Advanced Algorithms

Computational Geometry Sweep Line Algorithms

Johannes Zink • WS22

Introduction

Computational geometry is about algorithmic problems that involve geometric objects such as points, line segments, lines, polygons, circles, planes, polyhedra, ...

Introduction

Computational geometry is about algorithmic problems that involve geometric objects such as points, line segments, lines, polygons, circles, planes, polyhedra, ... Some problems:
■ Closest Pair

Introduction

Computational geometry is about algorithmic problems that involve geometric objects such as points, line segments, lines, polygons, circles, planes, polyhedra, ..

Some problems:

■ Closest Pair

- LINE SEGMENT INTERSECTION

Introduction

Computational geometry is about algorithmic problems that involve geometric objects such as points, line segments, lines, polygons, circles, planes, polyhedra, ...

Some problems:

■ Closest Pair
■ Line segment intersection
■ Determining visibility

Introduction

Computational geometry is about algorithmic problems that involve geometric objects such as points, line segments, lines, polygons, circles, planes, polyhedra, ... Some problems:

- Closest Pair

■ Line segment intersection
■ Determining visibility

- Guarding an art gallery

Introduction

Computational geometry is about algorithmic problems that involve geometric objects such as points, line segments, lines, polygons, circles, planes, polyhedra, ... Some problems:

- Closest Pair

■ Line segment intersection
■ Determining visibility

- Guarding an art gallery
- Triangulating a polygon

Introduction

Computational geometry is about algorithmic problems that involve geometric objects such as points, line segments, lines, polygons, circles, planes, polyhedra, ... Some problems:

- Closest Pair

■ Line segment intersection
■ Determining visibility

- Guarding an art gallery
- Triangulating a polygon
- Motion planning

Introduction

Computational geometry is about algorithmic problems that involve geometric objects such as points, line segments, lines, polygons, circles, planes, polyhedra, ...

Some problems:

■ Closest Pair
■ Line segment intersection
■ Determining visibility

- Guarding an art gallery
- Triangulating a polygon
- Motion planning

■ Finding the closest post office

Introduction

Computational geometry is about algorithmic problems that involve geometric objects such as points, line segments, lines, polygons, circles, planes, polyhedra, ...

Some problems:

■ Closest Pair
■ Line segment intersection
■ Determining visibility

- Guarding an art gallery

■ Triangulating a polygon

- Motion planning

■ Finding the closest post office

- and many more.

We offer an entire course on computational geometry in the winter term!

Closest Pair

Given: (multi-)set of points $P \subseteq \mathbb{R}^{2}$.
Task: Find a pair of distinct elements $p_{a}, p_{b} \in P$ such that the Euclidean distance $\left\|p_{a}-p_{b}\right\|$ is minimum.

Closest Pair

Given: (multi-)set of points $P \subseteq \mathbb{R}^{2}$.
Task: Find a pair of distinct elements $p_{a}, p_{b} \in P$ such that the Euclidean distance $\left\|p_{a}-p_{b}\right\|$ is minimum.
Deterministic algorithms:
Brute-force

$$
\mathcal{O}\left(n^{2}\right)
$$

Closest Pair

Given: (multi-)set of points $P \subseteq \mathbb{R}^{2}$.
Task: Find a pair of distinct elements $p_{a}, p_{b} \in P$ such that the Euclidean distance $\left\|p_{a}-p_{b}\right\|$ is minimum.

Deterministic algorithms:
Brute-force $\mathcal{O}\left(n^{2}\right)$
Divide and conquer (recall from ADS) $\mathcal{O}(n \log n)$ (optimal)

Closest Pair

Given: (multi-)set of points $P \subseteq \mathbb{R}^{2}$.
Task: Find a pair of distinct elements $p_{a}, p_{b} \in P$ such that the Euclidean distance $\left\|p_{a}-p_{b}\right\|$ is minimum.
Deterministic algorithms:
Brute-force $\mathcal{O}\left(n^{2}\right)$
Divide and conquer (recall from ADS) $\mathcal{O}(n \log n)$ (optimal)

Randomized algorithm:

recall: Randomized incremental construction $\mathcal{O}(n) \quad$ (expected runtime)

A Randomized Incremental Algorithm for Closest Pair

Define $P_{i}=\left\{p_{1}, p_{2}, \ldots, p_{i}\right\}$ and let δ_{i} be the dis $r \boldsymbol{i t h} \boldsymbol{m}^{s}$. os est pair in P_{i}. Idea: $\delta_{2}=\left\|p_{1}, p_{2}\right\|$. Compute $\delta_{3}, \delta_{4}, \ldots, \delta_{\text {ar ln }}$ ort one points iteratively.

Suppose we have already determin
Consider a square grid with of each closest pro

adjace $e^{c a l l} \backslash e^{c t u r}$, the cell of p_{i} or one of the

Ea $R e^{C^{a}}$ cells contains at most $\mathcal{O}(1)$ points of $P_{i-1}(\Leftarrow$ packing argument $)$. The co states of the cell of p_{i} can be determined in $\mathcal{O}(1)$ time assuming the floor function can be computed in $\mathcal{O}(1)$ time.
\Rightarrow The test $\delta_{i}<\delta_{i-1}$ can be performed in $\mathcal{O}(1)$ time assuming P_{i-1} is stored in a suitable dictionary for the nonempty cells (implementable via dynamic perfect hashing).

Closest Pair

Given: (multi-)set of points $P \subseteq \mathbb{R}^{2}$.
Task: Find a pair of distinct elements $p_{a}, p_{b} \in P$ such that the Euclidean distance $\left\|p_{a}-p_{b}\right\|$ is minimum.
Deterministic algorithms:
Brute-force $\mathcal{O}\left(n^{2}\right)$
Divide and conquer (recall from ADS) $\mathcal{O}(n \log n)$ (optimal)

Randomized algorithm:

recall: Randomized incremental construction $\mathcal{O}(n) \quad$ (expected runtime)

Closest Pair

Given: (multi-)set of points $P \subseteq \mathbb{R}^{2}$.
Task: Find a pair of distinct elements $p_{a}, p_{b} \in P$ such that the Euclidean distance $\left\|p_{a}-p_{b}\right\|$ is minimum.
Deterministic algorithms:
Brute-force $\mathcal{O}\left(n^{2}\right)$
Divide and conquer (recall from ADS) $\mathcal{O}(n \log n)$ (optimal)
now: Sweep line

$$
\mathcal{O}(n \log n) \quad \text { (optimal) }
$$

Randomized algorithm:

recall: Randomized incremental construction $\mathcal{O}(n) \quad$ (expected runtime)

A Sweep Line Approach for Closest Pair

Assumption: The points in P have pairwise distinct x-coordinates. Idea: Sweep the plane from left to right with a vertical line ℓ (the sweep line).

0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	

A Sweep Line Approach for Closest Pair

Assumption: The points in P have pairwise distinct x-coordinates.
Idea: Sweep the plane from left to right with a vertical line ℓ (the sweep line).

A Sweep Line Approach for Closest Pair

Assumption: The points in P have pairwise distinct x-coordinates.
Idea: Sweep the plane from left to right with a vertical line ℓ (the sweep line).

A Sweep Line Approach for Closest Pair

Assumption: The points in P have pairwise distinct x-coordinates.
Idea: Sweep the plane from left to right with a vertical line ℓ (the sweep line).

A Sweep Line Approach for Closest Pair

Assumption: The points in P have pairwise distinct x-coordinates.
Idea: Sweep the plane from left to right with a vertical line ℓ (the sweep line).

0

0
0

0

0

0

0

A Sweep Line Approach for Closest Pair

Assumption: The points in P have pairwise distinct x-coordinates.
Idea: Sweep the plane from left to right with a vertical line ℓ (the sweep line).

```
                    0
```

0

0

0

0

0

A Sweep Line Approach for Closest Pair

Assumption: The points in P have pairwise distinct x-coordinates.
Idea: Sweep the plane from left to right with a vertical line ℓ (the sweep line).

A Sweep Line Approach for Closest Pair

Assumption: The points in P have pairwise distinct x-coordinates.
Idea: Sweep the plane from left to right with a vertical line ℓ (the sweep line).

Invariant: a closest pair of the points to the left of ℓ and its distance δ is already known.

A Sweep Line Approach for Closest Pair

Assumption: The points in P have pairwise distinct x-coordinates.
Idea: Sweep the plane from left to right with a vertical line ℓ (the sweep line).

Invariant: a closest pair of the points to the left of ℓ and its distance δ is already known.

A Sweep Line Approach for Closest Pair

Assumption: The points in P have pairwise distinct x-coordinates.
Idea: Sweep the plane from left to right with a vertical line ℓ (the sweep line).

Invariant: a closest pair of the points to the left of ℓ and its distance δ is already known. Observations:

- This partial solution can only change when ℓ sweeps a point p of P.

A Sweep Line Approach for Closest Pair

Assumption: The points in P have pairwise distinct x-coordinates.
Idea: Sweep the plane from left to right with a vertical line ℓ (the sweep line).

Invariant: a closest pair of the points to the left of ℓ and its distance δ is already known. Observations:

- This partial solution can only change when ℓ sweeps a point p of P.

A Sweep Line Approach for Closest Pair

Assumption: The points in P have pairwise distinct x-coordinates.
Idea: Sweep the plane from left to right with a vertical line ℓ (the sweep line).

Invariant: a closest pair of the points to the left of ℓ and its distance δ is already known. Observations:

- This partial solution can only change when ℓ sweeps a point p of P.

A Sweep Line Approach for Closest Pair

Assumption: The points in P have pairwise distinct x-coordinates.
Idea: Sweep the plane from left to right with a vertical line ℓ (the sweep line).

```
。
```

0

0

○

0
0

○

0

Invariant: a closest pair of the points to the left of ℓ and its distance δ is already known. Observations:

■ This partial solution can only change when ℓ sweeps a point p of P.

A Sweep Line Approach for Closest Pair

Assumption: The points in P have pairwise distinct x-coordinates.
Idea: Sweep the plane from left to right with a vertical line ℓ (the sweep line).

```
。


0

。
```

0

```

Invariant: a closest pair of the points to the left of \(\ell\) and its distance \(\delta\) is already known. Observations:

■ This partial solution can only change when \(\ell\) sweeps a point \(p\) of \(P\).
■ Each new closest pair consists of \(p\) and a point \(q\)

\section*{A Sweep Line Approach for Closest Pair}

Assumption: The points in \(P\) have pairwise distinct \(x\)-coordinates.
Idea: Sweep the plane from left to right with a vertical line \(\ell\) (the sweep line).


Invariant: a closest pair of the points to the left of \(\ell\) and its distance \(\delta\) is already known.
Observations:
■ This partial solution can only change when \(\ell\) sweeps a point \(p\) of \(P\).
- Each new closest pair consists of \(p\) and a point \(q\)

What do we know about the location of \(q\) ?

\section*{A Sweep Line Approach for Closest Pair}

Assumption: The points in \(P\) have pairwise distinct \(x\)-coordinates.
Idea: Sweep the plane from left to right with a vertical line \(\ell\) (the sweep line).
```

 0
    ```
o


0

```

0
0

```

```

0

```

○
0

○


○
```

○

```

Invariant: a closest pair of the points to the left of \(\ell\) and its distance \(\delta\) is already known. Observations:

■ This partial solution can only change when \(\ell\) sweeps a point \(p\) of \(P\).
■ Each new closest pair consists of \(p\) and a point \(q\) with distance \(<\delta\) to \(\ell\).

\section*{A Sweep Line Approach for Closest Pair}

Assumption: The points in \(P\) have pairwise distinct \(x\)-coordinates.
Idea: Sweep the plane from left to right with a vertical line \(\ell\) (the sweep line).


Invariant: a closest pair of the points to the left of \(\ell\) and its distance \(\delta\) is already known.
Observations:
■ This partial solution can only change when \(\ell\) sweeps a point \(p\) of \(P\).
■ Each new closest pair consists of \(p\) and a point \(q\) with distance \(<\delta\) to \(\ell\).

\section*{A Sweep Line Approach for Closest Pair}

Assumption: The points in \(P\) have pairwise distinct \(x\)-coordinates.
Idea: Sweep the plane from left to right with a vertical line \(\ell\) (the sweep line).


Invariant: a closest pair of the points to the left of \(\ell\) and its distance \(\delta\) is already known.
Observations:
■ This partial solution can only change when \(\ell\) sweeps a point \(p\) of \(P\).
■ Each new closest pair consists of \(p\) and a point \(q\) with distance \(<\delta\) to \(\ell\).

\section*{A Sweep Line Approach for Closest Pair}

Assumption: The points in \(P\) have pairwise distinct \(x\)-coordinates.
Idea: Sweep the plane from left to right with a vertical line \(\ell\) (the sweep line).
```

 0
    ```
o


0

```

0
0

```

```

0

```

○
0

○


○
```

○

```

Invariant: a closest pair of the points to the left of \(\ell\) and its distance \(\delta\) is already known. Observations:

■ This partial solution can only change when \(\ell\) sweeps a point \(p\) of \(P\).
■ Each new closest pair consists of \(p\) and a point \(q\) with distance \(<\delta\) to \(\ell\).

\section*{A Sweep Line Approach for Closest Pair}

Assumption: The points in \(P\) have pairwise distinct \(x\)-coordinates.
Idea: Sweep the plane from left to right with a vertical line \(\ell\) (the sweep line).


Invariant: a closest pair of the points to the left of \(\ell\) and its distance \(\delta\) is already known.
Observations:
■ This partial solution can only change when \(\ell\) sweeps a point \(p\) of \(P\).
- Each new closest pair consists of \(p\) and a point \(q\) with distance \(<\delta\) to \(\ell\).
\(\square q\) needs to be located in a \(\delta \times 2 \delta\) rectangle \(R\) to the left of \(p\).

\section*{A Sweep Line Approach for Closest Pair}

Assumption: The points in \(P\) have pairwise distinct \(x\)-coordinates.
Idea: Sweep the plane from left to right with a vertical line \(\ell\) (the sweep line).


Invariant: a closest pair of the points to the left of \(\ell\) and its distance \(\delta\) is already known.
Observations:
■ This partial solution can only change when \(\ell\) sweeps a point \(p\) of \(P\).
- Each new closest pair consists of \(p\) and a point \(q\) with distance \(<\delta\) to \(\ell\).
- \(q\) needs to be located in a \(\delta \times 2 \delta\) rectangle \(R\) to the left of \(p\).
\(\square R\) contains \(\mathcal{O}(1)\) points of \(P \backslash\{p\}\) since their pairwise distance is \(\geq \delta .\binom{\) packing }{ argument }

\section*{Computing the Points in \(R\) Efficiently}

Let \(S\) denote the vertical slab of width \(\delta\) to the left of \(\ell\).

\section*{Computing the Points in Efficiently}

Let \(S\) denote the vertical slab of width \(\delta\) to the left of \(\ell\). Assume that the points \(P \cap S\) are stored in a linked list \(\mathcal{L}\) sorted according to their \(y\)-coordinates.


\section*{Computing the Points in Efficiently}

Let \(S\) denote the vertical slab of width \(\delta\) to the left of \(\ell\). Assume that the points \(P \cap S\) are stored in a linked list \(\mathcal{L}\) sorted according to their y -coordinates.
\(\Rightarrow\) Given a pointer to \(p\), we can determine the points in \(R\) by searching the interval \([\mathrm{y}(p)-\delta, \mathrm{y}(p)+\delta]\). This takes \(\mathcal{O}(1)\) time since \(R\) contains \(\mathcal{O}(1)\) points.


\section*{Computing the Points in \(R\) Efficiently}

Let \(S\) denote the vertical slab of width \(\delta\) to the left of \(\ell\). Assume that the points \(P \cap S\) are stored in a linked list \(\mathcal{L}\) sorted according to their y -coordinates.
\(\Rightarrow\) Given a pointer to \(p\), we can determine the points in \(R\) by searching the interval \([\mathrm{y}(p)-\delta, \mathrm{y}(p)+\delta]\). This takes \(\mathcal{O}(1)\) time since \(R\) contains \(\mathcal{O}(1)\) points.
To ensure that \(\mathcal{L}\) can be updated efficiently, we additionally store the points \(P \cap S\) in a balanced binary search tree \(\mathcal{T}\) using the \(y\)-coordinates as keys.


\section*{Computing the Points in \(R\) Efficiently}

Let \(S\) denote the vertical slab of width \(\delta\) to the left of \(\ell\). Assume that the points \(P \cap S\) are stored in a linked list \(\mathcal{L}\) sorted according to their y -coordinates.
\(\Rightarrow\) Given a pointer to \(p\), we can determine the points in \(R\) by searching the interval \([\mathrm{y}(p)-\delta, \mathrm{y}(p)+\delta]\). This takes \(\mathcal{O}(1)\) time since \(R\) contains \(\mathcal{O}(1)\) points.
To ensure that \(\mathcal{L}\) can be updated efficiently, we additionally store the points \(P \cap S\) in a balanced binary search tree \(\mathcal{T}\) using the \(y\)-coordinates as keys.
The corresponding elements in \(\mathcal{L}\) and \(\mathcal{T}\) are linked.


\section*{Computing the Points in \(R\) Efficiently}

Let \(S\) denote the vertical slab of width \(\delta\) to the left of \(\ell\). Assume that the points \(P \cap S\) are stored in a linked list \(\mathcal{L}\) sorted according to their y-coordinates.
\(\Rightarrow\) Given a pointer to \(p\), we can determine the points in \(R\) by searching the interval \([\mathrm{y}(p)-\delta, \mathrm{y}(p)+\delta]\). This takes \(\mathcal{O}(1)\) time since \(R\) contains \(\mathcal{O}(1)\) points.
To ensure that \(\mathcal{L}\) can be updated efficiently, we additionally store the points \(P \cap S\) in a balanced binary search tree \(\mathcal{T}\) using the y-coordinates as keys.

The corresponding elements in \(\mathcal{L}\) and \(\mathcal{T}\) are linked.
\(\Rightarrow\) when a point is inserted in \(\mathcal{T}\) in \(\mathcal{O}(\log n)\) time, its according position in \(\mathcal{L}\) can be determined in \(\mathcal{O}(1)\) time.


\section*{Computing the Points in Efficiently}

Let \(S\) denote the vertical slab of width \(\delta\) to the left of \(\ell\). Assume that the points \(P \cap S\) are stored in a linked list \(\mathcal{L}\) sorted according to their y-coordinates.
\(\Rightarrow\) Given a pointer to \(p\), we can determine the points in \(R\) by searching the interval \([\mathrm{y}(p)-\delta, \mathrm{y}(p)+\delta]\). This takes \(\mathcal{O}(1)\) time since \(R\) contains \(\mathcal{O}(1)\) points.

To ensure that \(\mathcal{L}\) can be updated efficiently, we additionally store the points \(P \cap S\) in a balanced binary search tree \(\mathcal{T}\) using the y-coordinates as keys.

The corresponding elements in \(\mathcal{L}\) and \(\mathcal{T}\) are linked.
\(\Rightarrow\) when a point is inserted in \(\mathcal{T}\) in \(\mathcal{O}(\log n)\) time, its according position in \(\mathcal{L}\) can be determined in \(\mathcal{O}(1)\) time.


Invariant 2: when we reach a point \(p, \mathcal{T}\) and \(\mathcal{L}\) contain exactly the points in \(P \cap S\).

\section*{Algorithm}
\(p_{1}, p_{2}, \ldots, p_{n} \leftarrow\) points of \(P\) sorted according to their x-coordinates \(P_{\text {min }} \leftarrow\) nil // current closest pair \(\delta \leftarrow \infty \quad / /\) distance of current closest pair \(k \leftarrow 1 / /\) index of the left-most point in \(\mathcal{L}\) and \(\mathcal{T}\) initialize \(\mathcal{L}\) and \(\mathcal{T}\) with \(p_{1}\)
for \(i=2,3, \ldots, n\) do
insert \(p_{i}\) into \(\mathcal{L}\) and \(\mathcal{T}\)
for \(p_{j} \in\left[\mathrm{y}\left(p_{i}\right)-\delta, \mathrm{y}\left(p_{i}\right)+\delta\right] \backslash\left\{p_{i}\right\}\) do
if \(\left\|p_{j}-p_{i}\right\|<\delta\) do
\(P_{\text {min }} \leftarrow\left\{p_{j}, p_{i}\right\} ; \delta \leftarrow\left\|p_{j}-p_{i}\right\|\)
while \(\times\left(p_{k}\right)<x\left(p_{i+1}\right)-\delta\) do
delete \(p_{k}\) from \(\mathcal{L}\) and \(\mathcal{T}\) \(k \leftarrow k+1\)
return \(P_{\text {min }}\)

\section*{Algorithm}
\(p_{1}, p_{2}, \ldots, p_{n} \leftarrow\) points of \(P\) sorted according to their x-coordinates \(P_{\text {min }} \leftarrow\) nil // current closest pair \(\delta \leftarrow \infty \quad / /\) distance of current closest pair \(k \leftarrow 1 / /\) index of the left-most point in \(\mathcal{L}\) and \(\mathcal{T}\) initialize \(\mathcal{L}\) and \(\mathcal{T}\) with \(p_{1}\) for \(i=2,3, \ldots, n\) do insert \(p_{i}\) into \(\mathcal{L}\) and \(\mathcal{T}\) for \(p_{j} \in\left[\mathrm{y}\left(p_{i}\right)-\delta, \mathrm{y}\left(p_{i}\right)+\delta\right] \backslash\left\{p_{i}\right\}\) do if \(\left\|p_{j}-p_{i}\right\|<\delta\) do \(P_{\text {min }} \leftarrow\left\{p_{j}, p_{i}\right\} ; \delta \leftarrow\left\|p_{j}-p_{i}\right\|\)

while \(\times\left(p_{k}\right)<x\left(p_{i+1}\right)-\delta\) do delete \(p_{k}\) from \(\mathcal{L}\) and \(\mathcal{T}\) \(k \leftarrow k+1\)
return \(P_{\text {min }}\)

\section*{Algorithm}
\(p_{1}, p_{2}, \ldots, p_{n} \leftarrow\) points of \(P\) sorted according to their x-coordinates
\(P_{\text {min }} \leftarrow\) nil // current closest pair
\(\delta \leftarrow \infty \quad / /\) distance of current closest pair
\(k \leftarrow 1 / /\) index of the left-most point in \(\mathcal{L}\) and \(\mathcal{T}\) initialize \(\mathcal{L}\) and \(\mathcal{T}\) with \(p_{1}\)
for \(i=2,3, \ldots, n\) do
insert \(p_{i}\) into \(\mathcal{L}\) and \(\mathcal{T}\)
for \(p_{j} \in\left[\mathrm{y}\left(p_{i}\right)-\delta, \mathrm{y}\left(p_{i}\right)+\delta\right] \backslash\left\{p_{i}\right\}\) do if \(\left\|p_{j}-p_{i}\right\|<\delta\) do \(P_{\text {min }} \leftarrow\left\{p_{j}, p_{i}\right\} ; \delta \leftarrow\left\|p_{j}-p_{i}\right\|\)
while \(\times\left(p_{k}\right)<x\left(p_{i+1}\right)-\delta\) do delete \(p_{k}\) from \(\mathcal{L}\) and \(\mathcal{T}\) \(k \leftarrow k+1\)
return \(P_{\text {min }}\)


\section*{Algorithm}
\(p_{1}, p_{2}, \ldots, p_{n} \leftarrow\) points of \(P\) sorted according to their x-coordinates \(P_{\text {min }} \leftarrow\) nil // current closest pair \(\delta \leftarrow \infty \quad / /\) distance of current closest pair \(k \leftarrow 1 / /\) index of the left-most point in \(\mathcal{L}\) and \(\mathcal{T}\) initialize \(\mathcal{L}\) and \(\mathcal{T}\) with \(p_{1}\)
for \(i=2,3, \ldots, n\) do
insert \(p_{i}\) into \(\mathcal{L}\) and \(\mathcal{T}\)
for \(p_{j} \in\left[\mathrm{y}\left(p_{i}\right)-\delta, \mathrm{y}\left(p_{i}\right)+\delta\right] \backslash\left\{p_{i}\right\}\) do if \(\left\|p_{j}-p_{i}\right\|<\delta\) do \(P_{\text {min }} \leftarrow\left\{p_{j}, p_{i}\right\} ; \delta \leftarrow\left\|p_{j}-p_{i}\right\|\)
while \(\times\left(p_{k}\right)<x\left(p_{i+1}\right)-\delta\) do delete \(p_{k}\) from \(\mathcal{L}\) and \(\mathcal{T}\) \(k \leftarrow k+1\)
return \(P_{\text {min }}\)


\section*{Algorithm}
\(p_{1}, p_{2}, \ldots, p_{n} \leftarrow\) points of \(P\) sorted according to their x-coordinates \(P_{\text {min }} \leftarrow\) nil // current closest pair \(\delta \leftarrow \infty \quad / /\) distance of current closest pair \(k \leftarrow 1 / /\) index of the left-most point in \(\mathcal{L}\) and \(\mathcal{T}\) initialize \(\mathcal{L}\) and \(\mathcal{T}\) with \(p_{1}\)
for \(i=2,3, \ldots, n\) do
insert \(p_{i}\) into \(\mathcal{L}\) and \(\mathcal{T}\)
for \(p_{j} \in\left[\mathrm{y}\left(p_{i}\right)-\delta, \mathrm{y}\left(p_{i}\right)+\delta\right] \backslash\left\{p_{i}\right\}\) do if \(\left\|p_{j}-p_{i}\right\|<\delta\) do \(P_{\text {min }} \leftarrow\left\{p_{j}, p_{i}\right\} ; \delta \leftarrow\left\|p_{j}-p_{i}\right\|\)
while \(\times\left(p_{k}\right)<x\left(p_{i+1}\right)-\delta\) do delete \(p_{k}\) from \(\mathcal{L}\) and \(\mathcal{T}\) \(k \leftarrow k+1\)
return \(P_{\text {min }}\)

\section*{Algorithm}
\(p_{1}, p_{2}, \ldots, p_{n} \leftarrow\) points of \(P\) sorted according to their x-coordinates \(P_{\text {min }} \leftarrow\) nil // current closest pair \(\delta \leftarrow \infty \quad / /\) distance of current closest pair \(k \leftarrow 1 / /\) index of the left-most point in \(\mathcal{L}\) and \(\mathcal{T}\) initialize \(\mathcal{L}\) and \(\mathcal{T}\) with \(p_{1}\)
for \(i=2,3, \ldots, n\) do
insert \(p_{i}\) into \(\mathcal{L}\) and \(\mathcal{T}\)
for \(p_{j} \in\left[\mathrm{y}\left(p_{i}\right)-\delta, \mathrm{y}\left(p_{i}\right)+\delta\right] \backslash\left\{p_{i}\right\}\) do if \(\left\|p_{j}-p_{i}\right\|<\delta\) do。

while \(\times\left(p_{k}\right)<x\left(p_{i+1}\right)-\delta\) do delete \(p_{k}\) from \(\mathcal{L}\) and \(\mathcal{T}\) \(k \leftarrow k+1\)
return \(P_{\text {min }}\)

\section*{Algorithm}
\(p_{1}, p_{2}, \ldots, p_{n} \leftarrow\) points of \(P\) sorted according to their x-coordinates \(P_{\text {min }} \leftarrow\) nil // current closest pair \(\delta \leftarrow \infty \quad / /\) distance of current closest pair \(k \leftarrow 1 / /\) index of the left-most point in \(\mathcal{L}\) and \(\mathcal{T}\) initialize \(\mathcal{L}\) and \(\mathcal{T}\) with \(p_{1}\)
for \(i=2,3, \ldots, n\) do
insert \(p_{i}\) into \(\mathcal{L}\) and \(\mathcal{T}\)
for \(p_{j} \in\left[\mathrm{y}\left(p_{i}\right)-\delta, \mathrm{y}\left(p_{i}\right)+\delta\right] \backslash\left\{p_{i}\right\}\) do if \(\left\|p_{j}-p_{i}\right\|<\delta\) do
\(P_{\text {min }} \leftarrow\left\{p_{j}, p_{i}\right\} ; \delta \leftarrow\left\|p_{j}-p_{i}\right\|\)
while \(\times\left(p_{k}\right)<x\left(p_{i+1}\right)-\delta\) do
delete \(p_{k}\) from \(\mathcal{L}\) and \(\mathcal{T}\) \(k \leftarrow k+1\)
return \(P_{\text {min }}\)

\section*{Algorithm}
\(p_{1}, p_{2}, \ldots, p_{n} \leftarrow\) points of \(P\) sorted according to their x-coordinates \(P_{\text {min }} \leftarrow\) nil // current closest pair \(\delta \leftarrow \infty \quad / /\) distance of current closest pair \(k \leftarrow 1 / /\) index of the left-most point in \(\mathcal{L}\) and \(\mathcal{T}\) initialize \(\mathcal{L}\) and \(\mathcal{T}\) with \(p_{1}\)
for \(i=2,3, \ldots, n\) do
insert \(p_{i}\) into \(\mathcal{L}\) and \(\mathcal{T}\)
for \(p_{j} \in\left[\mathrm{y}\left(p_{i}\right)-\delta, \mathrm{y}\left(p_{i}\right)+\delta\right] \backslash\left\{p_{i}\right\}\) do if \(\left\|p_{j}-p_{i}\right\|<\delta\) do
\(P_{\text {min }} \leftarrow\left\{p_{j}, p_{i}\right\} ; \delta \leftarrow\left\|p_{j}-p_{i}\right\|\)。

while \(\times\left(p_{k}\right)<x\left(p_{i+1}\right)-\delta\) do delete \(p_{k}\) from \(\mathcal{L}\) and \(\mathcal{T}\) \(k \leftarrow k+1\)
return \(P_{\text {min }}\)

\section*{Algorithm}
\(p_{1}, p_{2}, \ldots, p_{n} \leftarrow\) points of \(P\) sorted according to their x-coordinates \(P_{\text {min }} \leftarrow\) nil // current closest pair \(\delta \leftarrow \infty \quad / /\) distance of current closest pair \(k \leftarrow 1 / /\) index of the left-most point in \(\mathcal{L}\) and \(\mathcal{T}\) initialize \(\mathcal{L}\) and \(\mathcal{T}\) with \(p_{1}\)
for \(i=2,3, \ldots, n\) do
insert \(p_{i}\) into \(\mathcal{L}\) and \(\mathcal{T}\)
for \(p_{j} \in\left[\mathrm{y}\left(p_{i}\right)-\delta, \mathrm{y}\left(p_{i}\right)+\delta\right] \backslash\left\{p_{i}\right\}\) do if \(\left\|p_{j}-p_{i}\right\|<\delta\) do
\(P_{\text {min }} \leftarrow\left\{p_{j}, p_{i}\right\} ; \delta \leftarrow\left\|p_{j}-p_{i}\right\|\)。

while \(\times\left(p_{k}\right)<x\left(p_{i+1}\right)-\delta\) do delete \(p_{k}\) from \(\mathcal{L}\) and \(\mathcal{T}\) \(k \leftarrow k+1\)
return \(P_{\text {min }}\)

\section*{Algorithm}
\(p_{1}, p_{2}, \ldots, p_{n} \leftarrow\) points of \(P\) sorted according to their x-coordinates \(P_{\text {min }} \leftarrow\) nil // current closest pair \(\delta \leftarrow \infty \quad / /\) distance of current closest pair \(k \leftarrow 1 / /\) index of the left-most point in \(\mathcal{L}\) and \(\mathcal{T}\) initialize \(\mathcal{L}\) and \(\mathcal{T}\) with \(p_{1}\)
for \(i=2,3, \ldots, n\) do
insert \(p_{i}\) into \(\mathcal{L}\) and \(\mathcal{T}\)
for \(p_{j} \in\left[\mathrm{y}\left(p_{i}\right)-\delta, \mathrm{y}\left(p_{i}\right)+\delta\right] \backslash\left\{p_{i}\right\}\) do if \(\left\|p_{j}-p_{i}\right\|<\delta\) do
\(P_{\text {min }} \leftarrow\left\{p_{j}, p_{i}\right\} ; \delta \leftarrow\left\|p_{j}-p_{i}\right\|\)。

while \(\times\left(p_{k}\right)<x\left(p_{i+1}\right)-\delta\) do delete \(p_{k}\) from \(\mathcal{L}\) and \(\mathcal{T}\) \(k \leftarrow k+1\)
return \(P_{\text {min }}\)

\section*{Algorithm}
\(p_{1}, p_{2}, \ldots, p_{n} \leftarrow\) points of \(P\) sorted according to their x-coordinates \(\mathcal{O}(n \log n)\)
\(P_{\text {min }} \leftarrow\) nil // current closest pair
\(\delta \leftarrow \infty \quad / /\) distance of current closest pair
\(k \leftarrow 1 / /\) index of the left-most point in \(\mathcal{L}\) and \(\mathcal{T}\)
initialize \(\mathcal{L}\) and \(\mathcal{T}\) with \(p_{1}\)
for \(i=2,3, \ldots, n\) do
insert \(p_{i}\) into \(\mathcal{L}\) and \(\mathcal{T}\)
for \(p_{j} \in\left[\mathrm{y}\left(p_{i}\right)-\delta, \mathrm{y}\left(p_{i}\right)+\delta\right] \backslash\left\{p_{i}\right\}\) do
if \(\left\|p_{j}-p_{i}\right\|<\delta\) do
\(P_{\text {min }} \leftarrow\left\{p_{j}, p_{i}\right\} ; \delta \leftarrow\left\|p_{j}-p_{i}\right\|\)
while \(\times\left(p_{k}\right)<x\left(p_{i+1}\right)-\delta\) do
delete \(p_{k}\) from \(\mathcal{L}\) and \(\mathcal{T}\) \(k \leftarrow k+1\)
return \(P_{\text {min }}\)

\section*{Algorithm}
\(p_{1}, p_{2}, \ldots, p_{n} \leftarrow\) points of \(P\) sorted according to their x-coordinates \(\mathcal{O}(n \log n)\)
\(P_{\text {min }} \leftarrow\) nil // current closest pair
\(\delta \leftarrow \infty \quad / /\) distance of current closest pair
\(k \leftarrow 1 / /\) index of the left-most point in \(\mathcal{L}\) and \(\mathcal{T}\)
initialize \(\mathcal{L}\) and \(\mathcal{T}\) with \(p_{1}\)
for \(i=2,3, \ldots, n\) do
insert \(p_{i}\) into \(\mathcal{L}\) and \(\mathcal{T} \mathcal{O}(\log n)\)
for \(p_{j} \in\left[\mathrm{y}\left(p_{i}\right)-\delta, \mathrm{y}\left(p_{i}\right)+\delta\right] \backslash\left\{p_{i}\right\}\) do
if \(\left\|p_{j}-p_{i}\right\|<\delta\) do
\(P_{\text {min }} \leftarrow\left\{p_{j}, p_{i}\right\} ; \delta \leftarrow\left\|p_{j}-p_{i}\right\|\)
while \(\times\left(p_{k}\right)<x\left(p_{i+1}\right)-\delta\) do delete \(p_{k}\) from \(\mathcal{L}\) and \(\mathcal{T}\) \(k \leftarrow k+1\)
return \(P_{\text {min }}\)

\section*{Algorithm}
\(p_{1}, p_{2}, \ldots, p_{n} \leftarrow\) points of \(P\) sorted according to their x-coordinates \(\mathcal{O}(n \log n)\)
\(P_{\text {min }} \leftarrow\) nil // current closest pair
\(\delta \leftarrow \infty \quad / /\) distance of current closest pair
\(k \leftarrow 1 / /\) index of the left-most point in \(\mathcal{L}\) and \(\mathcal{T}\) initialize \(\mathcal{L}\) and \(\mathcal{T}\) with \(p_{1}\)
for \(i=2,3, \ldots, n\) do
insert \(p_{i}\) into \(\mathcal{L}\) and \(\mathcal{T} \mathcal{O}(\log n)\)
for \(p_{j} \in\left[\mathrm{y}\left(p_{i}\right)-\delta, \mathrm{y}\left(p_{i}\right)+\delta\right] \backslash\left\{p_{i}\right\} \mathbf{d o} \mathcal{O}(1)\)
if \(\left\|p_{j}-p_{i}\right\|<\delta\) do
\(P_{\text {min }} \leftarrow\left\{p_{j}, p_{i}\right\} ; \delta \leftarrow\left\|p_{j}-p_{i}\right\|\)
while \(\times\left(p_{k}\right)<x\left(p_{i+1}\right)-\delta\) do delete \(p_{k}\) from \(\mathcal{L}\) and \(\mathcal{T}\) \(k \leftarrow k+1\)
return \(P_{\text {min }}\)

\section*{Algorithm}
\(p_{1}, p_{2}, \ldots, p_{n} \leftarrow\) points of \(P\) sorted according to their x-coordinates \(\mathcal{O}(n \log n)\)
\(P_{\text {min }} \leftarrow\) nil // current closest pair
\(\delta \leftarrow \infty \quad / /\) distance of current closest pair
\(k \leftarrow 1 / /\) index of the left-most point in \(\mathcal{L}\) and \(\mathcal{T}\) initialize \(\mathcal{L}\) and \(\mathcal{T}\) with \(p_{1}\)
for \(i=2,3, \ldots, n\) do
insert \(p_{i}\) into \(\mathcal{L}\) and \(\mathcal{T} \mathcal{O}(\log n)\)

while \(\times\left(p_{k}\right)<\times\left(p_{i+1}\right)-\delta\) do
delete \(p_{k}\) from \(\mathcal{L}\) and \(\mathcal{T}\) \(k \leftarrow k+1\)
return \(P_{\text {min }}\)

\section*{Algorithm}
\(p_{1}, p_{2}, \ldots, p_{n} \leftarrow\) points of \(P\) sorted according to their x-coordinates \(\mathcal{O}(n \log n)\)
\(P_{\text {min }} \leftarrow\) nil // current closest pair
\(\delta \leftarrow \infty \quad / /\) distance of current closest pair
\(k \leftarrow 1 / /\) index of the left-most point in \(\mathcal{L}\) and \(\mathcal{T}\) initialize \(\mathcal{L}\) and \(\mathcal{T}\) with \(p_{1}\)
for \(i=2,3, \ldots, n\) do
insert \(p_{i}\) into \(\mathcal{L}\) and \(\mathcal{T} \mathcal{O}(\log n)\)
for \(p_{j} \in\left[\mathrm{y}\left(p_{i}\right)-\delta, \mathrm{y}\left(p_{i}\right)+\delta\right] \backslash\left\{p_{i}\right\} \mathbf{d o} \mathcal{O}(1)\)
\(\quad\) if \(\left\|p_{j}-p_{i}\right\|<\delta\) do
\(\quad P_{\text {min }} \leftarrow\left\{p_{j}, p_{i}\right\} ; \delta \leftarrow\left\|p_{j}-p_{i}\right\|\)
while \(\times\left(p_{k}\right)<\times\left(p_{i+1}\right)-\delta\) do
delete \(p_{k}\) from \(\mathcal{L}\) and \(\mathcal{T} \mathcal{O}(\log n)\) \(k \leftarrow k+1\)
return \(P_{\text {min }}\)

\section*{Algorithm}
\(p_{1}, p_{2}, \ldots, p_{n} \leftarrow\) points of \(P\) sorted according to their x-coordinates \(\mathcal{O}(n \log n)\)
\(P_{\text {min }} \leftarrow\) nil // current closest pair
\(\delta \leftarrow \infty \quad / /\) distance of current closest pair
\(k \leftarrow 1 / /\) index of the left-most point in \(\mathcal{L}\) and \(\mathcal{T}\) initialize \(\mathcal{L}\) and \(\mathcal{T}\) with \(p_{1}\)
for \(i=2,3, \ldots, n\) do
insert \(p_{i}\) into \(\mathcal{L}\) and \(\mathcal{T} \mathcal{O}(\log n)\)

delete \(p_{k}\) from \(\mathcal{L}\) and \(\mathcal{T} \mathcal{O}(\log n)\) \(k \leftarrow k+1\)
return \(P_{\text {min }}\)

\section*{Algorithm}
\(p_{1}, p_{2}, \ldots, p_{n} \leftarrow\) points of \(P\) sorted according to their x-coordinates \(\mathcal{O}(n \log n)\)
\(P_{\text {min }} \leftarrow\) nil // current closest pair
\(\delta \leftarrow \infty \quad / /\) distance of current closest pair
\(k \leftarrow 1 / /\) index of the left-most point in \(\mathcal{L}\) and \(\mathcal{T}\) initialize \(\mathcal{L}\) and \(\mathcal{T}\) with \(p_{1}\)
for \(i=2,3, \ldots, n\) do
insert \(p_{i}\) into \(\mathcal{L}\) and \(\mathcal{T} \mathcal{O}(\log n)\)
for \(p_{j} \in\left[\mathrm{y}\left(p_{i}\right)-\delta, \mathrm{y}\left(p_{i}\right)+\delta\right] \backslash\left\{p_{i}\right\} \mathbf{d o}\)
\(\mathcal{O}(1)\)
\(\quad\) if \(\left\|p_{j}-p_{i}\right\|<\delta\) do
\(\quad P_{\text {min }} \leftarrow\left\{p_{j}, p_{i}\right\} ; \delta \leftarrow\left\|p_{j}-p_{i}\right\|\)
while \(\times\left(p_{k}\right)<\times\left(p_{i+1}\right)-\delta\) do \(\mathcal{O}(n)\) in total \begin{tabular}{ll|l} 
delete \(p_{k}\) from \(\mathcal{L}\) and \(\mathcal{T} \mathcal{O}(\log n)\) & \(\mathcal{O}(n \log n)\) in total
\end{tabular} \(k \leftarrow k+1\)
return \(P_{\text {min }}\)

\section*{Algorithm}
\(p_{1}, p_{2}, \ldots, p_{n} \leftarrow\) points of \(P\) sorted according to their x-coordinates \(\mathcal{O}(n \log n)\)
\(P_{\text {min }} \leftarrow\) nil // current closest pair
\(\delta \leftarrow \infty \quad / /\) distance of current closest pair
\(k \leftarrow 1 / /\) index of the left-most point in \(\mathcal{L}\) and \(\mathcal{T}\) initialize \(\mathcal{L}\) and \(\mathcal{T}\) with \(p_{1}\)
for \(i=2,3, \ldots, n\) do \(\mathcal{O}(n)\)
insert \(p_{i}\) into \(\mathcal{L}\) and \(\mathcal{T} \mathcal{O}(\log n)\)
for \(p_{j} \in\left[\mathrm{y}\left(p_{i}\right)-\delta, \mathrm{y}\left(p_{i}\right)+\delta\right] \backslash\left\{p_{i}\right\} \mathbf{d o}\)
if \(\left\|p_{j}-p_{i}\right\|<\delta \mathbf{d o}\)
\(\left\lfloor P_{\text {min }} \leftarrow\left\{p_{j}, p_{i}\right\} ; \quad \delta \leftarrow\left\|p_{j}-p_{i}\right\|\right.\)
while \(\times\left(p_{k}\right)<\times\left(p_{i+1}\right)-\delta\) do \(\mathcal{O}(n)\) in total \begin{tabular}{ll|l} 
delete \(p_{k}\) from \(\mathcal{L}\) and \(\mathcal{T} \mathcal{O}(\log n)\) & \(\mathcal{O}(n \log n)\) in total
\end{tabular} \(k \leftarrow k+1\)
return \(P_{\min }\)

\section*{Algorithm}
\(p_{1}, p_{2}, \ldots, p_{n} \leftarrow\) points of \(P\) sorted according to their x-coordinates \(\mathcal{O}(n \log n)\)
\(P_{\text {min }} \leftarrow\) nil // current closest pair
\(\delta \leftarrow \infty \quad / /\) distance of current closest pair
\(k \leftarrow 1 / /\) index of the left-most point in \(\mathcal{L}\) and \(\mathcal{T}\) initialize \(\mathcal{L}\) and \(\mathcal{T}\) with \(p_{1}\)


\section*{Algorithm}
\(p_{1}, p_{2}, \ldots, p_{n} \leftarrow\) points of \(P\) sorted according to their x-coordinates \(\mathcal{O}(n \log n)\)
\(P_{\text {min }} \leftarrow\) nil // current closest pair
\(\delta \leftarrow \infty \quad / /\) distance of current closest pair
\(\Rightarrow\) Total runtime: \(\mathcal{O}(n \log n)\)
\(k \leftarrow 1 / /\) index of the left-most point in \(\mathcal{L}\) and \(\mathcal{T}\) initialize \(\mathcal{L}\) and \(\mathcal{T}\) with \(p_{1}\)


\section*{Remarks on the Implementation}
- The list \(\mathcal{L}\) is actually not necessary: given a point \(p\) in \(\mathcal{T}\), its neighbors in the ordering can be determined in \(\mathcal{O}(\log n)\) time.


\section*{Remarks on the Implementation}
- The list \(\mathcal{L}\) is actually not necessary: given a point \(p\) in \(\mathcal{T}\), its neighbors in the ordering can be determined in \(\mathcal{O}(\log n)\) time.
- The tree \(\mathcal{T}\) does not need to be dynamic! A static tree on all points suffices if each point currently in \(S\) and all its ancestors are marked. \(\rightarrow\) simple and space efficient (1 bit of extra information / node).


\section*{Remarks on the Implementation}
- The list \(\mathcal{L}\) is actually not necessary: given a point \(p\) in \(\mathcal{T}\), its neighbors in the ordering can be determined in \(\mathcal{O}(\log n)\) time.


\section*{Summary and Discussion}

The sweep line approach is an important design paradigm (like divide and conquer, prune and search, dynamic programming, greedy, ...) in computational geometry.

\section*{Summary and Discussion}

The sweep line approach is an important design paradigm (like divide and conquer, prune and search, dynamic programming, greedy, ...) in computational geometry.
Main idea: Sweep the plane with a line \(\ell\) while maintaining two invariants:
■ A partial solution for the input to the left of \(\ell\) is known.
■ The part of the input to the left of \(\ell\) that is still relevant for updating the partial solution is encoded in a suitable data structure (sweep line status).

\section*{Summary and Discussion}

The sweep line approach is an important design paradigm (like divide and conquer, prune and search, dynamic programming, greedy, ...) in computational geometry.
Main idea: Sweep the plane with a line \(\ell\) while maintaining two invariants:
■ A partial solution for the input to the left of \(\ell\) is known.
■ The part of the input to the left of \(\ell\) that is still relevant for updating the partial solution is encoded in a suitable data structure (sweep line status).
The partial solution and the sweep line status only change at specific positions (events) that may be part of the input or arise during the execution of the algorithm.

\section*{Summary and Discussion}

The sweep line approach is an important design paradigm (like divide and conquer, prune and search, dynamic programming, greedy, ...) in computational geometry.
Main idea: Sweep the plane with a line \(\ell\) while maintaining two invariants:
■ A partial solution for the input to the left of \(\ell\) is known.
- The part of the input to the left of \(\ell\) that is still relevant for updating the partial solution is encoded in a suitable data structure (sweep line status).
The partial solution and the sweep line status only change at specific positions (events) that may be part of the input or arise during the execution of the algorithm.
The sweep line paradigm is powerful and leads to simple algorithms for many problems: computing Voronoi diagrams, crossings in an arrangement of line segments, intersection/union of two polygons, decompositions of polygons, certain triangulations, visibility polygons, ...

\section*{Outlook: Computing Visibility Polygons}

The sweep "line" does not always have to move from left to right!
Given: A polygon \(P\) with \(n\) corners and a point \(p\) in its interior.
Task: Compute the visibility polygon of \(p\) with respect to \(P\).


\section*{Outlook: Computing Visibility Polygons}

The sweep "line" does not always have to move from left to right!
Given: A polygon \(P\) with \(n\) corners and a point \(p\) in its interior.
Task: Compute the visibility polygon of \(p\) with respect to \(P\).


\section*{Outlook: Computing Visibility Polygons}

The sweep "line" does not always have to move from left to right!
Given: A polygon \(P\) with \(n\) corners and a point \(p\) in its interior.
Task: Compute the visibility polygon of \(p\) with respect to \(P\).


\section*{Outlook: Computing Visibility Polygons}

The sweep "line" does not always have to move from left to right!
Given: A polygon \(P\) with \(n\) corners and a point \(p\) in its interior.
Task: Compute the visibility polygon of \(p\) with respect to \(P\).


\section*{Outlook: Computing Visibility Polygons}

The sweep "line" does not always have to move from left to right!
Given: A polygon \(P\) with \(n\) corners and a point \(p\) in its interior.
Task: Compute the visibility polygon of \(p\) with respect to \(P\).
Idea: Sweep a ray \(\ell\) radially around \(p\).


\section*{Outlook: Computing Visibility Polygons}

The sweep "line" does not always have to move from left to right!
Given: A polygon \(P\) with \(n\) corners and a point \(p\) in its interior.
Task: Compute the visibility polygon of \(p\) with respect to \(P\).
Idea: Sweep a ray \(\ell\) radially around \(p\).


\section*{Outlook: Computing Visibility Polygons}

The sweep "line" does not always have to move from left to right!
Given: A polygon \(P\) with \(n\) corners and a point \(p\) in its interior.
Task: Compute the visibility polygon of \(p\) with respect to \(P\).
Idea: Sweep a ray \(\ell\) radially around \(p\).


\section*{Outlook: Computing Visibility Polygons}

The sweep "line" does not always have to move from left to right!
Given: A polygon \(P\) with \(n\) corners and a point \(p\) in its interior.
Task: Compute the visibility polygon of \(p\) with respect to \(P\).
Idea: Sweep a ray \(\ell\) radially around \(p\).


\section*{Outlook: Computing Visibility Polygons}

The sweep "line" does not always have to move from left to right!
Given: A polygon \(P\) with \(n\) corners and a point \(p\) in its interior.
Task: Compute the visibility polygon of \(p\) with respect to \(P\).
Idea: Sweep a ray \(\ell\) radially around \(p\).


\section*{Outlook: Computing Visibility Polygons}

The sweep "line" does not always have to move from left to right!
Given: A polygon \(P\) with \(n\) corners and a point \(p\) in its interior.
Task: Compute the visibility polygon of \(p\) with respect to \(P\).
Idea: Sweep a ray \(\ell\) radially around \(p\).


\section*{Outlook: Computing Visibility Polygons}

The sweep "line" does not always have to move from left to right!
Given: A polygon \(P\) with \(n\) corners and a point \(p\) in its interior.
Task: Compute the visibility polygon of \(p\) with respect to \(P\).
Idea: Sweep a ray \(\ell\) radially around \(p\).


\section*{Outlook: Computing Visibility Polygons}

The sweep "line" does not always have to move from left to right!
Given: A polygon \(P\) with \(n\) corners and a point \(p\) in its interior.
Task: Compute the visibility polygon of \(p\) with respect to \(P\).
Idea: Sweep a ray \(\ell\) radially around \(p\).


\section*{Outlook: Computing Visibility Polygons}

The sweep "line" does not always have to move from left to right!
Given: A polygon \(P\) with \(n\) corners and a point \(p\) in its interior.
Task: Compute the visibility polygon of \(p\) with respect to \(P\).
Idea: Sweep a ray \(\ell\) radially around \(p\).


\section*{Outlook: Computing Visibility Polygons}

The sweep "line" does not always have to move from left to right!
Given: A polygon \(P\) with \(n\) corners and a point \(p\) in its interior.
Task: Compute the visibility polygon of \(p\) with respect to \(P\).
Idea: Sweep a ray \(\ell\) radially around \(p\).


\section*{Outlook: Computing Visibility Polygons}

The sweep "line" does not always have to move from left to right!
Given: A polygon \(P\) with \(n\) corners and a point \(p\) in its interior.
Task: Compute the visibility polygon of \(p\) with respect to \(P\).
Idea: Sweep a ray \(\ell\) radially around \(p\).
Sweep line status: Edges of \(P\) intersected by \(\ell\) are stored in a balanced binary search tree \(\mathcal{T}\) in the order of intersection with \(\ell\).


\section*{Outlook: Computing Visibility Polygons}

The sweep "line" does not always have to move from left to right!
Given: A polygon \(P\) with \(n\) corners and a point \(p\) in its interior.
Task: Compute the visibility polygon of \(p\) with respect to \(P\).
Idea: Sweep a ray \(\ell\) radially around \(p\).
Sweep line status: Edges of \(P\) intersected by \(\ell\) are stored in a balanced binary search tree \(\mathcal{T}\) in the order of intersection with \(\ell\).


\section*{Outlook: Computing Visibility Polygons}

The sweep "line" does not always have to move from left to right!
Given: A polygon \(P\) with \(n\) corners and a point \(p\) in its interior.
Task: Compute the visibility polygon of \(p\) with respect to \(P\).
Idea: Sweep a ray \(\ell\) radially around \(p\).
Sweep line status: Edges of \(P\) intersected by \(\ell\) are stored in a balanced binary search tree \(\mathcal{T}\) in the order of intersection with \(\ell\). Events: Corners of \(P\).


\section*{Outlook: Computing Visibility Polygons}

The sweep "line" does not always have to move from left to right!
Given: A polygon \(P\) with \(n\) corners and a point \(p\) in its interior.
Task: Compute the visibility polygon of \(p\) with respect to \(P\).
Idea: Sweep a ray \(\ell\) radially around \(p\).
Sweep line status: Edges of \(P\) intersected by \(\ell\) are stored in a balanced binary search tree \(\mathcal{T}\) in the order of intersection with \(\ell\). Events: Corners of \(P\).


\section*{Outlook: Computing Visibility Polygons}

The sweep "line" does not always have to move from left to right!
Given: A polygon \(P\) with \(n\) corners and a point \(p\) in its interior.
Task: Compute the visibility polygon of \(p\) with respect to \(P\).
Idea: Sweep a ray \(\ell\) radially around \(p\).
Sweep line status: Edges of \(P\) intersected by \(\ell\) are stored in a balanced binary search tree \(\mathcal{T}\) in the order of intersection with \(\ell\). Events: Corners of \(P\).


\section*{Outlook: Computing Visibility Polygons}

The sweep "line" does not always have to move from left to right!
Given: A polygon \(P\) with \(n\) corners and a point \(p\) in its interior.
Task: Compute the visibility polygon of \(p\) with respect to \(P\).
Idea: Sweep a ray \(\ell\) radially around \(p\).
Sweep line status: Edges of \(P\) intersected by \(\ell\) are stored in a balanced binary search tree \(\mathcal{T}\) in the order of intersection with \(\ell\). Events: Corners of \(P\).


\section*{Outlook: Computing Visibility Polygons}

The sweep "line" does not always have to move from left to right!
Given: A polygon \(P\) with \(n\) corners and a point \(p\) in its interior.
Task: Compute the visibility polygon of \(p\) with respect to \(P\).
Idea: Sweep a ray \(\ell\) radially around \(p\).
Sweep line status: Edges of \(P\) intersected by \(\ell\) are stored in a balanced binary search tree \(\mathcal{T}\) in the order of intersection with \(\ell\). Events: Corners of \(P\).


\section*{Outlook: Computing Visibility Polygons}

The sweep "line" does not always have to move from left to right!
Given: A polygon \(P\) with \(n\) corners and a point \(p\) in its interior.
Task: Compute the visibility polygon of \(p\) with respect to \(P\).
Idea: Sweep a ray \(\ell\) radially around \(p\).
Sweep line status: Edges of \(P\) intersected by \(\ell\) are stored in a balanced binary search tree \(\mathcal{T}\) in the order of intersection with \(\ell\). Events: Corners of \(P\).


\section*{Outlook: Computing Visibility Polygons}

The sweep "line" does not always have to move from left to right!
Given: A polygon \(P\) with \(n\) corners and a point \(p\) in its interior.
Task: Compute the visibility polygon of \(p\) with respect to \(P\).
Idea: Sweep a ray \(\ell\) radially around \(p\).
Sweep line status: Edges of \(P\) intersected by \(\ell\) are stored in a balanced binary search tree \(\mathcal{T}\) in the order of intersection with \(\ell\). Events: Corners of \(P\).


\section*{Outlook: Computing Visibility Polygons}

The sweep "line" does not always have to move from left to right!
Given: A polygon \(P\) with \(n\) corners and a point \(p\) in its interior.
Task: Compute the visibility polygon of \(p\) with respect to \(P\).
Idea: Sweep a ray \(\ell\) radially around \(p\).
Sweep line status: Edges of \(P\) intersected by \(\ell\) are stored in a balanced binary search tree \(\mathcal{T}\) in the order of intersection with \(\ell\). Events: Corners of \(P\).


\section*{Outlook: Computing Visibility Polygons}

The sweep "line" does not always have to move from left to right!
Given: A polygon \(P\) with \(n\) corners and a point \(p\) in its interior.
Task: Compute the visibility polygon of \(p\) with respect to \(P\).
Idea: Sweep a ray \(\ell\) radially around \(p\).
Sweep line status: Edges of \(P\) intersected by \(\ell\) are stored in a balanced binary search tree \(\mathcal{T}\) in the order of intersection with \(\ell\). Events: Corners of \(P\).


\section*{Outlook: Computing Visibility Polygons}

The sweep "line" does not always have to move from left to right!
Given: A polygon \(P\) with \(n\) corners and a point \(p\) in its interior.
Task: Compute the visibility polygon of \(p\) with respect to \(P\).
Idea: Sweep a ray \(\ell\) radially around \(p\).
Sweep line status: Edges of \(P\) intersected by \(\ell\) are stored in a balanced binary search tree \(\mathcal{T}\) in the order of intersection with \(\ell\). Events: Corners of \(P\).


\section*{Outlook: Computing Visibility Polygons}

The sweep "line" does not always have to move from left to right!
Given: A polygon \(P\) with \(n\) corners and a point \(p\) in its interior.
Task: Compute the visibility polygon of \(p\) with respect to \(P\).
Idea: Sweep a ray \(\ell\) radially around \(p\).
Sweep line status: Edges of \(P\) intersected by \(\ell\) are stored in a balanced binary search tree \(\mathcal{T}\) in the order of intersection with \(\ell\). Events: Corners of \(P\).


\section*{Outlook: Computing Visibility Polygons}

The sweep "line" does not always have to move from left to right!
Given: A polygon \(P\) with \(n\) corners and a point \(p\) in its interior.
Task: Compute the visibility polygon of \(p\) with respect to \(P\).
Idea: Sweep a ray \(\ell\) radially around \(p\).
Sweep line status: Edges of \(P\) intersected by \(\ell\) are stored in a balanced binary search tree \(\mathcal{T}\) in the order of intersection with \(\ell\). Events: Corners of \(P\).


\section*{Outlook: Computing Visibility Polygons}

The sweep "line" does not always have to move from left to right!
Given: A polygon \(P\) with \(n\) corners and a point \(p\) in its interior.
Task: Compute the visibility polygon of \(p\) with respect to \(P\).
Idea: Sweep a ray \(\ell\) radially around \(p\).
Sweep line status: Edges of \(P\) intersected by \(\ell\) are stored in a balanced binary search tree \(\mathcal{T}\) in the order of intersection with \(\ell\). Events: Corners of \(P\).


\section*{Outlook: Computing Visibility Polygons}

The sweep "line" does not always have to move from left to right!
Given: A polygon \(P\) with \(n\) corners and a point \(p\) in its interior.
Task: Compute the visibility polygon of \(p\) with respect to \(P\).
Idea: Sweep a ray \(\ell\) radially around \(p\).
Sweep line status: Edges of \(P\) intersected by \(\ell\) are stored in a balanced binary search tree \(\mathcal{T}\) in the order of intersection with \(\ell\). Events: Corners of \(P\).


\section*{Outlook: Computing Visibility Polygons}

The sweep "line" does not always have to move from left to right!
Given: A polygon \(P\) with \(n\) corners and a point \(p\) in its interior.
Task: Compute the visibility polygon of \(p\) with respect to \(P\).
Idea: Sweep a ray \(\ell\) radially around \(p\).
Sweep line status: Edges of \(P\) intersected by \(\ell\) are stored in a balanced binary search tree \(\mathcal{T}\) in the order of intersection with \(\ell\). Events: Corners of \(P\).


\section*{Outlook: Computing Visibility Polygons}

The sweep "line" does not always have to move from left to right!
Given: A polygon \(P\) with \(n\) corners and a point \(p\) in its interior.
Task: Compute the visibility polygon of \(p\) with respect to \(P\).
Idea: Sweep a ray \(\ell\) radially around \(p\).
Sweep line status: Edges of \(P\) intersected by \(\ell\) are stored in a balanced binary search tree \(\mathcal{T}\) in the order of intersection with \(\ell\). Events: Corners of \(P\).


\section*{Outlook: Computing Visibility Polygons}

The sweep "line" does not always have to move from left to right!
Given: A polygon \(P\) with \(n\) corners and a point \(p\) in its interior.
Task: Compute the visibility polygon of \(p\) with respect to \(P\).
Idea: Sweep a ray \(\ell\) radially around \(p\).
Sweep line status: Edges of \(P\) intersected by \(\ell\) are stored in a balanced binary search tree \(\mathcal{T}\) in the order of intersection with \(\ell\). Events: Corners of \(P\).


\section*{Outlook: Computing Visibility Polygons}

The sweep "line" does not always have to move from left to right!
Given: A polygon \(P\) with \(n\) corners and a point \(p\) in its interior.
Task: Compute the visibility polygon of \(p\) with respect to \(P\).
Idea: Sweep a ray \(\ell\) radially around \(p\).
Total runtime: \(\mathcal{O}(n \log n)\)
Sweep line status: Edges of \(P\) intersected by \(\ell\) are stored in a balanced binary search tree \(\mathcal{T}\) in the order of intersection with \(\ell\). Events: Corners of \(P\).


\section*{Literature}

Rolf Klein. Algorithmische Geometrie: Grundlagen, Methoden, Anwendungen. Springer Verlag 2005.```

