnyder Realizers, Canonical Orders, and Representations

(a) $v_1 \quad v_2 \quad v_n$

(b) $v_1 \quad v_2 \quad v_n$

(c) $v_{n=8}$

(d) $v_1 \quad v_2 \quad v_n$

(e) $v_1 \quad v_2 \quad v_n$

(f) $v_1 \quad v_2 \quad v_n$

Steven Chaplick · Lehrstuhl für Informatik I · Universität Würzburg
Exercises

1. Canonical Orders:
 1.1 Can you describe a special canonical order to build precisely the maximal outerplane graphs (i.e., outerplane inner triangulations)? (hint: how many neighbours can v_i have in G_i?)
 1.2 Can you describe a variation on the canonical order to build precisely the maximal biparitite plane graphs (i.e., every face has 4 vertices)?

2. Contact Representations:
 2.1 Show that every maximal outerplane graphs has a contact representation by: (i) rectangles; (ii) squares.
 2.2 Show that every maximal bipartite plane graph has a contact representation by: (i) rectangles; (ii) vertical and horizontal line segments.
 2.3 Show that there is a planar graph which does not have a contact representation by line segments. Note: here we do not restrict the slopes on the line segments in any way. Hint: how many edges can there be in the intersection graph of such a contact representation?