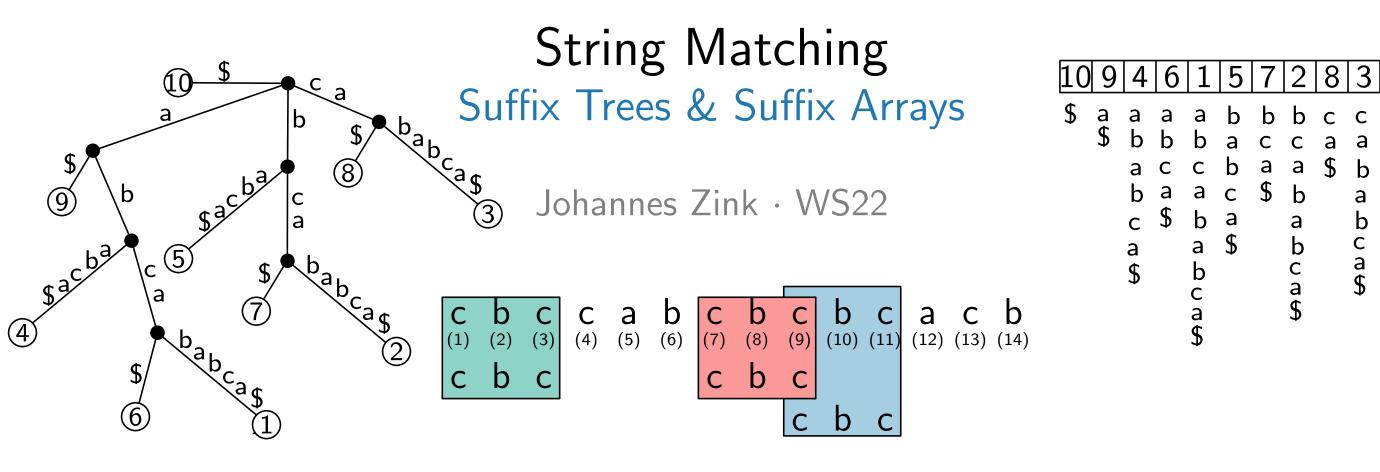


Advanced Algorithms



The "Ctrl+F" Problem

String Matching

Input: Strings T (text) and P (pattern) over an alphabet Σ s.t. $|P|, |\Sigma| \le |T|$. **Task:** Find all occurrences of P in T.

Example:

$$\Sigma = \{ \mathsf{a}, \mathsf{b}, \mathsf{c} \} \qquad P = \mathsf{cbc}$$

P occurs in T at positions 1, 7, and 9.

$$T = \begin{bmatrix} c & b & c \\ (1) & (2) & (3) \\ c & b & c \end{bmatrix} \begin{pmatrix} c & a & b \\ (4) & (5) & (6) \end{pmatrix} \begin{bmatrix} c & b & c \\ (7) & (8) & (9) \\ c & b & c \end{bmatrix} \begin{pmatrix} a & c & b \\ (10) & (11) \\ c & b & c \end{bmatrix} \begin{pmatrix} a & c & b \\ (12) & (13) & (14) \end{pmatrix}$$

Applications:

- Searching a text document / e-book.
- Searching a particular pattern in a DNA sequence.
- Internet search engines: determine whether a page is relavent to the user query.

Notation

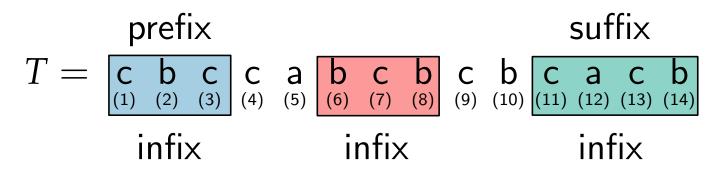
We assume T and P to be encoded as arrays with n = |T| entries $T[1], T[2], \ldots, T[n]$ and m = |P| entries $P[1], P[2], \ldots, P[m]$, respectively.

$$T[3] \qquad T[6, 11]$$

$$T = \begin{array}{c} c & b \\ {}_{(1)} & {}_{(2)} \end{array} \begin{array}{c} c & a \\ {}_{(3)} \end{array} \begin{array}{c} c & a \\ {}_{(4)} & {}_{(5)} \end{array} \begin{array}{c} b & c & b & c & b \\ {}_{(6)} & {}_{(7)} & {}_{(8)} \end{array} \begin{array}{c} {}_{(9)} & {}_{(10)} \end{array} \begin{array}{c} {}_{(11)} \end{array} \begin{array}{c} a & c & b \\ {}_{(12)} & {}_{(13)} \end{array} \begin{array}{c} {}_{(14)} \end{array}$$

T[i, j] with $1 \le i \le j \le n$ denotes the substring of T formed by $T[i], T[i+1], \ldots, T[j]$.

Each substring T[i, j] is called an **infix** of T. If i = 1, then T[i, j] is also called **prefix** of T. If j = n, then T[i, j] is also called **suffix** of T.



Algorithmic Complexity

Occurrences of (prefixes of) P may overlap.

 \Rightarrow A simple left-to-right traversal of T is not sufficient to find all occurrences of P!

$$T = \begin{array}{c} c & b & c & c & a \\ {}_{(1)} & {}_{(2)} & {}_{(3)} & {}_{(4)} & {}_{(5)} \end{array} \begin{array}{c} b & c & b & c & b & c & a \\ {}_{(6)} & {}_{(7)} & {}_{(8)} & {}_{(9)} \end{array} \begin{array}{c} {}_{(10)} & {}_{(11)} & {}_{(12)} \\ P \end{array} \begin{array}{c} c & b \\ {}_{(13)} & {}_{(14)} \end{array}$$

Observation. STRING MATCHING can be solved in $\mathcal{O}(nm)$ time.

Theorem. STRING MATCHING can be solved in O(n+m) time, and this time bound is optimal. [Knuth, Morris, Pratt'77]

Often, many queries P_1 , P_2 , P_3 , ... are performed on the same text T.

Our goal: Design a data structure to store T such that each query P_i can be answered in time independent of n.

We will see two such data structures: suffix trees and suffix arrays.

Suffix Trees (I)

Idea: Represent T as a search tree.

A Σ-tree is a rooted tree S = (V, E) whose edges are labeled with strings over Σ such that for each v ∈ V
the labels of the edges that lead to the children of v start with pairwise distinct elements of Σ;
if v is not the root, then v has ≠ 1 children.

Notation:

- \overline{v} = concatenation of the labels encountered on the path from the root to v;
- $d(v) = |\overline{v}|$ is the string depth of v;
- S contains a string α if there is a v ∈ V and a (maybe empty) string β such that v̄ = αβ;
 words(S) = set of all strings contained in S.

T = a b c a b a b c a*S*: $\overline{v} = babca$ $d(v) = |\overline{v}| = 5$

S contains
$$\alpha = b a b$$
 since
there is a $v \in V$ with $\overline{v} = \alpha \beta$
where $\beta = c a$.

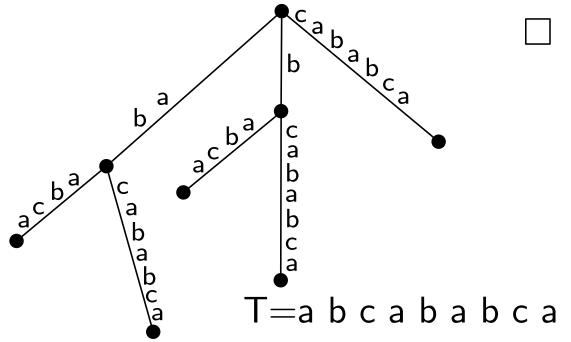
Suffix Trees (II)

A suffix tree S of T is a Σ -tree that contains exactly the infixes of T, that is, words $(S) = \{T[i, j] \mid 1 \le i \le j \le n\}.$

Lemma. For each leaf v of S, the infix \overline{v} is a suffix of T.

Proof. Denote $\overline{v} = T[i, j]$ and assume j < n.

 \overline{v} is a prefix of T[i, n]. Let u be a vertex such that T[i, n] is a prefix of \overline{u} . \Rightarrow the path from the root to v is a subpath of the path from the root to u. $\Rightarrow v$ is not a leaf; a contradiction.



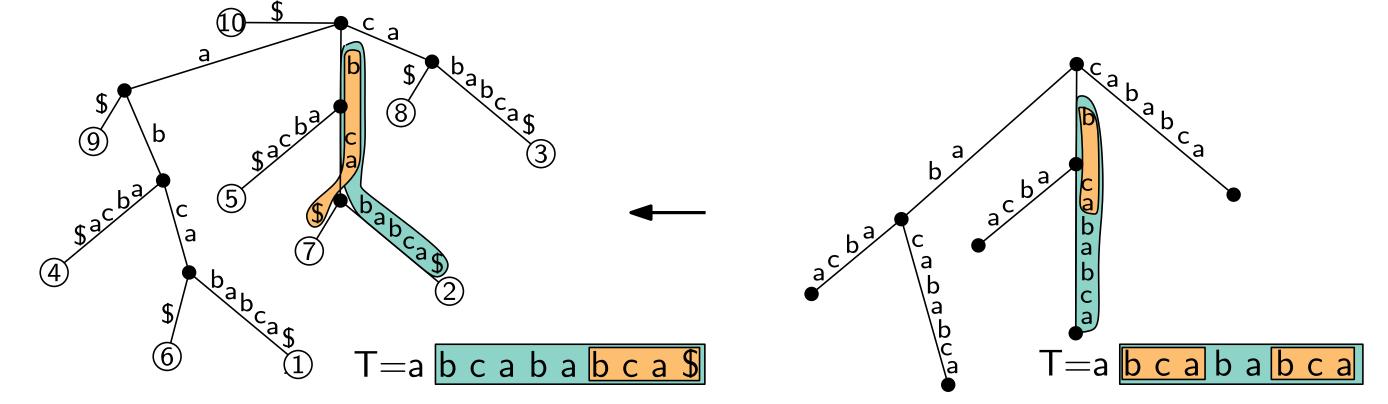
Suffix Trees (II)

A suffix tree S of T is a Σ -tree that contains exactly the infixes of T, that is, words $(S) = \{T[i, j] \mid 1 \le i \le j \le n\}.$

Lemma. For each leaf v of S, the infix \overline{v} is a suffix of T.

Remark. The converse is not true since a suffix can be a prefix of another suffix.

Fix: Append a symbol $\$ \notin \Sigma$ to $T \Rightarrow$ the leaves correspond bijectively to the suffixes.



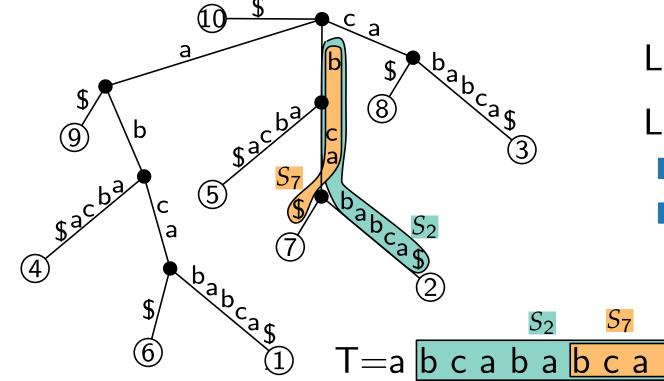
Suffix Trees (II)

A suffix tree S of T is a Σ -tree that contains exactly the infixes of T, that is, words $(S) = \{T[i, j] \mid 1 \le i \le j \le n\}.$

Lemma. For each leaf v of S, the infix \overline{v} is a suffix of T.

Remark. The converse is not true since a suffix can be a prefix of another suffix.

Fix: Append a symbol $\$ \notin \Sigma$ to $T \Rightarrow$ the leaves correspond bijectively to the suffixes.



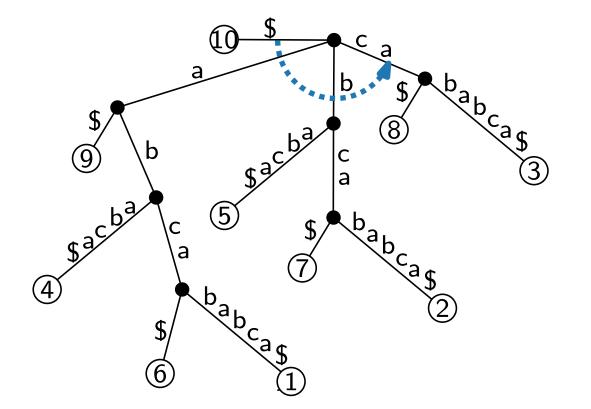
Let *i* denote the leaf of *S* where $\overline{i} = T[i, n]$.

- Let S_i denote
 - the *i*-th suffix T[i, n] of T;
 - the path from the root of S to i.

Suffix Trees (III)

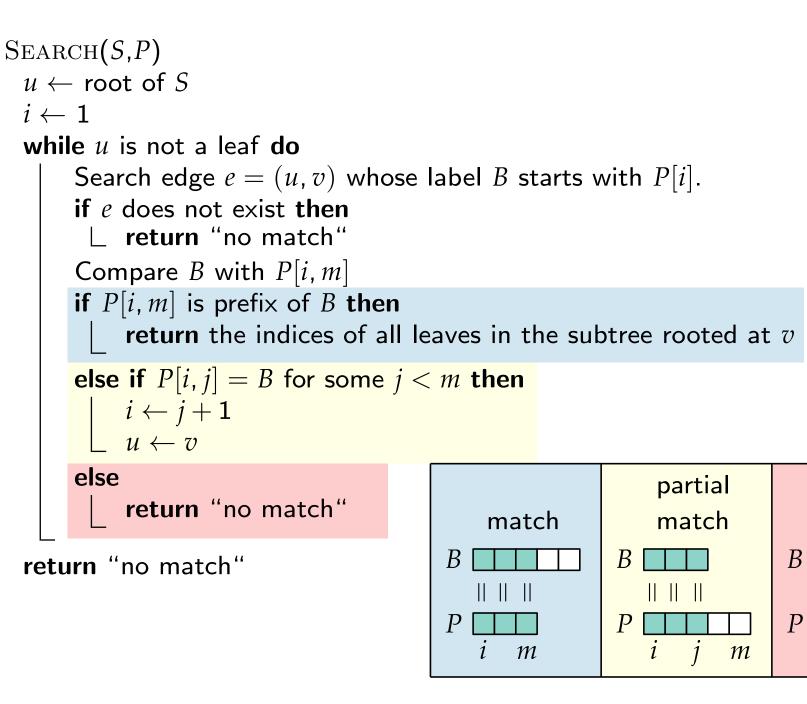
Implementation details:

- Each edge is labeled with an infix T[i, j]. It suffices to store the indices i and j. $\Rightarrow S$ requires $\mathcal{O}(n)$ space since #leaves = #suffixes = n.
- At each vertex v with k children, the edges leading to these children are stored in an array of length k sorted by the first letter of their labels.



 \rightarrow allows for binary search!

Searching in Suffix Trees



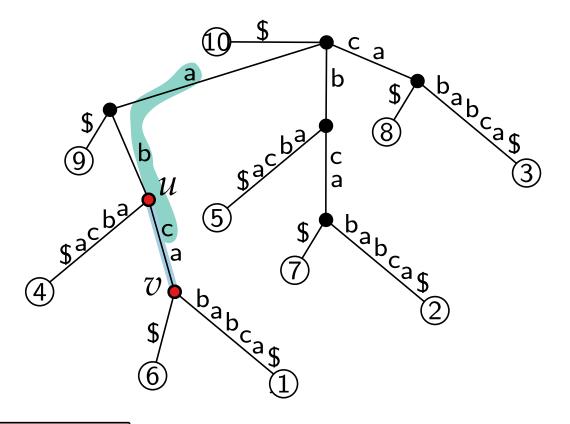
T=abcababca

no

match

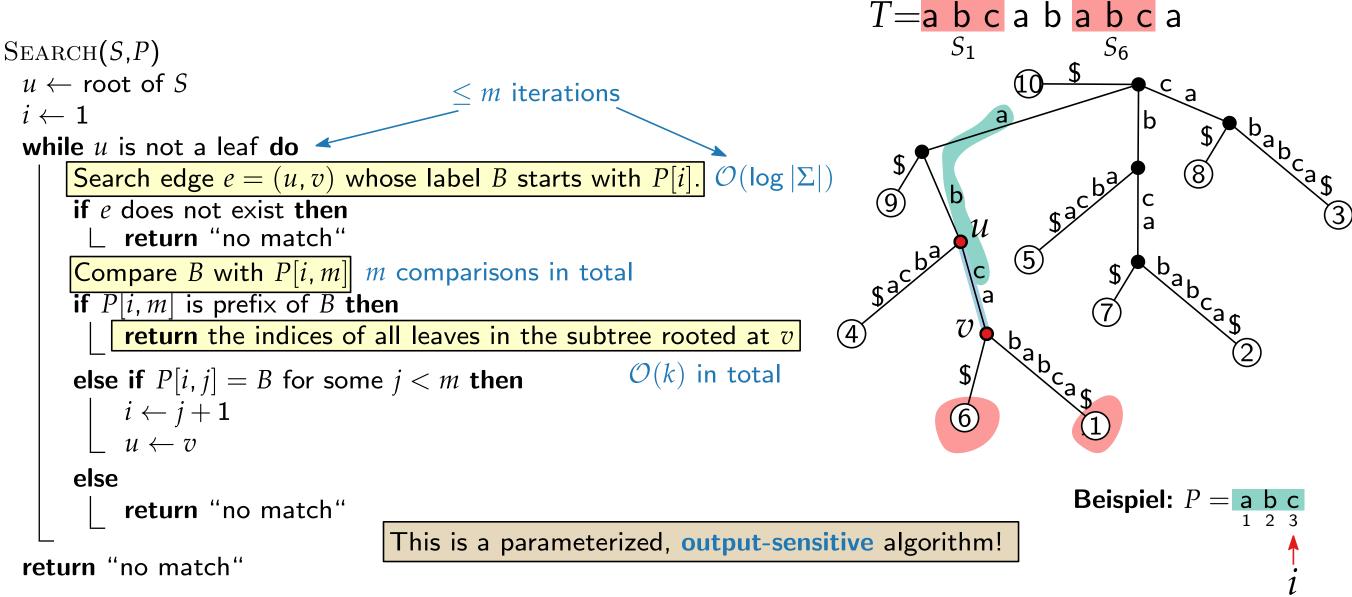
 $\parallel \parallel \parallel \parallel$

. . .



Beispiel: $P = \begin{array}{c} a & b & c \\ 1 & 2 & 3 \end{array}$

Searching in Suffix Trees



Correctness. Each occurrence of P is a prefix of exactly one suffix of T. We report all suffixes with P as a prefix. **Running time.** $\mathcal{O}(m \log |\Sigma| + k)$ where k is the number of leaves in the subtree rooted at v.

Constructing Suffix Trees

Task. Given a string T with n = |T| over alphabet Σ , construct a suffix tree S for T. **Idea.** Construct Σ -trees N_1, N_2, \ldots, N_n s.t. N_i contains the suffixes S_1, S_2, \ldots, S_i . **Initialization.** N_1 consists of a single edge labeled S_1 . **Constructing** N_{i+1} from N_i . Search the longest prefix P of S_{i+1} contained in N_i . **Case 1.** P ends in the middle of an edge e. Subdivide e and attach a new edge. **Case 2.** P ends at a vertex v. Attach a new edge, then re-sort the neighbors of v. **Running time.**

$$\mathcal{O}\Big(\big((n-1)+(n-2)+\cdots+1\big)\log|\Sigma|+n|\Sigma|\Big)\subseteq \mathcal{O}(n^2\log|\Sigma|)$$

It is also possible to construct suffix trees in $\mathcal{O}(n)$ time

- directly, e.g., with an algorithm by Farach (1997); or
- indirectly, by first constructing a suffix array, e.g., with an algorithm by Kärkkäinen and Sanders (2003).

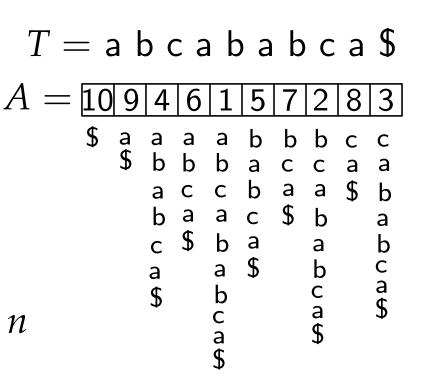
Suffix Arrays

A suffix array A of a text T with n = |T|stores a permutation of the indices $\{1, 2, ..., n\}$ s.t. $S_{A[i]}$ is the *i*-th smallest suffix of T in lexicographical order. $S_{A[i-1]} < S_{A[i]}$ for each $1 < i \le n$

Convention. \$ is the smallest letter.

Properties.

The entries of A correspond to a lexicographical sorting of the suffixes of T.
 The entries of A corresponds to the order in which the leaves of a suffix tree S of T are encoutered by a DFS that chooses the next edge according to the lexicographical order.





Searching in Suffix Arrays

Observation. The occurrences of a pattern P in T form an interval in A.

Idea. Find the left and the right boundary of the interval via two binary searches.

```
Report all entries in the interval!
```

```
FINDLEFTBOUNDARY (P, A)
```

```
\begin{array}{l} \ell \leftarrow 1 \ // \ \text{left index of candidates} \\ r \leftarrow A.\text{length } // \ \text{right index of candidates} \\ \text{while } \ell < r \ \text{do} \\ \hline i \leftarrow \ell + \lfloor (r - \ell) / 2 \rfloor \\ \text{if } P > S_{A[i]}[1, m] \ \text{then} \\ \hline \lfloor \ell \leftarrow i + 1 \ // \ \text{continue w/ right half} \\ \hline \text{else} \\ \hline r \leftarrow i \ // \ \text{continue w/ left half} \end{array}
```

```
if P is no prefix of A[\ell] then

| return "no match"
```

return ℓ

Ĩ	u			u		u		C	u	Ψ
A =	10	9	4	6	1	5	7	2	8	3
	\$	 \$	ababca\$	a b c a \$	abcababca\$	b a b c a \$	b c a \$	bcababca\$	c a \$	cababca\$
P = z	a b				•					

T = a b c a b a b c a

Searching in Suffix Arrays

Observation. The occurrences of a pattern P in T form an interval in A.

Idea. Find the left and the right boundary of the interval via two binary searches.

Report all entries in the interval!

```
FINDRIGHTBOUNDARY(A, P)
```

 $\begin{array}{l} \ell \leftarrow 1 \ // \ \text{left index of candidates} \\ r \leftarrow A.\text{length } // \ \text{right index of candidates} \\ \text{while } r > \ell \ \text{do} \\ & \quad i \leftarrow \ell + \lceil (r - \ell)/2 \rceil \\ & \quad \text{if } P < S_{A[i]}[1, m] \ \text{then} \\ & \quad \ \ \ \ r \leftarrow i - 1 \ // \ \text{continue w/ left half} \\ & \quad \text{else} \\ & \quad \ \ \ \ \ \ell \leftarrow i \ // \ \text{continue w/ right half} \end{array}$

```
T = a b c a b a b c a
```

```
A = |10|9|4|
                       5
          a a a a
$ b b b
                   c b
                         a a
                               S
                 С
                                  b
                                a
b
c
a
$
                    ac$
                 а
                          a
b
c
a
$
                    b a
                   a$
b
c
              a
§
P = a b
```

```
if P is no prefix of A[r] then
```

_ **return** "no match"

return r

Each lexicographic comparison can be done in time $\mathcal{O}(m)$. \Rightarrow The k occurrences of P can be found in $\mathcal{O}(m \log n + k)$ time.

Constructing Suffix Arrays – First Attempt

Task. Given a string T with n = |T| over alphabet Σ , construct a suffix array A for T.

Idea.

- If $n \in \mathcal{O}(1)$ use brute-force.
- Otherwise, dissect T into triples.
- Interpret the triples as letters over an alphabet $\Sigma' \subseteq \Sigma^3$.
- Interpret T as a string R over Σ' with $|R| = \lceil n/3 \rceil$.

Recurse!

R = [y a b] [b a d] [a b b] [a \$]

padding

Problem. But how can a suffix array for R be used to create a suffix array for T?

Constructing Suffix Arrays – Overview

Shortened notation: $T = t_0 t_1 \dots t_{n-1}$ and $x \equiv z(y)$ is a shorthand for $x \mod y = z$.

	0	1	2	3	4	5	6	7	8	9	10	11
T =	У	а	b	b	а	d	а	b	b	а	d	0

CONSTRUCTSUFFIXARRAY(T)

```
if n \in \mathcal{O}(1) then

| construct A in \mathcal{O}(1) time.
```

```
using the idea from
the previous slide!
```

else

sort $S_1 \cup S_2$ into an array A_{12} \checkmark use A_{12} to sort S_0 into an array A_0 merge A_{12} with A_0

For simplicity, we assume $n \equiv 0(3)$.

 $\mathcal{S}_0 = ext{suffixes}$ with index $i \equiv 0(3)$ $\mathcal{S}_1 = ext{suffixes}$ with index $i \equiv 1(3)$ $\mathcal{S}_2 = ext{suffixes}$ with index $i \equiv 2(3)$

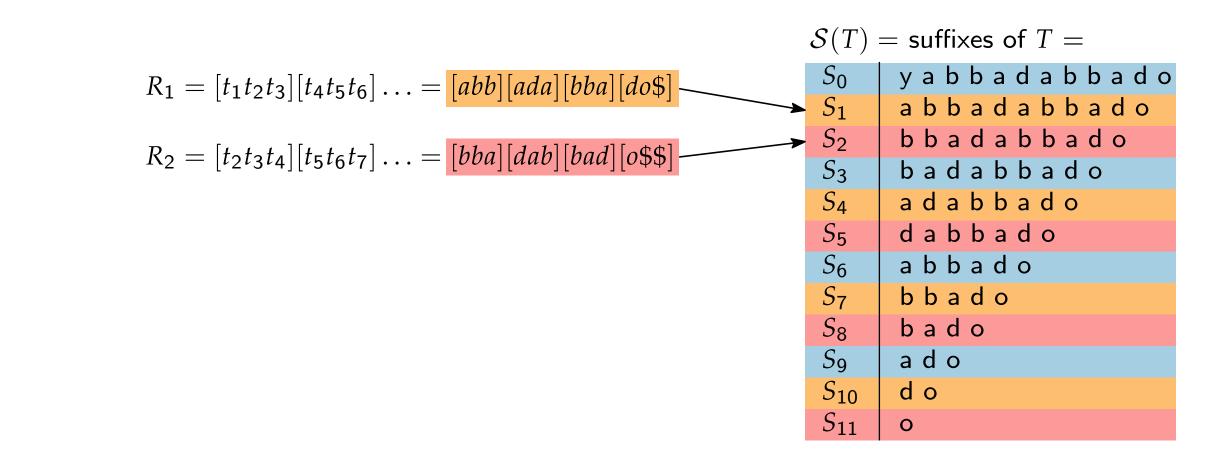
```
\mathcal{S}(T) = suffixes of T =
 S_0 | yabbadabbado
 S<sub>1</sub> | abbadabbado
 S<sub>2</sub> | bbadabbado
 S<sub>3</sub> badabbado
 S<sub>4</sub> | adabbado
 S<sub>5</sub> | dabbado
 S<sub>6</sub> abbado
S<sub>7</sub>
        bbado
 S_8
        bado
 S_9
       a d o
 S<sub>10</sub>
        d o
 S_{11}
        0
```

Step 1: Sorting $\mathcal{S}_1 \cup \mathcal{S}_2$

Shortened notation: $T = t_0 t_1 \dots t_{n-1}$ and $x \equiv z(y)$ is a shorthand for $x \mod y = z$. Dissect S_1 and S_2 into triples and concatenate them: $S_0 = \text{suffixes with index } i \equiv 0(3)$

R =[abb][ada][bba][do\$][bba][dab][bad][o\$\$]

 $S_0 =$ suffixes with index $i \equiv 0(3)$ $S_1 =$ suffixes with index $i \equiv 1(3)$ $S_2 =$ suffixes with index $i \equiv 2(3)$



Step 1: Sorting $S_1 \cup S_2$

 $S_i < S_j \iff S_i \$ < S_j \$ \iff S_i \$ \dots < S_j \$ \dots$ since the positions of the first \$ symbols in the strings $S_k(R)$ are pairwise distinct.

Shortened notation: $T = t_0 t_1 \dots t_{n-1}$ and $x \equiv z(y)$ is a shorthand for $x \mod y = z$.

Dissect S_1 and S_2 into triples and concatenate them:

R = [abb][ada][bba][do\$][bba][dab][bad][o\$\$]

 $\begin{aligned} \mathcal{S}(R) &= S_1(R) & [abb][ada][bba][do\$][bba][dab][bad][o\$\$] \\ S_2(R) & [ada][bba][do\$][bba][dab][bad][o\$\$] \\ S_3(R) & [bba][do\$][bba][dab][bad][o\$\$] \\ S_3(R) & [do\$][bba][dab][bad][o\$\$] \\ S_4(R) & [do\$][bba][dab][bad][o\$\$] \\ S_5(R) & [bba][dab][bad][o\$\$] \\ S_5(R) & [dab][bad][o\$\$] \\ S_6(R) & [dab][bad][o\$\$] \\ S_7(R) & [bad][o\$\$] \\ S_8(R) & [o\$\$] \end{aligned}$

Observation. S(R) corresponds bijectively to $S_1 \cup S_2$

 $S_i \leftrightarrow [t_i t_{i+1} t_{i+2}][t_{i+3} t_{i+4} t_{i+5}] \dots$

and a sorting of $\mathcal{S}(R)$ corresponds to a sorting of $\mathcal{S}_1 \cup \mathcal{S}_2$.

 $S_0 =$ suffixes with index $i \equiv 0(3)$ $S_1 =$ suffixes with index $i \equiv 1(3)$ $S_2 =$ suffixes with index $i \equiv 2(3)$

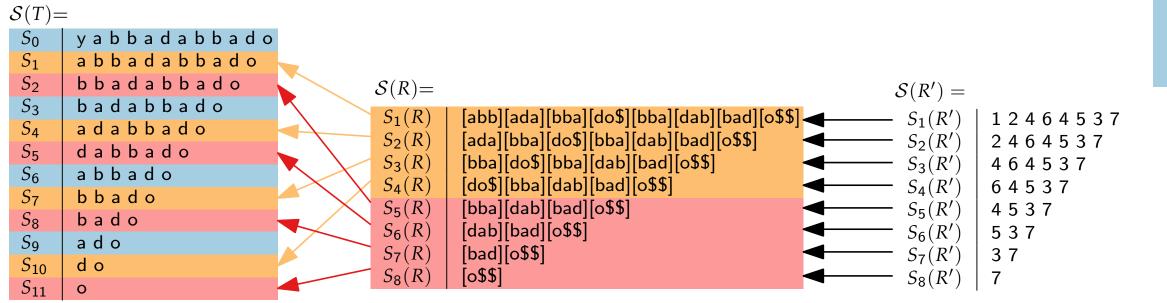
```
\mathcal{S}(T) = suffixes of T =
      yabbadabbado
 S_0
      abbadabbado
 S_1
      bbadabbado
 S_2
 S_3
      badabbado
 S_4
      adabbado
 S_5
      dabbado
 S_6
      abbado
 S_7
      bbado
 S_8
      bado
 S<sub>9</sub>
      a d o
 S_{10}
      d o
 S<sub>11</sub>
       0
```

Sorting $\mathcal{S}(R)$

Sort the "letters" (= triples) of R via RADIXSORT. This can be done in time $\mathcal{O}\left(3\left(\frac{2}{3}n+|\Sigma|\right)\right) \subseteq \mathcal{O}(n)$ #digits #objects alphabet size Replace each triple of R with its rank \rightarrow string R' with alphabet size $\leq \frac{2}{3}n \leq n$. A sorting of $\mathcal{S}(R')$ corresponds to a sorting of $\mathcal{S}(R)$ and can be obtained recursively. R = [abb][ada][bba][do\$][bba][dab][bad][o\$\$]R' = 1 2 4 6 4 5 3 7 $S(R') = S_1(R') \mid 1 \; 2 \; 4 \; 6 \; 4 \; 5 \; 3 \; 7$ $S(R) = S_1(R)$ | [abb][ada][bba][do\$][bba][dab][bad][o\$\$] triple Rank $S_2(R')$ | 2 4 6 4 5 3 7 [ada][bba][do\$][bba][dab][bad][o\$\$] [abb] $S_2(R)$ 1 $S_3(R')$ | 4 6 4 5 3 7 2 $S_3(R)$ [ada] [bba][do\$][bba][dab][bad][o\$\$] $S_4(R') \mid 6 4 5 3 7$ 3 [do\$][bba][dab][bad][o\$\$] [bad] $S_4(R)$ $S_5(R') \mid 4537$ 4 [bba][dab][bad][o\$\$] [bba] $S_5(R)$ $S_6(R') \mid 5 3 7$ $S_6(R)$ [dab][bad][o\$\$] 5 [dab] $S_7(R')$ 37 6 $S_7(R)$ [bad][o\$\$] [do\$] $S_8(R')$ 7 7 [o\$\$] [o\$\$] $S_8(R)$

Summary of Step 1

Full example.



A	12

1	S_1	abbadabbado	$S_1(R')$ 12464537
2	S_4	adabbado	$S_2(R')$ 2464537
3	S_8	bado	$S_7(R')$ 3 7
4	S_2	bbadabbado	$S_5(R')$ 4 5 3 7
5	S_7	bbado	$S_3(R')$ 4 6 4 5 3 7
6	S_5	dabbado	$S_6(R')$ 5 3 7
7	<i>S</i> ₁₀	d o	S ₄ (R') 6 4 5 3 7
8	S_{11}	0	$S_8(R')$ 7

Running time.

 $T_1(n) = \mathcal{O}(n) + T(\frac{2}{3}n)$

where T(n) is the time to execute CONSTRUCTSUFFIXARRAY on a string of length n.

Rank

1

2

3

4

5

6

7

triple

[abb]

[ada]

[bad]

[bba]

[dab]

[do\$]

[o\$\$]

Step 2: Sorting \mathcal{S}_0

Shortened notation: $T = t_0 t_1 \dots t_{n-1}$ and $x \equiv z(y)$ is a shorthand for $x \mod y = z$.

	0	1	2	3	4	5	6	7	8	9	10	11	
T =	У	а	b	b	а	d	а	b	b	а	d	0	

Each $S_i \in S_0$ can be written as (t_i, S_{i+1}) s.t. $S_{i+1} \in S_1$.

Observation. Let $S_i, S_j \in S_0$. Then $S_i < S_j$ if and only if $t_i < t_j$; or $t_i = t_j$ and $S_{i+1} < S_{j+1}$.

 $\Rightarrow S_o$ can be sorted by sorting all tuples (t_i, S_{i+1}) with $i \equiv 0(3)$. This can be done via RADIXSORT in O(n) time since the ordering of the entries in S_1 is already implicit in A_{12} .

 $\mathcal{S}_0 = \text{suffixes with index } i \equiv 0(3)$ $\mathcal{S}_1 = \text{suffixes with index } i \equiv 1(3)$ $\mathcal{S}_2 = \text{suffixes with index } i \equiv 2(3)$

$\mathcal{S}(T) = $ suffixes of $T =$								
S ₀	yabbadabbado							
S_1	abbadabbado							
S_2	bbadabbado							
S_3	badabbado							
S_4	adabbado							
S_5	dabbado							
S_6	abbado							
<i>S</i> ₇	bbado							
S_8	bado							
S_9	ado							
S ₁₀	do							
<i>S</i> ₁₁	0							

Step 3: Merging A_{12} and A_0

Shortened notation: $T = t_0 t_1 \dots t_{n-1}$ and $x \equiv z(y)$ is a shorthand for $x \mod y = z$.

	0	1	2	3	4	5	6	7	8	9	10	11	
T =	У	а	b	b	а	d	а	b	b	а	d	Ο	

 $\mathcal{S}_0 = \text{suffixes with index } i \equiv 0(3)$ $\mathcal{S}_1 = \text{suffixes with index } i \equiv 1(3)$ $\mathcal{S}_2 = \text{suffixes with index } i \equiv 2(3)$

Each $S_i \in S_0$ can be written as (t_i, S_{i+1}) s.t. $S_{i+1} \in S_1$ and as (t_i, t_{i+1}, S_{i+2}) s.t. $S_{i+2} \in S_2$.

Since the ordering of $S_1 \cup S_2$ is already implicit in A_{12} , we can perform these comparisons in $\mathcal{O}(1)$ time.

 $\Rightarrow A_{12}$ and A_0 can be merged as in MERGESORT to obtain A.

Construction of Suffix Arrays – Summary

CONSTRUCTSUFFIXARRAY(T)

```
if n \in \mathcal{O}(1) then

\lfloor construct A in \mathcal{O}(1) time.
```

else

sort $S_1 \cup S_2$ into an array A_{12} use A_{12} to sort S_0 into an array A_0 merge A_{12} with A_0

Total running time:

$$T(n) = \begin{cases} \mathcal{O}(1), & \text{if } n = \mathcal{O}(1) \\ \mathcal{O}(n) + T(\frac{2}{3}n), & \text{otherwise} \end{cases}$$

 $\stackrel{\text{Master Theorem}}{\Rightarrow} T(n) \in \mathcal{O}(n)$

$$\mathcal{O}(n) + T(\frac{2}{3}n)$$
$$\mathcal{O}(n)$$
$$\mathcal{O}(n)$$

Summary and Discussion

Let T be a string over an alphabet Σ where n = |T|.

Lemma. A suffix array for T can be used to compute an LCP ("longest common prefix") array and a suffix tree of T in $\mathcal{O}(n)$ time. [without proof]

Theorem. A suffix tree for T can computed in $\mathcal{O}(n)$ time and space. It can be used to answer STRING MATCHING queries of length m in $\mathcal{O}(m \log |\Sigma| + k)$ time.

Theorem. A suffix array for T can computed in $\mathcal{O}(n)$ time and space. It can be used to answer STRING MATCHING queries of length m in $\mathcal{O}(m \log n + k)$ time.

Remark. The suffix array is a simpler and more compact alternative to the suffix tree.

The suffix tree (and the suffix array + LCP array) have several additional applications:

- Finding the longest repeated substring
- Finding the longest common substring of two strings.

Literature and References

The content of this presentation is based on Dorothea Wagner's slides for a lecture on "String-Matching: Suffixbäume" as part of the course "Algorithmen II" held at KIT WS 13/14. Most figures and examples were taken from these slides.

Literature:

- Simple Linear Work Suffix Array Construction. Kärkkäinen and Sanders, ICALP'03
- Optimal suffix tree construction with large alphabets. Farach, FOCS'97
- Algorithms on Strings, Trees and Sequences: Computer Science and Computational Biology. Gusfield, 1999, Cambridge University Press